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We investigate the non-Langevin relative of the Lévy-driven Langevin
random system, under an assumption that both systems share a common
(asymptotic, stationary, steady-state) target pdf. The relaxation to equi-
librium in the fractional Langevin–Fokker–Planck scenario results from an
impact of confining conservative force fields on the random motion. A non-
Langevin alternative has a built-in direct response of jump intensities to
energy (potential) landscapes in which the process takes place. We revisit
the problem of Lévy flights in superharmonic potential wells, with a focus
on the extremally steep well regime, and address the issue of its (spectral)
“closeness” to the Lévy jump-type process confined in a finite enclosure with
impenetrable (in particular reflecting) boundaries. The pertinent random
system “in a box/interval” might be expected to have a fractional Laplacian
with suitable boundary conditions as a legitimate motion generator. It is
not the case. Another problem is that, in contrast to Dirichlet boundary
problems, a concept of reflecting boundary conditions and the path-wise
implementation of the pertinent random process in the vicinity, or sharply
at reflecting boundaries, are not unequivocally settled for Lévy processes.
This ambiguity extends to non-local analogs of Neumann conditions for
fractional generators, which do not comply with the traditional path-wise
picture of reflection at the impenetrable boundary.
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1. Introduction

The Eliazar–Klafter targeted stochasticity concept, together with that of
the reverse engineering (reconstruction of the stochastic process once a target
pdf is a priori given), has been originally devised for Lévy-driven Langevin
systems. Its generalization, discussed in [1, 2], involves a non-Langevin
alternative which associates with the Lévy driver and the Langevin-induced
target pdf, another (Feynman–Kac formula related) confinement mechanism
for Lévy flights, based on a direct reponse to energy (potential) landscapes,
instead of that to conservative forces.

(1965)
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We revisit the problem of Lévy motion in steep potential wells, ana-
lyzed in terms of a sequence of Fokker–Plack equations and their stationary
solutions in Refs. [3, 4] and next path-wise in Ref. [5]. Although we are ulti-
mately interested in the extremal steepness regime, we need to mention that
the above “sequential” strategy has been introduced and next developed in
a number of earlier publications [6–8], and summarized in a couple of review
papers [9–11], see also [12].

An association of stationary probability density functions (pdfs), arising
in the sequential superharmonic approximation (signatures of convergence),
with steady-states of Lévy flights in a confined domain has been reported.
The “confined domain” notion has received an explicit interpretation of the
infinitely deep potential well enclosure [13, 14], see also [15, 16]. This mo-
tivates our investigation of the semigroup (Feynman–Kac) motion scenario,
which actually provides a non-Langevin alternative to the Langevin–Fokker–
Planck relaxation process of [3–5]. Our focus is on the possible asymptotic
(growing steepness limit) emergence of a link with the problem of bound-
ary data (Dirichlet versus Neumann, or absorbing versus reflecting) for the
Lévy motion and its generator on the interval (or bounded/confined domain
interpreted as the infinitely deep potential well) [17].

One more important point should be raised. The infinite well enclosure
for the random motion, and the limitation of the latter to the interval interior
(impenetrability or inaccessibility of endpoints), are related to the notions
of absorbing (Dirichlet) and reflecting (Neumann-type) boundaries. Inter-
estingly, the discussion of [3–5] definitely takes for granted the association
of the “confined domain” (like e.g. the infnitely deep potential well) bound-
aries with the reflection scenario for random motion, which is not a must,
cf. [16, 18, 19], see also [17]. We shall briefly discuss this point in Section 3
of the present paper, where the “confined domain” (and likewise the infinite
well) will be associated with Dirichlet boundary conditions.

Moreover, for the above mentioned “infinitely deep potential well prob-
lem”, no link has been established with the Neumann fractional Laplacian
(whatever that is meant to be, with neither any convincing form of the
Neumann condition), which is supposed to be a valid generator of the Lévy
process in a bounded domain with reflecting boundaries.

This boundary issue can be consistently analyzed by employing the
transformation of the fractional Fokker–Planck equation to the fractional
Schrödinger-type equation (hence to the fractional semigroup). It is a prop-
erly tailored version of the technical tool, often used in the study case of the
standard (Brownian) Fokker–Planck equation, but seldom addressed in the
literature on confined Lévy processes. Since the superharmonic approxima-
tion seems to provide a suggestive method to understand what is possibly
meant by the reflected Lévy process in the bounded domain (we restrict
considerations to the interval on R), the pertinent transformation to the
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Schrödinger-type dynamics should, in principle, provide an approximation of
this governed by the Neumann Laplacian and allow to identify features of the
“spectral closeness” of the pertinent operators (and fractional semigroups).

We shall investigate signatures of convergence for a sequence of confined
Lévy processes on a line, in conservative force fields ∼ −xn−1 stemming from
superharmonic potentials U(x) ∼ xn, xn/n, nxn with n = 2m ≥ 2. This is
paralleled by a transformation of the related fractional Fokker–Planck oper-
ator L∗ = −|∆|α/2 −∇[b(x)·] into the fractional Schrödinger-type operator
Ĥ = |∆|α/2 + V, whose potential function is inferred from the knowledge of
the square root of the stationary probability density ρ∗(x) of the correspond-
ing Markov process, according to V = −ρ−1/2∗ |∆|α/2ρ1/2∗ . The pertinent
ρ
1/2
∗ (x) actually is the L2(R)-normalized ground-state function of Ĥ.

The transformation of the Fokker–Planck operator (and likewise of the
adjoint random motion generator) into the Schrödinger one is a celebrated
tool in the study of Brownian relaxation processes. Recently, we have dis-
cussed at length various aspects of superharmonic approximations of the
Brownian motion in the interval (and links of the latter problem with that
of the “infinitely deep potential well”). The Brownian route has been cho-
sen as a playground for checking jeopardies and possible inadequacies of the
(Schrödinger) transformation methodology [18], prior to passing to an anal-
ysis of superharmonic approximations of Lévy flights “in the infinitely deep
well” (or interval), and technically more involved issue of reflected Lévy
flights in the “box” enclosure with impenetrable walls/barriers, along the
lines indicated in Ref. [20].

Our discussion goes far beyond the technical (transformation proper) fea-
tures. We deal here with physically different mechanisms for the response of
the symmetric stable noise in one-space dimension to external perturbations.
To be considered as alternative response (and motion) scenarios: (i) set by
conservative force potentials (motion in energy landscapes), or (ii) set di-
rectly by force fields. For both types of perturbations, we shall preselect the
Lévy driver and the stationary target pdf (common for both Langevin and
non-Langevin motion scenarios), i.e. a probability density function ρ∗(x)
to which the random process asymptotically relaxes, once started with a
suitable initial pdf ρ0(x): ρ0(x)→ ρ(x, t)→ ρ∗(x).

