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We define a modified time-of-flight (TOF) filtered back projection (FBP)
image reconstruction method, proposed for the Jagiellonian PET (J-PET)
scanners of high temporal resolution. It is shown that TOF FBP could be
represented as a sum of single-event reconstructions, each performed within
a small volume in image space around the most likely position (MLP) of
positronium annihilation, using TOF and filtering kernels. Such an ap-
proach, which resembles spherically-symmetric kernel density estimation
(KDE), is highly scalable with the perspective of being employed for real
time imaging. Using GATE (Geant4 Application for Tomographic Emis-
sion), we simulated the experiment conducted earlier for 1-mm spherical
source put inside 3-layer 50-cm long J-PET prototype, eventually compar-
ing the results. Estimated transverse spatial resolution of about 5–8 mm
was achieved using TOF FBP for both simulations and real data, which
is similar or better than obtained by KDE and non-TOF FBP from STIR
software package. Axial resolution of ∼ 20 mm was estimated for the simu-
lations using all reconstruction methods, which is consistent with temporal
properties of tube photomultipliers utilised for the readout. Substantially
worse result (∼ 35 mm in axial direction for TOF FBP), obtained for the
experiment, could be explained by unoptimised setup, data pre-selection
and/or calibration issues.

DOI:10.5506/APhysPolB.51.181

1. Introduction

The developments in time-of-flight (TOF) positron emission tomography
(PET) drastically expand the field of study regarding image reconstruction
techniques. Today, there are plenty of scintillation crystals, available to
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achieve coincidence resolving time (CRT) of ∼ 100 ps [1–3], such as cerium-
doped lutetium oxyorthosilicate (LSO:Ce), lutetium–yttrium oxyorthosili-
cate (LYSO:Ce) and lanthanum bromide (LaBr3:Ce) [4–6]. In reality, the
highest temporal resolution, announced by Siemens for their Biograph Vision
scanner [7], is only 214 ps, while the other modern clinical TOF-scanners
have CRT of about 250–400 ps [8–11].

A distinct approach, introduced in novel total-body Jagiellonian PET
(J-PET) scanners, might result in even higher CRT resolution. The detec-
tion principle is based on the Compton scattering of (back-to-back) 511 keV
γ-quanta inside plastic scintillation strips [12–19], which are superior to tra-
ditional PET crystals time-wise [20–23]. TOF information is available ab
initio: optical signals, generated by each scattering, propagate through the
strip in opposite directions and are registered as time tags by photomultipli-
ers (PMs) [24]. The main drawback of these compounds is low scintillation
efficiency, which may be compensated by the application of multi-layer de-
tector with long axial field-of-view (FOV) [12, 25]. Besides, TOF-based
algorithms produce outstanding results for much lower statistics compared
to non-TOF and even outperform iterative methods at lower CRT (see the
discussion in [26]). On the other hand, multi-layer J-PET geometry and
elongated strips might require unique approaches in image reconstruction,
unavailable in present software solutions.

Filtered back projection (FBP) is one of the oldest PET reconstruction
algorithms [27], now used as a reference method and a standard for the
estimation of spatial resolution [28]. 3D version of FBP is based on the ag-
gregation of multiple filtered 2D projections (sinograms) [29] and, in theory,
could be represented as a sum of 3D reconstructions of separate events, each
defined by a single line-of-response (LOR). TOF allows to estimate the most
likely position (MLP) of electron–positron or positronium [30, 31] annihila-
tion, therefore, the truncation of the LOR can be considered far from the
MLP. The ultimate volume of non-zero intensity (called region-of-response
— ROR) is defined by CRT-related uncertainties along Cartesian axes and
expected to be much smaller than the FOV of the scanner. This idea was
successfully implemented for real-time ROR reconstruction in J-PET by the
programmable logic and visualization by the integrated processors [14], yet
without the FBP. In this paper, we extend this idea to the algorithm of TOF
FBP image reconstruction, applied in event-by-event way.

