
Vol. 51 (2020) Acta Physica Polonica B No 1

SIMULATING THE J-PET DETECTOR ON NVidia RAY
TRACING HARDWARE∗

P. Bialas, P. Sagało, K. Nowakowski

Faculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University, Kraków, Poland

(Received November 25, 2019)

In this contribution, we present preliminary results of using graphic card
with hardware support for ray tracing for physics simulation of a positron
emission tomography (PET) scanner. On our simplistic setup, we notice an
impressive (about 350 times) speedup compared to Geant4 code running on
modern multicore CPU. We expect this speedup to come down but remain
substantial also for other more complicated scenarios.

DOI:10.5506/APhysPolB.51.191

1. Introduction

Monte-Carlo methods (MC) are by now extensively used for designing
hardware and software for medical imaging. The software of choice for this
kind of simulations are Geant4 [1] and its extension GATE [2]. While Geant4
is a powerful simulation toolkit it can be slow as it currently does not take
advantage of the vector hardware as found in modern processors and GPUs.
Efforts to change this state are underway, notably in the framework of the
GeantV project [3]. GeantV is a major undertaking aimed at vectorizing most
of the Geant4 code and intended to be used for simulations in the next
generation high-energy experiments. We have opted instead for an approach
customized for a particular application: simulating our prototype positron
emission tomography scanner J-PET [4–7]. This is suited for our limited
resources and permitted us to experiment with the newest hardware that
would not necessarily scale up to bigger projects. Restricting our focus to
PET has the advantage that the energy range is also very limited, so we
decided to simulate only the Compton scattering as it is dominant process
in the considered energy range.

∗ Presented at the 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic
Physics, Kraków, Poland, June 23–28, 2019.

(191)



192 P. Bialas, P. Sagało, K. Nowakowski

2. Ray tracing

The problems with efficient vectorization are, of course, not unique to
particle physics simulations. In fact, those simulations are similar to a ren-
dering technique for global illumination known as ray tracing [8]. In this
approach, rays of light are traced usually from the camera to the object
on scene and then reflected, refracted or scattered according to laws of op-
tics. There were many attempts to implement efficient ray tracing on GPUs
(e.g. [9, 10]). One big effort came from NVidia in the form of the Op-
tiX engine [11]. This provided a relatively easy to use framework for GPU
accelerated ray tracing and it was already used for particle detector simula-
tions [12]. Meanwhile, NVidia has released GPUs with hardware support for
ray tracing. This contribution presents results obtained using OptiX engine
with NVidia RTX 2080 Ti graphics card.

3. Implementation

Programing the RTX pipeline amounts to specifying programs that will
be executed automatically on the graphic hardware. Two main programs
are: ray generation program that will generate initial rays, and the closest
hit program that will be called when ray intersection with the triangle closest
to its origin is detected. This program can in turn spawn other rays.

Physics process is defined by the mean free path and scattering angle
distribution. We store the energy-dependent mean free path as 1D layered
texture, one layer for each material. For sampling scattering angle prob-
ability distribution, we use the inverse cumulant method. We discretize
the whole energy range and for each energy value, we calculate the inverse
cumulant. The resulting array is stored as a 2D texture. The additional
advantage of using textures is optimized memory access on GPU and auto-
matic interpolation.

When the closest hit program is invoked, it checks if the particle inter-
acted before hitting the border by comparing the interaction length to the
distance traveled. If so, it calculates the energy change and scattering angle
and recasts the ray in appropriate direction from the interaction point. If
not, ray is recast in the same direction. Obviously, this is possible only for
neutral particles or in the absence of magnetic field which is the case for
PET scanners.

A common bottleneck of GPUs is the data transfer between CPU and
GPU. We generate all of the rays directly on GPU so the transfer to GPU is
not a problem. However, we are using quite a lot of memory on the GPU. This
is due to the fact that we allocate each event its own memory slot capable of
storing a fixed number of scatterings. For a detector like the J-PET, most
of those slots are unoccupied. For this reason, before transferring the data
back to CPU we use stream compaction to eliminate empty slots.



Simulating the J-PET Detector on NVidia Ray Tracing Hardware 193

4. Results

We have tested our implementation on the three layers J-PET proto-
type [6, 13]. This detector contains 192 half meter long scintillators in total.
We have compared our code to a multithreaded Geant4 implementation with
all the physics processes except Compton scattering switched off. Geant4
code was executed on a six core Intel i9 CPU. The results are presented in
Table I. One event corresponded to casting two rays (γ quanta) in opposite
directions. The rays origins were selected randomly from a 4 mm3 voxel,
with one corner at the center of the detector.

TABLE I

Timing (in seconds) for simulating three layers of the J-PET detector. Only Comp-
ton scattering was considered.