The Langevin approach stems from the so-called targeted stochastic-
ity concept, addressing the issue of an attainability of equilibria (generi-
cally not of the Boltzmann-type) for Lévy-driven Langevin systems [21], see
also [1, 2, 22]. A related idea of reverse engineering refers to a reconstruc-
tion (designing) of a Lévy–Langevin system that would yield (relax to) a
pre-defined target pdf. The pertinent random motion is known not to obey
the detailed balance condition [23, 24], while the non-Langevin dynamics by
construction does.
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The non-Langevin approach may be interpreted as an alternative version
of the reverse engineering procedure (stochastic process reconstruction). It
has roots in Ref. [25], see also [1, 2, 22], and involves the “potential landscape”
idea of Ref. [26]. Given a stationary pdf ρ∗(x) and the Lévy driver, one
specifies the semigroup dynamics whose generator (fractional Laplacian plus
a suitable potential function) has that pdf square root ρ1/2∗ (x) as the positive-
definite ground-state function [27, 28]. The semigroup dynamics can be
elevated to the fully-fledged stochastic process, governing the relaxation of
a suitable ρ(x, t) to the pre-defined ρ∗(x), while maintaining the detailed
balance condition.

1.1. Lévy driver

Let us set the basic framework and the notation to keep it uniform
throughout the paper. A characteristic function of a random variableX com-
pletely determines a probability distribution of that variable. If this distri-
bution admits a density ρ(x), we can write 〈exp(ipX)〉 =

∫
R ρ(x) exp(ipx)dx

which, for infinitely divisible probability laws, gives rise to the famous Lévy–
Khintchine formula. From now on, we concentrate on the integral part of the
Lévy–Khintchine formula, which is responsible for the arbitrary stochastic
jump features

F (p) = −
+∞∫
−∞

[
exp(ipy)− 1− ipy

1 + y2

]
ν(dy) , (1)

where ν(dy) stands for the appropriate Lévy measure. The corresponding
non-Gaussian Markov process is characterized by 〈exp(ipXt)〉 = exp[−tF (p)]
and, upon setting p̂ = −i∇ instead of p, yields an operator F (p̂) which we
interpret as the free Schrödindger-type Hamiltonian (for clarity of discus-
sion, all dimensional constants generally are scaled away, note e.g. that in
the Gaussian case F (p̂) = −∆).

We restrict further considerations to non-Gaussian random variables
whose probability densities are centered and symmetric, e.g. a subclass of
α-stable distributions admitting a straightforward definition of the fractional
noise generator

F (p) = |p|α → F (p̂)
.
= |∆|α/2 = (−∆)α/2 . (2)

We indicate that the adopted definition of the fractional Laplacian coincides
with the negative of a suitable Riesz fractional derivative ∂α/∂|x|α ≡ ∆α/2,
e.g. (−∆)α/2 = −∂α/∂|x|α.
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In the above, 0 < α < 2 stands for a stability index of the Lévy noise
and the related stochastic process. The fractional Laplacian is a non-local
pseudo-differential operator, by construction non-negative and self-adjoint
on a properly tailored domain. The induced jump-type dynamics is inter-
preted in terms of Lévy flights. In particular, α = 1 refers to the Cauchy
process, with the generator (for the record we list varied, commonly used
notational conventions) F (p̂) = |∇| = |∆|1/2 = (−∆)1/2 ≡

√
−∆.

The pseudo-differential Fokker–Planck equation derives from the frac-
tional semigroup exp(−t|∆|α/2) and reads ∂tρ = −|∆|α/2ρ. That can be
compared with the “normal” Fokker–Planck equation for a freely diffusing
particle (Wiener noise, with noise intensity D = 1) ∂tρ = ∆ρ, deriving from
the semigroup exp(t∆).

An explicit integral form of the a pseudo-differential operator |∆|α/2,
follows from (1) and (2):(

|∆|α/2f
)

(x) = −
∫
R

[
f(x+ y)− f(x)− y∇f(x)

1 + y2

]
να(dy) . (3)

This expression can be greatly simplified, in view of the properties of the
Lévy measure νµ(dx). Namely, remembering that we overcome a singular-
ity at 0 by means of the Cauchy principal value of the integral, we may
replace (3) by

|∆|α/2f(x) = (−∆)α/2f(x) = −
∫
R

[f(x+ y)− f(x)] να(dy) . (4)

By changing an integration variable y to z = x + y and employing a direct
connection with the Riesz fractional derivative of the order of α, we arrive at

|∆|α/2f(x) = −Aα
∫
R

f(z)− f(x)

|z − x|1+α
dz , (5)

where Aα = π−1Γ (α+ 1) sin(πα/2). The case of α = 1 refers to the Cauchy
driver, with ν1(y) = 1/πy2.

We point out that the evaluation of the singular integral in definitions
(4) and (5) needs some care. In Eq. (3), the problem is bypassed by means
of the counter-term. An alternative definition

|∆|α/2f(x) = (−∆)α/2f(x) =
Aα
2

∫
R

2f(x)− f(x+ y)− f(x− y)

|y|1+α
dy , (6)

if employed in suitable function spaces, is by construction free of singularities
and happens to be more amenable to computational procedures [29, 30].
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1.2. Langevin-induced fractional Fokker–Planck equation
and motion generators

In the case of jump-type (Lévy) processes, a response of noise to con-
servative force fields may be quantified by mimicking the Brownian pat-
tern. A popular reasoning [31] employs a (formal) Langevin-type equa-
tion ẋ = b(x) + Bα(t) with a deterministic term b(x) (a gradient function
b ∼ −∇U , presumed to encode Newtonian force fields) and the additive
Lévy “white noise” term. This leads to a fractional Fokker–Planck equation
([31], compare also e.g. [32]) governing the time evolution of the probability
density function (pdf) ρ(x, t) of the process

∂tρ = −∇(b · ρ)− |∆|α/2ρ . (7)

We emphasize a difference in sign in the second term, if compared with
Eq. (4) of Ref. [31]. There, the minus sign is absorbed in the adopted defini-
tion of the (Riesz) fractional derivative. Apart from the formal resemblance
of operator symbols, we do not directly employ fractional derivatives in our
discussion.

