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We analyze the time–energy uncertainty relation postulated by Heisen-
berg and the derivation of the Mandelstam–Tamm time–energy uncertainty
relation. The conclusion is that these relations cannot be considered as uni-
versally valid.
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1. Introduction
Before the emergence of quantum mechanics, physicists were convinced

that two different physical quantities can always be measured at the same
time with any accuracy. Heisenberg analyzing such quantities as a posi-
tion and a momentum of the moving electron found that such a belief is
wrong on the quantum level, that is, in all cases when a particle mani-
fests its quantum properties [1, 2]. Results of this Heisenberg’s analysis is
known as the uncertainty relations. These uncertainty relations describe
connections between uncertainties of the position and momentum and also
between uncertainties of time and energy [1]. We have a mathematically
rigorous derivation of the position–momentum uncertainty relation but so
far within the Schroödinger and von Neumann quantum mechanics, there
does not exist a rigorous derivation of the time–energy uncertainty relation.
Thus, the time-uncertainty relation still requires its analysis and checking
whether it is correct and well-motivated by postulates of quantum mechan-
ics. We present here an analysis of the Heisenberg and Mandelstam–Tamm
time–energy uncertainty relations and show that they cannot be considered
as universally valid. In Sections 2 and 3, the reader finds theory and calcu-
lations. Discussion is presented in Section 4. Section 5 contains conclusions.

∗ Presented at the 3rd Jagiellonian Symposium on Fundamental and Applied Subatomic
Physics, Kraków, Poland, June 23–28, 2019.
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2. Preliminaries: Uncertainty principle
The most known form of the uncertainty principle is the Heisenberg

uncertainty principle for the position and momentum [1, 2]

∆x∆px ≥
~
2 , (1)

where ∆x and ∆px are Hesienberg’s “uncertainties”. Unfortunately, there is
no precise definition of these “uncertainties” in [1]. The rigorous definition
of uncertainties was proposed in [3, 4]. Following [3, 4], the uncertainty
relation can be written as (see e.g. [5])

∆φx∆φpx ≥
~
2 , (2)

where ∆φx and ∆φpx are the standard (root-mean-square) deviations: In
the general case for an observable F , the standard deviation is defined as
follows: ∆φF = ‖δF |φ〉‖, where δF def= F − 〈F 〉φ I, and 〈F 〉φ

def= 〈φ|F |φ〉 is
the average (or expected) value of an observable F in a system whose state is
represented by the normalized vector |φ〉 ∈ H, provided that |〈φ|F |φ〉| <∞.
Equivalently: ∆φF ≡

√
〈F 2〉φ − 〈F 〉2φ. (Here, F stands for position and mo-

mentum operators x and px as well as for their squares.) The observable F is
represented by a Hermitian operator F acting in a Hilbert space H of states
|φ〉. In general, relation (2) results from basic assumptions of the quantum
theory and from the geometry of Hilbert space [6]. Similar relations hold for
any two observables, say A and B, represented by noncommuting Hermitian
operators A and B acting in the Hilbert space of states (see [3, 4]), such
that [A,B] exists and |φ〉 ∈ D(AB)

⋂
D(BA), (D(O) denotes the domain of

an operator O or of a product of operators)

∆φA∆φB ≥
1
2

∣∣∣〈[A,B]〉φ
∣∣∣ . (3)

Inequality (3) is rigorous and its derivation is simple. Indeed, let us consider
two observables represented by noncommuting operators A an B. Then, if
to apply the definition of δF to operators A and B, respectively, one finds
that [A,B] ≡ [δA, δB] 6= 0. Hence, for all |φ〉 ∈ D(AB)

⋂
D(BA),

|〈φ |[A,B]|φ〉|2 ≡ |〈φ|[δA, δB]|φ〉|2 = | 〈φ|δA δB|φ〉 − (〈φ|δA δB|φ〉)∗|2

= 4 | Im [〈φ|δA δB|φ〉] |2 ≤ 4 | 〈φ|δA δB|φ〉 |2

≤ 4 ‖δA|φ〉‖2 ‖δB|φ〉‖2 ≡ 4 (∆φA)2 (∆φB)2 , (4)

which reproduces inequality (3).
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3. Analysis of the Heisenberg and Mandelstam–Tamm
time–energy uncertainty relations

