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Deformed relativistic kinematics, expected to emerge in a flat-spacetime
limit of quantum gravity, predicts the Planck-scale violation of discrete
symmeries. Momentum-dependent deformations of CPT are derived from
the κ-deformed Poincaré algebra. Deformation of CPT symmetry leads
to a subtle violation of Lorentz symmetry. This entails small but mea-
surable phenomenological consequences as corrections to characteristics of
time evolution: particle lifetimes or oscillations in two-particle states at
high energy. We argue that using current experimental precisions on the
muon lifetime, one can bound κ > 1014 GeV at the LHC energy and move
this limit to 1016 GeV at the Future Circular Collider. Weaker limits on
deformation can be also obtained from interference of neutral mesons. In
the case of B0s from Υ decay, it amounts to κ > 108 GeV at confidence
level 99%.
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1. Introduction

Invariance under CPT, the combined transformation of space inversion P,
charge conjugation C and time reversal T is believed to be strictly obeyed
due to theorems based on premises constituting natural axioms of the lo-
cal quantum field theory [1]. Among phenomenological consequences of the
CPT theorem, there are equality of masses and lifetimes of particles and
antiparticles. These claims were experimentally tested. The most precise
constraint comes from neutral kaon physics, where masses of the K0 and
K̄0 are equal with accuracy of 4 × 10−19 GeV at 95% confidence level [2]1.

∗ Presented at the 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic
Physics, Kraków, Poland, June 23–28, 2019.

1 The number given in Ref. [2] represents the world average, where the main contribu-
tion comes from the CPLEAR experiment at CERN [3].
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Together with the anti-CPT theorem [4] (cf. discussion in Ref. [5]), stating
that CPT violation entails violation of the Lorentz invariance, these theoret-
ical results may suggest that any experimental hint of CPT non-conservation
might deeper affect the quantum field theory.

Effects of quantum gravity have long been suggested as a possible source
of CPT violation. As noted in Ref. [6], there is no fundamental arrow of time
in its own right but only with a choice of matter or antimatter. In addition,
in presence of an inherent quantum-gravitational background, CPT operator
is no longer well-defined. Scattering operator cannot map pure in- into out-
states, and vice versa, due to destruction of information in presence of micro
black holes [7]. Because of that, any system propagating in a quantum-
gravitational background exhibits irreversibility, analogously to dissipative
processes, but here connected to CPT violation. It has, therefore, inspired
approaches based on dissipative quantum dynamics (for historical account cf.
Ref. [8]) and resulting in a number of models with CPT or Lorentz violation
ascribed to gravity-induced quantum decoherence [9]. Alternatively, another
approach inspired by quantum gravity was considered [10] using the usual
framework of quantum field theory but with an explicitly CPT non-invariant
term added to the Lagrangian. These models, either based on decoherence or
Standard Model extension, were considerably, but not definitely, constrained
by experimental data on neutral kaons [11, 12].

2. Planck-scale deformation and discrete symmetries

By analogy to the Heisenberg uncertainty relation, the concept of min-
imal energy and length scales leads to non-commutative geometry, defined
by the commutation relations

[xµ, xν ] = iθµν , µ, ν = 0, . . . , 3 , (1)

where θµν can be related to geometric properties of the space-time [13].
The concept has been further developed to the geometry generated by the
κ-deformed Poincaré algebra — generating Lorentz boosts, momenta and
rotations — and defined the commutation relations[

t, xj
]

= ixj/κ ,
[
t, kj

]
= −ikj/κ , (2)

where κ is expected to be of the order of Planck’s massmP ' 2×1018 GeV/c2

[14]. The κ-deformed momentum space is a submanifold of the four-dimen-
sional de Sitter space, defined in the five-dimensional Minkowski space by
constraint

−p2
0 + p2

1 + p2
2 + p2

3 + p2
4 = κ2 ; p0 + p4 > 0 , (3)

where κ is related to the curvature of the momentum manifold.
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Essential to understand the action of discrete symmetries in deformed
space is a proper definition of deformed rule of the four-momentum composi-
tion and thus of momentum inversion. As elaborated in Ref. [15] and using
the Hopf algebra, inverse of three-momentum is given by its antipode 	 as

S(pi) ≡ 	pi = −pi
κ

E + p4
, i = 1, 2, 3 (4)

and for energy by requiring the mass-shell relation or preservation of the
Casimir operator

m2 = E2 − p2

= S(E)2 − S(p)2 , (5)

by

S(E) =
κ2

E + p4
− p4 . (6)

Using these findings, action of the κ-deformed Θκ =CPTκ on the four-
momentum can be written in leading order of 1/κ as

Θκp0 = p0 −
p2

κ
+O

(
1/κ2

)
,

Θκp = p− p0p

κ
+O

(
1/κ2

)
(7)

(p0 = E) and charges are always multiplied by −1. In particular, the parti-
cle’s Lorentz boost factor γ = E/m, after Θκ deformation becomes

γκ =
1

m

(
E − p2/κ

)
(8)

for antiparticle.

3. Measurement of the κ-deformation

Consider unstable particle at rest described by the wave function de-
pending on its proper time

ψ =
√
Γ e−Γt/2+imt , (9)

where its mass m and lifetime τ = 1/Γ are CPT-invariant. In the particle’s
rest frame, the CPT is undeformed and the particle’s (p) and antiparticle’s
(a) masses and lifetimes are equal due to the CPT theorem. Their decay
probabilities obey the same decay laws

Pp = Pa = Γ e−Γt (10)
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but they differ after Lorentz transformation to a moving system

Pp =
ΓE

m
e−ΓE/mt ,

Pa = Γ

(
E

m
− p2

κm

)
e
−Γ

(
E
m
− p2

κm

)
t
. (11)

Consequences of deformation could thus be examined experimentally by pre-
cisely measuring the particle and antiparticle lifetimes. These are equally
delated due to Lorentz boost but only one of them is deformed under CPT
transformation. To be measurable, the effective correction p2/(κm) has to
be comparable to the experimental accuracy of the measurement στ/τ .