Let us assume that the fractional Fokker–Planck equation (7) admits a
stationary solution ρ∗(x), which is an asymptotic target ρ(x, t) → ρ∗(x) of
the relaxation process. Then, a functional form of the time-independent
drift b(x) can be reconstructed by means of an indefinite integral

b(x) = −
∫

dx |∆|α/2ρ∗(x)

ρ∗(x)
. (8)

This is an ingredient of the reverse engineering procedure [1, 2, 21] of recon-
structing the random motion from the prescribed stationary (target) pdf,
once the Lévy driver is pre-selected.

Anticipating further discussion, let us introduce some elements of the
standard stochastic inventory. Let p(y, s, x, t) = p(t − s, y, x), t > s ≥ 0 be
the time-homogeneous transition density of the relaxation process (7), e.g.

ρ(x, t) =

∫
R

p(y, s, x, t)ρ(y, s) dy . (9)

We shall pass to the notation p(t, y, x) to enable a direct comparison
with the exemplary construction of the Ornstein–Uhlenbeck–Cauchy pro-
cess in Ref. [32]. Leaving aside unnecessary here mathematical details, we
recall that the pertinent stochastic (jump-type) process is generated by the
semigroup Tt, transforming continuous functions on R (of the class C0(R))
as follows:

Ttf(x) =

∫
R

p(t, x, y)f(y) = f(x, t) . (10)
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In the mathematically-oriented literature, it is common to interpret
p(t, x, y)dy as a probability of getting from x = X(0) to the (infinitesi-
mal) vicinity of a point y = X(t). Accordingly, Ttf(x) = Ex[f(Xt)] stands
for a conditional expectation value of an “observable” f(x), evaluated over
endpoints X(t) = y of sample paths started from x = X(0) and terminated
at time t.

The semigroup Tt = exp(tL) has a generator

Lf(x) = lim
t↓0

1

t

[ ∫
p(t, x, y)f(y)dy − f(x)

]
, (11)

whose generic form reads

L = −|∆|α/2 + b∇ . (12)

(We note its formal resemblance to the generator of the standard diffusion
process (e.g. Brownian motion) LB = ∆+ b∇.) Clearly, we have ∂tf(x, t) =
Lf(x, t).

The time evolution of probability measures and associated probability
density functions ρ(x, t) is governed by the adjoint semigroup T ∗t = exp(L∗t)

T ∗t ρ(x, t) =

∫
p(t, y, x)ρ(y) dy . (13)

Accordingly, we have ∂tρ(x, t) = L∗f(x, t), where

L∗ = −|∆|α/2 −∇(b ·) (14)

comes from

L∗ρ(x) = lim
t↓0

1

t

[ ∫
p(t, y, x)ρ(y) dy − ρ(x)

]
. (15)

See e.g. Refs. [31, 32] for exemplary calculations.
We point out that transition pdfs in general are not symmetric functions

of spatial variables: p(t, x, y) 6= p(t, y, x). The order of variables clearly
identifies the starting point (predecessor) and the terminal point (successor)
for the stochastic process (bridge) connecting these points in the time in-
terval of length t. In the mathematically-oriented literature, the pertinent
symmetry is routinely restored by passing from the Lebesgue to weighted
integration measures, see for example [26, 33, 34].
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2. Non-Langevin approach

2.1. Schrödinger’s interpolation problem

We are inspired by apparent affinities between structural properties of
probabilistic solutions of the so-called Schrödinger boundary data problem
[35, 36] and the current research on conditioning of Markovian stochastic
processes of diffusion and jump-type [15, 19, 26, 34, 37], see also [1, 2, 22].
The Schrödinger boundary data and interpolation problem is known to pro-
vide a unique Markovian interpolation between any two strictly positive
probability densities, designed to form the input–output statistics data for
a random process bound to run in a finite (observation) time interval.

The key input, if one attempts to reconstruct the pertinent Markovian
dynamics, is to select the jointly continuous in space variables, positive and
contractive semigroup kernel. Its choice is arbitrary, except for the strict
positivity (not a must, but we keep this restriction in the present paper)
and continuity demand. It is thus rather natural to ask for the most general
stochastic interpolation, that is admitted under the above premises and the
involved semigroups may refer not merely to diffusion scenarios of motion,
but more generally to a broad family of non-Gaussian (specifically jump-
type) processes.

We infer the semigroup dynamics in question from the classic notion of
the Schrödinger semigroup exp(−tĤ), with a proviso that the semigroup
generator Ĥ actually stands for a legitimate (up to scaled away physical
constants) Hamiltonian operator, incorporating additive perturbations (by
suitable potential functions) of either the traditional minus Laplacian, or
the fractional Laplacian of the preceding subsections.

We are interested in Schrödinger-type operators of the form of Ĥα =
(−∆)α/2 + V (x), where Ĥ2 ≡ −∆ + V (x), and the semigroups in question
appear as members of the α-family exp(−tĤα), with 0 < α ≤ 2. Although
in our discussion, the Schrödinger interpolation is restricted to a finite time
interval t ∈ [0, T ], this restriction may be relaxed once the solution (e.g.
transition probability of the process) is in hands.

Roughly, the essence of the Schrödinger boundary data problem [35] goes
as follows. We consider Markovian propagation scenarios, with the input–
output statistics data provided in terms of two strictly positive boundary
densities ρ(x, 0) and ρ(x, T ), T > 0 [35, 36] that may be constrained to (in-
tegrated over) some Borel sets A and B contained in R. We interpret ρ0(A)
and ρT (B) as boundary data for a certain bivariate probability measure
m(A,B). Assume that the pertinent measure admits a transition probabil-
ity density

m(x, y) = f(x)k(x, 0, y, T )g(y) (16)
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with marginals
∫
Rm(x, y) dy = ρ(x, 0) and

∫
Rm(x, y) dx = ρ(y, T ) pre-

sumed to be associated with a certain dynamical process bound to run in a
time interval [0, T ].

Here, f(x) and g(y) are the a priori unknown strictly positive functions
that need to be deduced from the imposed boundary data (i.e. marginals
that are presumed to be known a priori). To this end, we should select
any strictly positive, jointly continuous in space variables kernel function
k(x, 0, y, T ). We impose a restriction that k(x, 0, y, T ) represents a certain
strongly continuous dynamical semigroup kernel k(y, s, x, t), 0 ≤ s < t ≤ T ,
while specified at the time interval [0, T ] borders. This assumption will
secure the Markov property of the sought for stochastic process. Actually,
we shall consider time homogeneous processes generated by the semigroup
exp[−(t− s)Ĥα], with a kernel k(t− s, y, x).