2. Methods

2.1. Time-of-flight modification of filtered back projection

For the conventional FBP, the projection data p(s, φ, ζ, θ) is defined by
four variables — transaxial coordinates s and φ, z-coordinate of the centre
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of the LOR ζ and the obliqueness angle θ [29] (Fig. 1). The filtering is
made in Fourier space using 1-dimensional function W (νs) of the frequency
coordinate νs associated with s

pF(s, φ, ζ, θ) = F−1 {W (νs)F [p(s, φ, ζ, θ)]} , (1)

where F and F−1 are Fourier and inverse Fourier transform operators, re-
spectively. TOF could be added as a Gaussian temporal kernel h(t − ti)
for ith TOF bin [32], expanding the dimensionality of projections to R5. It
might as well reflect each separate LOR, represented by the difference of the
detection times for back-to-back γ-quanta ti = t

(i)
2 − t

(i)
1 (i = 1 . . . NLOR).

The unique filtered projection element will be defined as

pFi ≡ pFi (s, φ, ζ, θ, t) = F−1{W (νs)F [pi(s, φ, ζ, θ)]}h(t− ti) , (2)

where pi(s, φ, ζ, θ) is delta-like function, since i denotes LOR index

pi(s, φ, ζ, θ) =

{
1, s = si ∩ φ = φi ∩ ζ = ζi ∩ θ = θi ,

0, otherwise .
(3)

Fig. 1. Schematic depiction of one annihilation event (detection times t1 and t2)
inside cylindrical J-PET scanner for transverse (XY ) and axial (Y Z) views. Grey
ellipses denote truncated ROR around the annihilation point, defined from three
kernels: h(t), uncertainty of hit position (detection) along Z and ramp filter.

The dimensionality of pFi thus will be reduced to R2 as three variables will
be fixed to φi, ζi and θi. Moreover, filtering of unnormalised unit impulse
from Eq. (3) in projection space will return the filter w(s) = F−1W (νs)
itself: pi(s) ∗w(s) = w(s). The reconstructed image f(v) will be, therefore,
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composed of single-LOR back-projections

f(v) =

NLOR∑
i=1

fi(v) =

NLOR∑
i=1

B
{
pFi (s, φi, ζi, θi, t)

}
. (4)

Despite each voxel v could be rigorously evaluated from the variables in
projection space (s, φ, ζ, θ, t), it is evident from (2) and (3) that each back-
projection B{pFi } is merely two kernels, applied to ith event: h(t)-related
Gaussian along a LOR and w(s) — in perpendicular direction. Using MLPs
of annihilations, these functions can be redefined in image space. For real
scanner, third (Gaussian) kernel should be imposed along Z due to uncer-
tainty of axial hit position (Fig. 1).

There is no need to recalculate f(v) over the whole FOV for each event:
most voxels have zero or close to zero intensity. At the specific distance
from the annihilation point (MLP), a truncation could be applied (see [33])
limiting the ROR to an ellipsoid with the largest axis of few centimetres only
(grey areas in Fig. 1). We explored that the reasonable span for the normal
distributions imposed along LOR and Z with standard deviations σTOF and
σZ , respectively, corresponds to at least ±3.5σ. σZ could be derived from
the voxel size, σTOF = c0 CRT/(4

√
2 log 2 ), c0 denotes the speed of light. For

apodised ramp filter — the default choice ofW (νs) for FBP— the truncation
could be set at ±9.0∆s, where ∆s is the sampling interval for s variable.

2.2. Simulation and experiment

According to the National Electrical Manufacturers Association (NEMA)
standard [28], the measurements of a point-like radioactive source placed at
six different positions inside PET scanner must be conducted for the analysis
of spatial resolution. Although not being the best solution, FBP is required
to ensure that the true intrinsic properties of the scanner are preserved.

Using Geant4 Application for Tomographic Emission (GATE) framework
[34, 35], we performed simulations of such NEMA sources (1-mm spheres
of activity 370 kBq) placed inside the second-generation J-PET prototype
[24]: 3-cylindrical layers of radii of 42.5 cm, 46.75 cm and 57.5 cm, compris-
ing 48, 48 and 96 scintillation strips, respectively, each of the size of 7 mm ×
19 mm × 500 mm (Fig. 2, left). Separate simulations were run for each posi-
tion of the source, 105 coincidences per each, for three locations in transverse
plane (xsrc = 1 cm, 10 cm and 20 cm, ysrc = 0 cm) and two — for axial co-
ordinate: zsrc = 0 cm (the centre of the axial FOV) and zsrc = 18.75 cm
(three-eights of the axial FOV — see details in [36]). Hit times t1 and t2,
as well as axial positions of hits were smeared according to the resolution
CRT = 314 ps, measured experimentally for tube PMs (PMT) utilised for
the readout [25].
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Fig. 2. 3-layer J-PET prototype (left) and its sensitivity map in transverse (z =

0 cm) and coronal (y = 0 cm) cross sections (right). Positions of NEMA sources,
defined for the simulation, are depicted on XZ-plane (left, radii of the sources are
exaggerated).