Geant4/i91 RTX 2080Ti2 GTX 10803

HW4 SW4 HW4 SW4

No. of threads5 12 8704 21760 12800 12800
No. of events (×106) Speedup

1 6.2 0.02 0.03 0.07 0.08 310
2 12.9 0.04 0.07 0.14 0.15 322
4 26.1 0.08 0.13 0.27 0.29 330
8 57.7 0.16 0.25 0.53 0.57 365

1 6 cores, 32GB RAM.
2 4352 CUDA cores, 11.75 GFLOPS, 11GB GRAM.
3 2560 CUDA cores, 8.20 GFLOPS, 8GB GRAM.
4 HW—Hardware triangle-ray intersection, SW— Software triangle-ray intersection.
5 The number of threads was chosen as to give the best performance for 8 millions
events.

The obtained results clearly show the advantage of the hardware accel-
eration for ray tracing. The GTX 2080Ti is nominally only 1.4 times faster
when considering GFLOPS than GTX 1080 but over three times faster on
our simulation. Also switching off the hardware acceleration for ray triangle
intersection test increases the time by 50%.

5. Discussion

We have shown that new graphics hardware is capable of running physical
simulations over 350 times faster compared to standard simulation software
on modern CPU. However this represents probably only the upper limit
of what can be achieved. Scaling the implementation to handle multiple
physical processes will most probably result in decreased performance as
the thread divergence will increase. Also the processes with very short step



194 P. Bialas, P. Sagało, K. Nowakowski

lengths such as ionization will not benefit as much. Support for new shapes
has also to be added as far we are using the built-in hardware accelerated
triangle meshes. This enables to efficiently use simple shapes as boxes, but
would be very wasteful for other shapes like cylinders or cones. Those shapes
can be accommodated using custom written intersection programs.

We have discovered two issues with presented approach. Spawning new
rays is done in recursive fashion and the recursion depth is limited currently
to 31 by hardware. This was not a problem in the case of the simple model
we simulated, however, in general, the recursion would have to be managed
explicitly by maintaining a stack in global memory.

The second issue relates to numerical accuracy. Geant4 uses double pre-
cision and GPUs use single precision. Because of this, our physical precision
was of the order of ten microns. This is adequate in our simulations but
scaling up to bigger, in terms of size, detectors would entail proportional
loss in precision.

We find those preliminary results very encouraging. It is obvious that
realistic simulations still require a significant extension of our code which
will undoubtedly result in loss of the performance but even tenfold drop in
performance would still result in significant speedup. In our opinion, the ray
tracing acceleration hardware seems to be suitable for simulations of PET
scanners and maybe other medical devices. This, because those applications
do not require simulating magnetic field, energy range of particles is limited
and the detectors are generally small.

REFERENCES

[1] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506(3), 250
(2003).

[2] S. Jan et al., Phys. Med. Biol. 49, 4543 (2004).
[3] G. Amadio et al., J. Phys.: Conf. Ser. 664, 072006 (2015).
[4] P. Moskal et al., Phys. Med. Biol. 64, 055017 (2019).
[5] P. Kowalski et al., Phys. Med. Biol. 63, 165008 (2018).
[6] S. Niedzwiecki et al., Acta Phys. Pol. B 48, 1567 (2017).
[7] P. Moskal et al., Phys. Med. Biol. 61, 2025 (2016).
[8] T. Whitted, Commun. ACM 23, 343 (1980).
[9] J. Popov, J. Günther, H.-P. Seidel, Comp. Graph. Forum 26, 415 (2007).
[10] J. Gunther, et al., in :Proceedings of IEEE Symposium on Interactive Ray

Tracing, September 10–12, 2007.
[11] S.G. Parker et al., ACM Trans. Graph. 29, 66 (2010).
[12] S. Blyth, J. Phys.: Conf. Ser. 898, 042001 (2017).
[13] G. Korcyl et al., IEEE Trans. Med. Imag. 37, 2526 (2018).

http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1088/0031-9155/49/19/007
http://dx.doi.org/10.1088/1742-6596/664/7/072006
http://dx.doi.org/10.1088/1361-6560/aafe20
http://dx.doi.org/10.1088/1361-6560/aad29b
https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=48&page= 1567
http://dx.doi.org/10.1088/0031-9155/61/5/2025
http://dx.doi.org/10.1145/358876.358882
http://dx.doi.org/10.1111/j.1467-8659.2007.01064.x
http://dx.doi.org/10.1145/1833349.1778803
http://dx.doi.org/10.1088/1742-6596/898/4/042001
http://dx.doi.org/10.1109/TMI.2018.2837741

	1 Introduction
	2 Ray tracing
	3 Implementation
	4 Results
	5 Discussion