Under those circumstances [35, 36], once we define functions

θ(x, t) =
{

exp
[
−(T − t)Ĥα

]
g
}

(x) =

∫
k(x, t, y, T )g(y) dy (17)

and
θ∗(y, t) =

{
exp(−tĤα) g

}
(y) =

∫
k(x, 0, y, t)f(x) dx , (18)

one can demonstrate the existence of a transition probability density (note
that even if k(t, y, x) = k(t, x, y), the symmetry property is not respected
by p(t, x, y) in below)

p(y, s, x, t) = k(y, s, x, t)
θ(x, t)

θ(y, s)
, (19)

which implements a Markovian propagation of the probability density

ρ(x, t) = θ(x, t)θ∗(x, t) , (20)

according to the pattern

ρ(x, t) =

∫
p(y, s, x, t)ρ(y, s) dy

= θ(x, t)

∫
k(y, s, x, t)θ∗(y, s) dy = θ(x, t)θ∗(x, t) , (21)

providing an interpolation between the prescribed boundary data in the time
interval [0, T ].
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Here, we note the exploitation of the semigroup property [35] in propa-
gation formulas (17). Namely, for 0 < s < t < T , we have

θ(x, s) =

∫
k(x, s, y, T )g(y) dy =

∫ ∫
k(x, s, z, t)k(z, t, y, T )g(y) dydz

=

∫
k(x, s, z, t)θ(z, t)dz (22)

and

θ∗(y, t) =

∫
k(x, 0, y, t)f(x) dx =

∫ ∫
k(x, 0, z, s)k(z, s, y, t)f(x) dxdz

=

∫
k(z, s, y, t)θ∗(z, s)dz . (23)

For a given semigroup exp(−tĤα) which is characterized by its Hamilto-
nian generator Ĥα, the kernel exp(−tĤα)(y, x) = k(t, y, x) and the emerging
transition probability density p(t, y, x) of the time homogeneous stochastic
process are unique in view of the uniqueness of solutions f(x) and g(y) of
the Schrödinger boundary data problem [35]. In the case of Markov pro-
cesses, the knowledge of the transition probability density p(y, s, x, t) (here
p(t − s, y, x)) for all intermediate times 0 ≤ s < t ≤ T suffices for the
derivation of all other relevant characteristics of random motion.

Further exploiting the Schrödinger semigroup lore and their Hamiltonian
generators, we can write evolution equations for functions (17) in a form
displaying an intimate link with Schrödinger-type equations. Namely, while
in the interval [0, T ], [37], see e.g. (17) and (18), we have ∂tθ∗ = −Ĥθ∗ and
∂tθ = Ĥθ, where Ĥ = Ĥα = |∆|α/2 + V . Accordingly [36],

∂tθ∗ = −|∆|α/2θ∗ − V θ∗ (24)

and
∂tθ = |∆|α/2θ + V θ . (25)

For comparison, we indicate that the Brownian version of Eqs. (24) and
(25) would have the form of (up to scaled away physical constants) ∂tθ∗ =
∆θ∗ − V θ∗ and ∂tθ = −∆θ + V θ, respectively.

Remark 1. At this point, let us recall basic (Brownian) intuitions that un-
derly the implicit path integral formalism for Lévy flights. Namely, oper-
ators of the form of (the diffusion coefficient D is scaled away, typically
a dimensionless form D = 1/2 or D = 1 is used to simplify calculations)
Ĥ = −∆+V ≥ 0 with V ≥ 0 give rise to transition kernels of diffusion-type
Markovian processes with killing (absorption), whose rate is determined by



Lévy Flights in Steep Potential Wells: Langevin Modeling Versus Direct . . . 1975

the value of V (x) at x ∈ R. This interpretation stems from the celebrated
Feynman–Kac (path integration) formula, which assigns to exp(−Ĥt) the
positive integral kernel

k(x, s, y, t) = exp[−(t− s)(−∆+ V )](y, x)

=

∫
exp

− t∫
s

V (ω(τ))dτ

 dµs,y,x,t(ω) .

In terms of Wiener paths, the kernel is constructed as a path integral over
paths which get killed at a point Xt = x, with an extinction probability
V (x)dt in the time interval (t, t + dt). The killed path is henceforth re-
moved from the ensemble of on-going Wiener paths. The exponential factor
exp[−

∫ t
s V (ω(τ))dτ ] is here responsible for a proper redistribution of Wiener

paths, so that the evolution rule

f(x, t) =
([

exp
(
−tĤ

)]
f
)

(x) =

∫
Rn

k(x, 0; y, t)f(y) dy

= Ex[f(Xt)] = Ex

f(Xt) exp

− t∫
0

V (Xs)ds

 ,
with Ĥ = −∆+V , is well-defined as an expectation value of the killed process
X(t), started at time zero, at x ∈ R.

Anticipating further discussion, we point out that the latter (Feynman–
Kac) formula admits a generalization to Lévy processes, provided we pass to
the transition kernel of the semigroup exp(−tĤ) with Ĥ=Ĥα= |∆|α/2+V .
Then, the path measure needs to be adopted to the jump-type setting, with
sample paths of the Lévy process replacing the Wiener ones, see e.g. [26, 33,
34, 38]. The pertinent expectation is taken with respect to the path measure
of the α-stable process.

We note that in Ref. [26] the function V (x) is interpreted as delineating
a potential landscape in which the random motion takes place.

2.2. Conditioned Lévy flights

We have not yet specified any restrictions upon the properties of the
potential function V (x) nor its concrete functional form. In the present
paper, the potential is expected to be a continuous function and show
up definite confining properties, which we adopt after [26], by demanding
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lim|x|→∞ V (x) =∞. Then, the Hamiltonian operator Ĥα generically admits
a positive ground-state function ϕ0(x) with an isolated bottom eigenvalue
λ0 (typically a fully discrete spectrum is admitted).

With this proviso, let us invert our reasoning and consider evolution
equations (24) and (25), with initial/terminal data g(x) and f(x), respec-
tively. This specifies the Schrödinger interpolation of ρ(x, t) = θ(x, t)θ∗(x, t)
in the time interval [0, T ].

At this point, we shall narrow the generality of the addressed Schrödinger
boundary data and interpolation problem by assuming that actually for all
t ∈ [0, T ], we have

θ(x, t) = exp(tλ0)ϕ0(x) , (26)

where Ĥαϕ0(x) = λ0ϕ0(x). Accordingly (we interchangeably use |∆|α/2 or
(−∆)α/2),

V(x) = V (x)− λ0 = − 1

ϕ0(x)
(−∆)α/2ϕ0(x) . (27)

We point out a formal appearance of the potential function V(x) in the
specific form, repeatedly invoked in our earlier papers, V(x) = −ρ−1/2∗ |∆|α/2

ρ
1/2
∗ , here specialized to the Cauchy case α = 1.