Heisenberg in [1] postulated also the validity of a relation analogous to
(1) for the time and energy (see also [7]). This relation was a result of his
heuristic considerations and it is usually written as follows:

∆φt∆φE ≥
~
2 . (5)

Similar relation was derived by Mandelstm and Tamm [8]. Their derivation
is reproduced in [5] and goes as follows: The operator B in (3) is replaced
by the selfadjoint nondepending on time Hamiltonian H of the system con-
sidered and ∆φB is replaced by ∆φH and then identifying the standard
deviation ∆φH with ∆φE, one finds that

∆φA∆φE ≥
1
2

∣∣∣〈[A,H]〉φ
∣∣∣ , (6)

where it is assumed that A does not depend upon the time t explicitly,
|φ〉 ∈ D(HA)

⋂
D(AH), and [A,H] exists. Next, using the Heisenberg rep-

resentation and corresponding equation of motion, one obtains 〈[A,H]〉φ ≡
i~ d

dt〈A〉φ. This relation allows one to replace inequality (6) by the following
one:

∆φA∆φE ≥
~
2

∣∣∣∣ d
dt〈A〉φ

∣∣∣∣ . (7)

(Relations (6), (7) are rigorous.) Next, authors of [5, 8] and many others
divide both sides of inequality (7) by the term | d

dt〈A〉φ|, which leads to the
following relation:

τA ∆φE ≥
~
2 , (8)

where τA
def= ∆φA

| d
dt 〈A〉φ|

. Relation (8) is known as the Mandelstam–Tamm time–
energy uncertainty relation. Relation (8) and the above-described derivation
of this relation is accepted by many authors analyzing this problem or ap-
plying this relation (see, e.g. [9–12] and many other papers). On the other
hand, there are some formal controversies regarding the role and importance
of ∆t in (5) or τA in (8). These controversies are caused by the fact that
in the quantum mechanics, the time t is a parameter. Simply, it cannot
be described by the Hermitian operator, say T , acting in the Hilbert space
of states (that is time cannot be an observable) such that [H,T ] = i~I if
the Hamiltonian H is bounded from below (see [13] and also, e.g. [9, 14]).
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Therefore, the status of relation (5) and relations (2), (3) is not the same
regarding the basic principles of the quantum theory (see also discussion,
e.g., in [15–18]).

The Mandelstam–Tamm uncertainty relation (8) is also not free of con-
troversies. People applying and using the above-described derivation of (8)
made use (consciously or not) of a hidden assumption that right-hand sides
of Eqs. (6), (7) are non-zero, which means that there should not exist any
vector |φβ〉 ∈ H such that 〈[A,H]〉φβ = 0, or d

dt〈A〉φβ = 0.
Basic principles of mathematics require that before the dividing the both

sides of Eq. (7) by | d
dt〈A〉φ|, one should check whether d

dt〈A〉φ is different
from zero or not. Let us do this now: Let ΣH ⊂ H be a set of eigenvectors
|φβ〉 of H for the eigenvalues Eβ and let ΣA denote the set of eigenvectors
|φα〉 for A. We have H|φβ〉 = Eβ|φβ〉 for all |φβ〉 ∈ ΣH and, therefore,
for all |φβ〉 ∈ ΣH

⋂
D(A), 〈[A,H]〉φβ = i~ d

dt〈A〉φβ ≡ 0. Similarly, ∆φβH =√
〈H2〉φβ − (〈H〉φβ )2 def= ∆φβE ≡ 0, for all |φβ〉 ∈ ΣH . This means that in

all such cases the non-strict inequality (7) takes the form of the following
equality ∆φA 0 = ~

2 0. In other words, one cannot divide the both sides of
inequality (7) by | d

dt〈A〉φ| ≡ 0 for all |φβ〉 ∈ ΣH , because in all such cases
the result is an undefined number and such mathematical operations are
unacceptable.