In the scheme described above and developed in Ref. [16], violation of
the CPT is momentum-dependent and thus depends on the Lorentz frame.
It thus explicitly relates the CPT and Lorentz noninvariance, only suggested
in general terms by the CPT theorems.

For known unstable particles, the accuracy of measurements of their life-
times amounts typically to 10−4 for mesons π± and K0 and 10−6 for leptons
µ± [2]. Any measurement of the lifetime requires experimentally measured
momenta to be Lorentz-transformed to the particle’s rest frame. Inaccura-
cies of laboratory momenta and energies thus propagate to the rest frame
and, if large, can strongly affect στ . This is particularly discouraging in
nonaccelerator experiments where energies of cosmic particles are occasion-
ally very high, exceeding even 106 GeV and thus p2 ∼ 1012 GeV2 but, at the
same time, experimental uncertainties usually tend to be large and hard to
control.

In order to quantify our findings, in Fig. 1 (upper left), we plot the
correction p2/(κm) for the muon. If deformation κ is close to the Planck
mass 1019 GeV, as expected, any detectable correction requires momenta of
the order of 106 GeV, unattainable at today’s accelerating facilities. Such
energies are available in cosmic-ray experiments. However, using them for
our purposes would require a measurement of their lifetimes and reach very
challenging accuracy of their energy determination. We can also estimate a
limit on the deformation κ that can be set for the present energies at the
LHC and those planned at FCC [17], both at CERN. Using experimental
accuracies of the lifetimes and requiring p2/(κm) = στ/τ for p = 6.5 TeV
(LHC) and 50 TeV (FCC), one obtains the values of κ labeling curves in
Fig. 1. As can be seen there, the limiting value of κ = 4× 1014 GeV can be
obtained using muons at the LHC and, in future, κ = 2×1016 GeV at FCC.
Further improvement at these energies requires progress in accuracy of the
lifetime measurement.
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Fig. 1. (Color online) Upper left: The correction p2/(κm) to the muon lifetime.
Two curves, labeled LHC and FCC, are for the deformation parameters κ corre-
sponding to corrections equal to experimental accuracies for maximal momenta at
the Large Hadron Collider (continuous green, LHC) and the Future Circular Col-
lider (dashed red, FCC). The dotted line (violet) corresponds to the Planck mass
κ = 1019 GeV. Upper right: The momentum-dependent time resolution of the
LHCb detector. The superimposed histogram represents the momentum distribu-
tion of µ± and K± used for this measurement. Lower left: Lorentz-boosted spectra
(γ = 4.3) of decay time difference for pairs of kaons from decay φ(1020)→ KLKS,
in units of τS. Lower right: Lorentz-boosted spectra (γ = 44) of decay time differ-
ence for pairs of B mesons from decay Υ (10580)→ BHBL, in units of τL.

Interesting possibilities of search for CPT violation are given by interfer-
ometry of neutral mesons produced in coherent, two-particle states in decays
of pseudoscalar mesons, e.g. φ(1020) → KLKS and Υ (10580) → BHBL (cf.
Ref. [9]). Interference patterns are usually studied in difference of decay
times, ∆t = |t2 − t1|
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I(∆t) ∼ e−ΓL∆t + e−ΓS∆t − 2eΓ̄∆t cos(∆m∆t) , (12)

where t1(2) stands for decay time of the first (second) meson in its rest frame
and ∆m for difference of masses of the heavier and lighter of the two neutral
mesons and Γ̄ = (ΓL +ΓS)/2. Applying deformed CPT, Eq. (5), transforms
decay spectrum given by Eq. (12) to

I(∆t) ∼
(
γ − p2/ (mκ)

) (
e−γΓL∆t + e−γΓS∆t

)
+γ∆tp2/ (mκ)

(
ΓLe−γΓL∆t + ΓS e−γΓS∆t

)
−2γ e−γΓ̄∆t

[(
1 + Γ̄∆tp2/ (mκ)

)
cos (γ∆m∆t)

+∆m∆tp2/ (mκ) sin (γ∆m∆t)
]
. (13)

Lorentz boost, by increasing masses of mesons, effectively amplifies oscilla-
tion frequency of the oscillatory term. In order to have interference pattern
experimentally measurable, the amplified frequency cannot exceed the in-
verse time resolution of an apparatus 1

γ∆m > σt. Time resolution of the
most precise spectrometer at the LHC amounts to 45 fs and belongs to the
LHCb (cf. Fig. 1, upper right). It gives constraints to the maximum Lorentz
boost for pairs of K0 and B0 mesons to be γ = 4.3 and γ = 44, respectively.
Decay time spectra (13) for these boosts are presented in Fig. 1 (lower left
and right). Limits on κ deformation can be estimated by the Monte Carlo
simulation using the log-likelihood method and are found to be 2× 105 GeV
and 1.2 × 108 GeV, at 99.9% confidence level, for pairs of K0s and B0s,
respectively.

4. Conclusions

Deformed CPT transformation can be used to estimate deformation
parameter κ from experiment. The CPT-violating corrections to energy-
momentum are of the order of p2/(mκ). This kind of CPT violation au-
tomatically violates Lorentz invariance. Numerical estimates show that by
using precisely known lifetimes of µ±, one could expect to limit κ at 1016

GeV, i.e. only three orders of magnitude lower than the Planck mass, by in-
corporating the FCC at

√
s = 100 TeV. Limitations from the neutral-meson

interferometry are less stringent.
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