Let us indicate that the subtraction of λ0 from the potential V (x) is
a standard way to assign the eigenvalue zero to the ground-state function
ϕ0(x) of the “renormalized” Hamiltonian Ĥ − λ0, cf. [19, 26–28]. In reverse,
it is the functional form of the right-hand side of Eq. (27), which guarantees
that Ĥren

α = Ĥα−λ0 = (−∆)α/2 +V(x) actually assigns the eigenvalue zero
to the eigenfunction ϕ0(x).

Interestingly, a substitution of (26) into Eq. (19) implies

p(y, s, x, t) = exp[λ0(t− s)] k(y, s, x, t)
ϕ0(x)

ϕ0(y)
. (28)

This is a canonical functional form of the transition probability density for
the so-called ground-state transformed jump-type process, whose probability
density function ρ(x, t) asymptotically relaxes to

ρ∗(x) =
ϕ2
0(x)∫

ϕ2
0(y) dy

. (29)

A detailed analysis of a number of exemplary cases can be found in Refs.
[15, 19, 27, 28, 36, 37], where ρ1/2∗ (x) notationally replaces ϕ0(x)/

√∫
ϕ2
0(y) dy.

Accordingly, the compatibility condition (27) (the functional form of V(x)

determines the functional form of ρ1/2∗ (x) and in reverse) reads V =

−(|∆|α/2ρ1/2∗ )/ρ
1/2
∗ .
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Remark 2. In the mathematical literature, [26, 33, 34], the transition prob-
ability density (28) is usually transformed to the symmetric form (presuming
k(t, x, y) = k(t, y, x))

p̃(t, x, y) = p̃(t, y, x) =
eλ0tk(t, x, y)

ϕ0(x)ϕ0(y)
(30)

with the proviso that the appropriate function space is not L2(R, dx) but
L2(R,ϕ2

0(x) dx). Accordingly, f(x, t) = Ex[X(t)] =
∫
R f(y)p̃(t, x, y)ϕ2

0(y) dy
=
∫
R f(y)p(t, x, y) dy. Here (take care of the interchange x ↔ y, since the

symmetry is lost),

p(t, x, y) = eλ0t k(t, y, x)
ϕ0(y)

ϕ0(x)
6= p(t, y, x) , (31)

cf. Eq. (28).

2.3. Condition of detailed balance

Let us rewrite the defining formula (20) for ρ(x, t) in the familiar form of

ρ(x, t) = ρ
1/2
∗ (x)Ψ(x, t) , (32)

where ρ∗(x) is defined according to (29), and

Ψ(x, t) = exp(λ0t)θ∗(x, t)

√∫
ϕ2
0(y) dy . (33)

In virtue of ∂tθ∗ = −Ĥθ∗, where Ĥ = Ĥα = |∆|α/2 + V , we realize that
∂tΨ = −(Ĥ − λ0)Ψ .

Consequently, the associated fractional Fokker–Planck equation, while
adjusted to the present non-Langevin setting, takes the form of

∂tρ = L∗ρ(x, t) = ρ
1/2
∗ ∂tΨ =

[
−ρ1/2∗

(
Ĥ − λ0

)
ρ
−1/2
∗

]
ρ(x, t) (34)

in which we have encoded the similarity transformation [26–28, 33] relating
the fractional Fokker–Planck operator L∗ and Ĥ − λ0

L∗ ≡ −ρ1/2∗
(
Ĥ − λ0

)
ρ
−1/2
∗ . (35)

We recall that the time evolution of the probability density function
ρ(x, t) is governed by the (adjoint) semigroup T ∗t = exp(L∗t): T ∗t ρ(x, t) =
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p(t, y, x)ρ(y) dy, where the transition pdf is given by formula (28). Re-

membering that Eq. (33) is an operator expression, where the action of
operators needs to be read out from right to left, we can extend this iden-
tity to the semigroup operator itself: T ∗ = ρ

1/2
∗ exp(Ĥ−λ0) ρ−1/2∗ . We note

that p(t, y, x) is an integral kernel of T ∗t , while the entry exp(tλ0) k(t, y, x) in
definition (28) of p(t, y, x) actually is an integral kernel of exp[−(Ĥ − λ0)t].

On the other hand, Ttf(x) = Ex[f(Xt)] =
∫
R p(t, x, y)f(y) = f(x, t) is

a conditional expectation value of an “observable” f(x), evaluated over end-
points X(t) = y of sample paths started from x = X(0). Here, p(t, x, y) dy
is interpreted as a probability of getting from x = X(0) to the vicinity of
a point y = X(t). We point out that p(t, x, y) 6= p(t, y, x), cf. (28), while
generically k(t, x, y) = k(t, y, x).

Since p(t, y, x) dx quantifies a probability of getting from y to the (dx)
vicinity of x at time t, by employing (28), we can verify that in the present
case the condition of detailed balance manifestly holds true, cf. [2, 23]

p(t, y, x)ρ∗(y) = p(t, x, y)ρ∗(x) . (36)

This, in conjunction with a redefinition of (28) according to p(t, y, x) →
p(t, x, y). At this point, we mention that for Langevin-driven Lévy processes,
the condition of detailed balance does not hold true [23]. Our non-Langevin
approach has the detailed balance property built-in from the start, see e.g.
[2] and references therein.

The generator L of the pertinent jump-type process appears in the
form of, cf. also [26, 33]

L ≡ −ρ−1/2∗

(
Ĥ − λ0

)
ρ
1/2
∗ (37)

which conforms with the identity L = ρ−1∗ L∗ρ∗.

2.4. Generators of conditioned Lévy flights

As yet, we have no detailed integral expressions for the motion generators
L and L∗. Let us begin from the evaluation of the integral form for L
[39] which has been mentioned elsewhere [33], but its derivation has been
skipped. To this end, we shall resort to the regularized definition (6) of the
fractional Laplacian. We are not aware of any simple computation method
starting from the Cauchy principal value definitions (4) or (5), compare e.g.
also [40] and [41].