For comparison, we took the real data from an early experiment con-
ducted inside the mentioned 3-layer J-PET prototype, using 22Na spherical
sources with different activities [37]. Only a subset of 1.5 × 105 events
from each measurement were used, despite much larger statistics (over 106),
obtained by 3-hour run for each setup. The sources were fixed on a pre-
pared styrofoam panel at xsrc = 0 cm, ysrc = 1 cm/10 cm/20 cm, zsrc =
0 cm/−18.75 cm (for details, see [37]).

Sparse character of 3-layer J-PET requires the sensitivity map s(v) to be
used for the correction of the reconstructed image: fcorrected(v) = f(v)/s(v).
It was generated using hybrid method from [38], mixing two 2D sensitivity
maps for axial and transverse planes, obtained analytically and using Monte
Carlo simulation, respectively (see Fig. 2, right).

2.3. Reference algorithms
2.3.1. Software for Tomographic Image Reconstruction

As a reference point, we employed non-TOF 3D FBP, implemented in
popular Software for Tomographic Image Reconstruction (STIR) [39] with
the embedded SAFIR module [40] (transforms input data from the list-mode
into a suitable Interfile format) and 3D re-projection (3DRP) of Kinahan
and Rogers [41] (reduces the truncation problem at edges of the scanner).
Unfortunately, STIR does not support multilayer geometry and continuous
detectors, therefore, the data had to be pre-processed for FBP3DRP. Moving
along LORs, we remapped all scattering points onto a virtual ideal 1-layer
cylindrical scanner (radius R = 43.73 cm, 384 strips of the same size as
in real prototype, divided axially to form 96 discrete “rings”, each 0.52-cm
wide). Times and axial coordinates of hits were adjusted correspondingly.
No sensitivity map was applied afterwards.
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2.3.2. Multivariate kernel density estimation

The proposed TOF FBP is in fact kernel-based approach, hence it is
reasonable to compare it with multivariate kernel density estimation (KDE),
applied directly to MLP of annihilation points, estimated from TOF. For a
dataset of MLPs {X1,X2, . . . ,Xn} of a size n, KDE is defined as

f̂nH(x) = n−1
n∑

i=1

|H|−1/2K
[
H−1/2 (x−Xi)

]
, (5)

where x ≡ v = (x, y, z)T, H is the bandwidth matrix, symmetric and
positive definite [42]. Spherically symmetric kernel K(·) can be defined as
Gaussian or other function, but its choice is not critical for a large n, un-
like H — a covariance matrix that controls the amount and orientation of
smoothing induced. We employed built-in estimators for H from popular
R package ‘ks’ [43]: samse (based on asymptotic approximation mean inte-
grated squared error) and dscalar (multistage plug-in bandwidth selector)
[42]. Unlike FBP, the employed KDE/MLP method does not apply filtering
on transverse plane, but the optimisation ofH may improve axial resolution.

3. Results and discussion

Point spread function (PSF) was analysed from transverse (XY ) and
axial (XZ or Y Z) cross sections of the reconstructed images cut along the
voxel of the highest intensity. Due to a relatively large voxel size (∆x ×
∆y×∆z = 1.8 mm× 1.8 mm× 2.6 mm for TOF FBP and FBP 3DRP), the
spatial resolution, estimated as FWHM (full width at half maximum), was
calculated with the accuracy of 0.5mm for all axis.

Transverse and axial cross sections of the reconstructed images for the
selected positions of the source are presented in Fig. 3 for all utilised al-
gorithms, both for the simulations and experimental data. In general, the
latter produces worse results in terms of spatial resolution, which poorly cor-
relates with the projected properties of the scanner. This could be explained
by the imperfect pre-selection of the data, calibration issues of PMTs and
readout electronics, as well as bootstrapping the setup for the early experi-
ment [37]. However, despite the need for resolving these problems and new
measurements conducted, we could still compare the algorithms.