Similar picture one meets when |φ〉 = |φα〉 is an eigenvector for A.
(This case was also noticed in [19].) Then also for any |φα〉 ∈ ΣA

⋂
D(H),

| d
dt〈A〉φ| ≡ 0 and ∆φA ≡ 0. Thus, one finds that 0 ∆φH = ~

2 0, and once
again dividing both sides of this equation by zero has no mathematical
sense. Now note that relations (2), (3) are always satisfied for all |φ〉 ∈ H
fulfilling the conditions specified before Eq. (3). In contrast to this property,
results ∆φA 0 = ~

2 0 and 0 ∆φH = ~
2 0 mean that we have proved that the

Mandestam–Tamm relation (8) cannot be true not only on the set ΣH ⊂ H,
whose span is usually dense in H, but also on the set ΣA ⊂ H.

Hence, the conclusion that such relations as (8) cannot be considered as
correct and rigorous seems to be justified: The relations of type (8) cannot
hold on the above-described linearly dense sets in the state space H and,
therefore, such relations cannot be considered as universally valid.

4. Discussion
Conclusions presented in the previous section agree with the intuitive

understanding of stationary states: If the system is in a stationary state,
say |φβ〉, then one knows that at any instant of time 〈E〉φ ≡ 〈H〉φ = Eβ
and ∆φβE = ∆φβH = 0 and thus relations (5) and (8) cannot hold in such
a case (see [20]).
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In addition to the doubts discussed above and relating to validity of
the time–energy uncertainty relations, a thorough analysis of relation (5)
suggests one more interpretative ambiguity. Analyzing the ideas expressed
in [1, 2], it can be seen that Heinserberg was sure that the time– energy
uncertainty relation is a completely general relation and applies in the quan-
tum world without any exceptions. This means that according to Heisen-
berg’s ideas, this relation should be also valid in the case of photons. Then,
let us invoke a much older relation, namely the Planck–Einstein relation:
Eφ = hνφ, (where h is the Planck’s constant and νφ is the frequency), which
constituted one of the foundations enabling the emergence of quantum me-
chanics. Next, using the νφ = 1

Tφ , (where Tφ is the period), one can rewrite
the Planck–Einstein relation as follows:

TφEφ = h >
~
2 . (9)

Note that the inequality TφEφ > ~
2 coincides with the strong case of the

Heisenberg inequality (5). The problem is that relation (9) (and Eφ = hνφ)
combines exact values of time t = Tφ and energy Eφ (or Eφ and νφ) with each
other, while inequality (5) combines uncertainties of time t and energy E.
In the light of this analysis, the standard interpretation of the Heisenberg
relation (5) may not be obvious and correct. Simply: Equation (9) says that
if one finds that the exact value of the energy of the photon in the state |φ〉
is Eφ, then one is sure that the period is exactly Tφ (or that the frequency is
νφ = 1/Tφ) and, of course, because the value of E is exact, then in this case,
there must be ∆φE = 0. At the same time, the minimal uncertainty version
of inequality (5) states that if the value of E is exact and thus ∆φE = 0
then, simultaneously, there must be ∆φt = ∞, which means that it should
be impossible to determine the exact value of the period Tφ or frequency νφ.

As it was mentioned in [20], it is possible to apply relation (8) to unstable
states modeled by wave-packets of eigenvectors of H corresponding to the
continuous part of the spectrum of H (see also e.g. [8, 21–23]), but this is
quite another situation then that described by the standard relations (2),
(3) — for details, see [20].

5. Conclusions
The analysis and the discussion of relations (5) and (8) in previous

aections show that these time–energy uncertainty relations are not well-
founded and cannot be considered as universally valid. Thus, using them as
the basis for predictions of the properties and of a behavior of some systems
in physics or astrophysics (including cosmology — see e.g. [12]), one should
be very careful in interpreting and applying the obtained results.
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