2.4.1. Integral form of L [39]

We shall follow the notation of Section 2.2. Accordingly, for Ĥ = Ĥα =
|∆|α/2 + V , we have the eigenvalue equation Ĥϕ0(x) = λ0ϕ0(x). Since
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λ0 is interpreted as the bottom (ground state) eigenvalue, we readily infer
Eq. (27), and thus the action of L upon any (suitable) function f(x) may
be reduced to the evaluation of

ϕ0(Lf) = |∆|α/2(ϕ0f)− f
(
|∆|α/2ϕ0

)
. (38)

The action of the fractional Laplacian upon functions in its domain can
be given in the integral form, and to this end, we refer to the regularized
definition given in Eq. (6). We have (f(x) ≡ f(x, t) to be kept in mind)(

|∆|α/2f
)

(x) = −1

2

∫
R

[f(x+ y) + f(x− y)− 2f(x)] ν( dy) (39)

and therefore (remember that we evaluate the above expression for f(x) and
subsequently for the product ϕ0(x)f(x))

−ϕ0(x)(Lf)(x)

=
1

2

∫
R

{ϕ0(x+ y)[f(x+ y)− f(x)] + ϕ0(x− y)[f(x− y)− f(x)]}ν( dy) .

(40)

We change the variables under the integral sign to z = x+y and z = x−y
respectively, and next, use the property ν(z−x) = ν(x−z) of the Lévy-stable
measure ν( dy) = ν(y) dy. The outcome is

−ϕ0(x)(Lf)(x) =
1

2

∫
R

[f(z)− f(x)]ϕ0(z)ν(z − x)dz , (41)

i.e. the integral form of L reads

(Lf)(x) = Aα
∫
R

f(x)− f(z)

|z − x|1+α
ϕ0(z)

ϕ0(x)
dz (42)

to be compared with the standard fractional Laplacian definition (5).

2.4.2. Integral form of L∗

Let us rewrite the transport equation (34) in the notation compatible
with that used in the previous subsection. We have

∂tρ = L∗ρ = −ϕ0

(
Ĥ − λ0

) 1

ϕ0

ρ . (43)
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By employing the eigenvalue equations (27) and (34), we arrive at (here
ρ(x) ≡ ρ(x, t))

L∗ρ = −ϕ0

(
|∆|α/2 ρ

ϕ0

)
+

ρ

ϕ0

(
|∆|α/2ϕ0

)
(44)

to be compared with (38). Basically, we can repeat major steps of the
previous evaluation.

By employing (39), properly rearranging terms and executing suitable
changes of integration variables, we get

L∗ρ(x) =

∫
R

[
ϕ0(x)

ϕ0(z)
ρ(z)− ϕ0(z)

ϕ0(x)
ρ(x)

]
ν(z − x)dz , (45)

where ν(z−x) = Aα/|z−x|1+α. It is instructive to compare this result with
an alternative derivation, based on definition (3) of the fractional Laplacian,
cf. Eqs. (83) and (84) in Ref. [41].

Remark 3. The same formula can be obtained by invoking a direct construc-
tion of Lévy processes whose confinement is due to the response to potentials
rather than to conservative proper forces [25], see also [1, 2, 22]. Indeed, the
relevant formula (28) in Ref. [25] has the form of

∂tρ(x, t) = Aα
{
s(x)

∫
q(y, t)− q(x, t)
|x− y|1+α

dy − q(x, t)
∫
s(y)− s(x)

|x− y|1+α
dy

}
,

(46)
where s(x) = e−Φ(x)/2 ≡ ϕ0(x), while q(x, t) = ρ(x, t)/s(x), and upon suit-
able rearrangements is identical with Eq. (45).

It is the salience field s(x), or (in view of associations with the no-
tion of the Boltzmann equilibrium pdf) the (would-be Boltzmann) potential
function Φ(x) = −2 ln s(x), which receives an interpretation of the salience
or potential landscape respectively in Ref. [25], see also [1, 2, 22]. An al-
ternative potential/energy landscape notion is associated with the related
Feynman–Kac potential [26].

3. Cauchy process in the interval:
Superharmonic approximation of Dirichlet boundaries

3.1. Reference spectral data of the Cauchy generator |∆|1/2D
in the infinitely deep potential well (interval)

The main problem, which hampers a usage of Lévy flights as computa-
tionally useful model systems, is the nonlocality of the stochastic process
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itself and the nonlocality of its generators. Analytically tractable reasoning
is seldom in the reach and one needs to rely on computer-assisted methods.

For Lévy flights in the interval with absorbing endpoints (exterior Dirich-
let boundary conditions are necessary here), approximate analytic formulas
are available for the spectral relaxation data (fractional Laplacian eigenval-
ues and eigefunctions). The approximation accuracy has been significantly
improved by resorting to numerics, specifically in the Cauchy case [42–47].
The lowest eigenvalues and eigenfunctions shapes of the Cauchy Laplacian in
the interval (with Dirichlet boundaries) were obtained by different computer-
assisted methods, with a high degree of congruence, cf. comparison Tables
in Ref. [46] and references therein.

Let D be an open set in R, like e.g. the open interval (−1, 1). The
Dirichlet boundary condition actually takes the form of the exterior restric-
tion, imposed upon functions in the domain of the fractional Laplacian

|∆|α/2ψn(x) = λnψn(x) , (47)

for all x ∈ D, while ψn(x) = 0 for all x ∈ R \D and ψ ∈ L2(D). We deal
here with the exterior Dirichlet condition valid on the complement of D
in R. This should be contrasted with the standard Brownian case, where
the Dirichlet condition is imposed locally at the boundary ∂D of D, so that
D ∪ ∂D = Dc is a closed set (interval with endpoints, like [−1, 1]).

Here, λn > 0 for all natural n ≥ 1 [17, 42–45]. The eigenfunctions
ψn(x) are continuous and bounded in D, and reach the boundary ∂D of D
continuously, while approaching the (Dirichlet) boundary value zero. The
ground-state function ψ1(x) is strictly positive in D. We name the Dirich-
let fractional Laplacian the fractional Laplacian with Dirichlet boundary
conditions, and abbreviate it to the notation |∆|α/2D .

There exists an analytic estimate for the spectrum of |∆|α/2D in the case
of arbitrary stability index 0 < α < 2 [42]. For all n ≥ 1, we have∣∣∣∣λn − [nπ2 − (2− α)π

8

]α∣∣∣∣ ≤ 2− α
n
√
α
, (48)

but the approximation accuracy may be considered reliable beginning roughly
from n ≥ 10, cf. [44, 45]. For reference purposes, we indicate that the lowest
two eigenvalues read λ1 = 1.157791 and λ2 = 2.754795, which should be set
against two bottom eigenvalues of the standard Dirichlet Laplacian (−∆)D
equal to π2/4 = 2.4674 and π2 = 9.8696, respectively [16, 45]. In the Cauchy
case, the spectral gap λ2−λ1 is much lower than this in the Brownian case,
cf. [17].
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We have found quite accurate analytic approximation formulas for the
lowest eigenfunction shapes, valid for any 0 < α < 2, cf. [16, 46]

ψ1(x) = Cα,γ
[(

1− x2
)

cos(γx)
]α/2

, (49)

where Cα,γ stands for the L2(D = [−1, 1]) normalization factor, while γ
is considered to be the “best fit” parameter. This analytic formula for
the ground-state function, well conforms with numerically simulated curves
[16, 44–47].