Estimated PSF values from the simulated data are aggregated into Ta-
ble I, for two extreme positions — close to the geometrical centre and to the
edge of the scanner. As one can see, TOF FBP is consistent with FBP3DRP,
with similar or better outcomes. On the other hand, likewise KDE/MLP, it
takes into account the sparse scanner geometry, which could be seen as dis-
torted non-circular shape of the source in transverse plane. The background
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Fig. 3. (Colour on-line) Reconstructed transverse (top) and axial (bottom) cross-
sections of 1-mm source placed inside 3-layer J-PET scanner at selected locations
(xsrc, ysrc, zsrc), performed using three algorithms: KDE/MLP, FBP3DRP (from
STIR) and TOF FBP. The regions shown are of 8 cm × 8 cm size each, centred at
the projected coordinates of the source (denoted on top), set for GATE simulations
(first two columns) and experimental measurements (last four columns).

noise is the lowest for TOF FBP and the highest for KDE/MLP, as expected,
which was confirmed by the analysis of full width at tenth maximum, defined
by NEMA [28].

For the data gained from real measurements, the remapping of hits onto
a virtual single layer, required by STIR, affects significantly the result, since,
unlike for GATE simulations, the exact XY -positions of scatterings inside
the strip are unavailable. This imposes additional blur in transverse plane,
therefore, the current application of FBP3DRP from STIR framework is
inferior to TOF FBP, as seen from the images (last four columns in Fig. 3).

Estimated FWHM values for all six positions of the source that represent
spatial resolution are depicted in Fig. 4. TOF FBP evidently produces
the most consistent results between the simulation and the experiment in
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TABLE I

Selected PSF values, estimated from the reconstructions of the simulated 1-mm
point source, located at (xsrc, ysrc, zsrc) in J-PET scanner.

Source position Algorithm Resolution [mm]
(ysrc = 0 cm) applied X Y Z

xsrc = 1 cm KDE/MLP 5.5 6.0 20.0
zsrc = 0 cm FBP 3DRP 4.5 7.0 20.0
(centre) TOF FBP 5.0 6.5 20.5
xsrc = 20 cm KDE/MLP 7.5 6.0 22.0
zsrc = 18.75 cm FBP 3DRP 6.5 7.5 21.0
(edge) TOF FBP 7.0 5.5 18.0

transverse plane. KDE/MLP, though being the worst for XY , appears to be
the best in axial direction. This outcome underlines the importance of the
optimisation of bandwidth matrix H, which was calculated using plug-in
selector method from [42]. On the other hand, the parameters of Gaussian
kernels, employed for TOF FBP (σTOF and σZ — see Eq. (2) and Fig. 1),
would worsen the resolution if set too wide. We explored that three-fold
decrease of σTOF that narrows h(t) reduces additional axial smearing to
minimum. However, it also adds noise, clearly visible in Fig. 3 (last row),
hence a proper optimisation is required for the kernels used in TOF FBP,
similar to bandwidth selection approach from KDE.

Fig. 4. Estimated spatial resolution (FWHM) of 3-layer J-PET scanner, calculated
from experimental data, reconstructed by KDE/MLP, FBP 3DRP and TOF FBP.
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4. Conclusion

The proposed implementation of TOF FBP algorithm, applied to the
reconstruction of a point-like source, exhibits promising results, similar or
better than conventional FBP. Operated directly in image space as asym-
metrical 3D kernel, this solution is capable of processing separate events in
parallel, which opens up a possibility for the application in real time imag-
ing. Estimated transverse spatial resolution of 5–8mm (both for simulations
and real measurements) is consistent with the geometry of 3-layer J-PET
scanner prototype. TOF information also improves axial resolution, even for
the simplest KDE/MLP method. However, further experiments are required
for the validation of the estimated PSFZ ∼ 20mm, obtained for the simu-
lated data, because the result for the measurements appeared to be worse by
75% and does not reflect PMT timing properties. Moreover, there is a need
for the rigorous optimisation of TOF FBP kernels — standard deviations
of Gaussian functions (σTOF and σZ) and apodisation window set for ramp
filter. Such procedure would differ from bandwidth selection, approved for
KDE, since the latter is acceptable only for spherically symmetrical kernels.
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