In the Cauchy case, α = 1, almost prefect fit (up to the available graph-
ical resolution limit) has been obtained for γ = 1443

4096π, with C = 0.92175

[46]. It is known that all eigenfunctions show the ∼
√

(1− x2) decay to 0
while approaching the interval [−1, 1] endpoints, see e.g. [14, 17, 46, 47].

Technical details are available in Refs. [46, 47], where we have devised
the method of solution of the Schrödinger-type spectral problems by means
of the Strang splitting technique for semigroup operators. The method has
been comparatively tested by referring to the analytically solvable Cauchy
oscillator model, and next employed in the Cauchy well setting to deduce
the lowest eigenvalues and eigenfunctions shapes of the Cauchy–Dirichlet
Laplacian on the interval. The analysis has been complemented by executing
the sequential approximation of the Cauchy infinite well in terms of the
deepening finite well problems.

We note that in contrast to the locally defined boundary data in the
Brownian case, the Cauchy operator (and likewise other α-stable gener-
ators), in view of its nonlocality, needs an exterior Dirichlet condition.
Accordingly, functions from the operator domain need to vanish on the
whole complement R \ D of the open set D = (−1, 1) (the closure of D
is Dc = [−1, 1]).

3.2. Non-Langevin approach

Since the Cauchy generator in the interval with absorption at the end-
points is spectrally identical with that of the infinite (quantum associa-
tion) Cauchy well i.e. the Cauchy operator with exterior Dirichlet boundary
data |∆|1/2D (D ⊂ R) [17, 46, 47], it is natural to address an issue of its
sequential approximation by superharmonic Cauchy–Schrödinger operators
Ĥ = |∆|1/2 + V (x) with V (x) = x2m, m ≥ 1,m→∞, defined on R.

This sequential procedure stems from the large m properties of the po-
tential function V (x) ∼ xm, with m even. One tacitly presumes that in
the m → ∞ limit, defining properties of the infinite well enclosure set on
[−1, 1] ⊂ R are reproduced.

We point out some obstacles that need to be carefully handled in con-
nection with the point-wise m→∞ limit. Namely, (i) xm, at x = ±1 takes
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the value 1 for all m, (ii) xm/m takes the value 1/m→ 0 as m→∞, while
(iii) mxm takes the value m → ∞. In all three cases, the point-wise limit
m → ∞ establishes the walue V (x) → 0 for |x| < 1 and V (x) → ∞ for
|x| > 1. We emphasize the relevance of the exterior (to the interval (−1, 1))
property of V (x) — it diverges to infinity everywhere on R \ (−1, 1).

At this point it is useful to mention the traditional definition of the
infinite well enclosure, which is considered in conjunction with the concept
of the Dirichlet boundary data: V (x) = 0, |x| < 1 and V (x) = ∞, |x| ≥ 1.
Evidently, it is V (x) = mxm which consistently approximates this enclosure
for m→∞, cf. also Ref. [18].

We point out that sequential finite well approximations were studied in
detail in Refs. [46, 47]. A complementary analysis of finite well approxima-
tions of the standard Laplacian (and the confined Brownian motion) in the
interval can be found in Ref. [18], see also [16] for a general discussion of
Lévy flights in bounded domains. In all these cases, the boundary value of
the limiting infinite well potential has been assumed to be equal to ∞.

To check the validity of the sequential superharmonic approximation of
|∆|1/2D , we have generalised the method of Ref. [47], originally employed
to obtain the spectral solution of the Cauchy oscillator. The superhar-
monic semigroup generator reads Ĥ = |∆|1/2 + x2m. In view of the im-
plicit “ground-state reconstruction strategy”, we are interested in the so-
lution of Ĥψ1 = λ1ψ1, with ψ1 given in the L2(R) normalized form of

ψ1 = ϕ0(x)/
√∫

ϕ2
0(y) dy from Section 2.3, where λ1 is (in the present case)

the positive bottom eigenvalue.
Computer-assisted outcomes are displayed in Fig. 1 and show definite

convergence symptoms towards spectral data of the infinite Cauchy well. We
depict a sample of L2(R)-normalized ground-state functions of Ĥ = |∆|1/2+
x2m for m = 1, 4, 10, 50, 250, 2500. The m = 2500 curve (grey/yellow)
is indistinguishable, in the adopted resolution scale, from the best-fit in-
finite Cauchy well eigenfunction (black dashed line) ψ1(x) = 0.921749[(1 −
x2) cos(1443πx/4096)]1/2 of Ref. [46], see also Eq. (47).

The bottom eigenvalue dependence on the superharmonic exponent 2m
is depicted as well. Convergence symptoms towards the infinite Cauchy
well eigenvalue E1 = 1.157791 (dashed line level) are conspicuous. The last
displayed eigenvalue (circle) corresponds to 2n = 5000 and reads E1(5000) ∼
1.55232.

Remark 4. Since for all m ≥ 1, the spectrum of Ĥ = |∆|1/2 + x2m is
positive, with a bottom eigenvalue λ1[m], it is clear that Ĥ−λ1[m] = |∆|1/2+
V(x), where V(x) = −[|∆|1/2ψ1(x)]/ψ1(x) assigns the bottom eigenvalue zero
to the positive eigenfunction ψ1(x). We point out a notational change: λ0
and ψ0(x) of Section 2 are now replaced by λ1 and ψ1(x), respectively.
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Fig. 1. (Color online) Top panel: L2(R)-normalized ground-state functions of Ĥ =

|∆|1/2 + x2m for m = 1 (red), 5 (green), 25 (blue), 2500 (yellow) and the best-fit
infinite Cauchy well eigenfunction (black dashed line) of Ref. [46], cf. Eq. (47) with
α = 1. Bottom panel: The bottom eigenvalue dependence on 2m. The dashed
line sets the energy level corresponding to the infinite Cauchy well eigenvalue E1 ∼
1.1578.

3.3. Reverse engineering: Langevin alternative

For each m ≥ 1, let there be given ρ∗(x) = ψ2
1(x), where ψ1(x) is the

L2(R)-normalized positive-definite ground-state function of the superhar-
monic Hamiltonian Ĥ = |∆|1/2 + x2m. As we know, ψ1(x) = ρ

1/2
∗ (x) de-

termines the stationary probability density ρ∗(x) = ψ2
1(x) of a Markovian

stochastic process obeying the principle of detailed balance. The pertinent
random dynamics can be recovered by following the non-Langevin approach
of Section 2.
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On the other hand, given the very same stationary pdf ρ∗(x), we may
attempt a reconstruction of the Langevin system, subject to the Cauchy
noise that would yield a relaxation of any suitable ρ(x, t) to ρ∗(x) (here
considered as a pre-specified “target” [21]). We point out that for Langevin-
driven Lévy processes, the condition of detailed balance generically does not
hold true [23, 24] while being valid in the non-Langevin case.

To quantify relaxation properties of a Markovian Lévy–Langevin process,
we need to resort to Eqs. (6) and (7). Actually, to recover the appropriate
fractional Fokker–Planck evolution ∂tρ = −∇(b ·ρ)−|∆|1/2ρ of any suitable
ρ(x, t), we must reconstruct the functional form of the drift function b(x).
Its functional form must be compatible with the assumption that the chosen
target ρ∗(x) is a stationary solution of the Cauchy Fokker–Planck equation.

This amounts to evaluating (in Ref. [21], an alternative drift reconstruc-
tion procedure has been proposed, realized on the level of Fourier transforms)

b(x) = −
∫
|∆|1/2ρ∗(x) dx

ρ∗(x)
. (50)

The indefinite integral is to be numerically handled, since we know a priori
the functional shape of ρ∗(x) (numerical data are in hands). See, e.g. [48]
for a couple of analytically accessible examples.

The integration procedure is straightforward. Given ψ1(x), we evaluate
point-wise the target pdf ψ2

1(x) = ρ∗(x). Next, we evaluate numerically (cf.
[46, 47]) |∆|1/2ρ∗(x). Since we know that with the growth ofm, ρ∗(x) decays
rapidly beyond the interval [−1, 1] (cf. Fig. 1), and likewise |∆|1/2ρ∗(x), the
indefinite integral of the form

∫
f(t)dt is actually computed as a definite

one
∫ x
a f(t)dt, where the finite lower integration bound a < −1 replaces the

“normal” −∞ in the integral.
The outcome of computations is displayed in Fig. 2, where all depicted

figures derive from the ground-state function ψ1(x) of the Cauchy operator
Ĥ = |∆|1/2 +x2m, where m > 1. For comparison, we depict the drift for the
Brownian motion in the interval (equivalently — infinite well) with inaccessi-
ble boundaries, [18, 19], where b(x) = −π tan(πx/2) and ψ1(x) = cos(πx/2)
on [−1, 1]. The corresponding random motion belongs to the category of
taboo processes, see [15, 18, 19]. In Ref. [18], a comparative discussion can
be found, of affinities and the incongruence of Brownian motion scenarios
in the infinite well enclosures, in case of (i) absorbing boundaries (Dirich-
let), (ii) boundaries inaccessible from the interior (taboo version of Dirichlet
data), or (iii) impenetrable, internally reflecting (Neumann).
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Fig. 2. (Color online) Forward drift of the fractional (Cauchy) Fokker–Planck evo-
lution. Top panel: A couple of b(x) curves is depicted. Details are displayed in the
bottom panel: m = 10 (red), m = 25 (green), m = 50 (blue), approx. (turquoise)
derives from the best-fit approximate formula for ψ1(x) in the infinite well, Eq. (47)
for α = 1, while − tan (black) refers to the forward drift of the Brownian motion
in the infinite well (interval) with inaccessible boundaries (named Brownian taboo
process) [19].

4. Superharmonic Cauchy–Langevin systems, their non-Langevin
partners and “impenetrable boundaries”

4.1. Superharmonic approximation of the Cauchy process in the interval
(Langevin realization)

While departing from the Langevin picture of Cauchy flights, which are
confined by superharmonic potentials U(x) = x2m/2m,m ≥ 1, one arrives
at the 2m sequence of fractional Fokker–Planck equations, whose stationary
solutions can be obtained in a closed analytic form. To stay in conformity
with Refs. [3, 4], we use the notation U(x) instead of V (x), in the specific
context of Langevin–Fokker–Planck drift fields b(x) ∼ −∇U . The notation
V (x), and likewise V(x), is reserved exclusively for Feynman–Kac potentials
and delineated by them “potential landscapes”.
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The formal limiting behavior of the pertinent 2m-sequence, as m→∞,
appears to be interpreted in conjunction with the concept of reflected Lévy
flights in the interval [3, 4, 13]. This interpretation basically stems from
a suggestive large m behavior of a superharmonic sequence of standard
Fokker–Plack equations (for superharmonic, drifted Brownian motion), cf.
[3, 4, 18] and a semiclassical view of what a dynamics in the infnite well
should possibly look like, with a traditional picture of a reflecting ball moving
with a uniform velocity between the impacts at interval endpoints (reflecting
walls).

The reasoning of Refs. [3, 4] employs the Langevin-type equation ẋ =
b(x) + Bα(t) with a deterministic term b(x) = −∇U(x) = −x2m−1,m ≥ 1
and the additive Lévy “white noise” term. This leads to a fractional Fokker–
Planck equation [31], governing the time evolution of the pdf ρ(x, t) of the
relaxation process: ∂tρ = −∇(b · ρ)− |∆|α/2ρ.

In Refs. [3, 4], for a particular choice of the Cauchy noise (α = 1), an
explicit form of the stationary solution has been derived for all values of
m > 2. A formal m → ∞ limit allows to reproduce the Cauchy version of
the steady-state solution for “Lévy flights in a confined domain” [13], where
actually it is considered as “the case of stationary Lévy flights in an in-
finitely deep potential well”. Since it is claimed by the Authors that under
the infnite well “confined geometry” conditions, “the origin of the preferred
concentration of flying objects near the boundaries in non-equilibrium sys-
tems is clarified”, we point out our observations to the contrary, cf. Section 3
and [18, 29, 46, 47].

Remark 5. We point out that in the original notation of Refs. [3, 4], it is
pst(x) which stands for our ρ∗(x). To simplify calculations, we scale away
a parameter β in formulas (21), (22) of Ref. [4] (this amounts to setting
β = 1). In the original formulas of Ref. [4], the pertinent parameter β
comprises m and the interval half-length L in the proportionality factor:
β ∼ L2m/2m−1. As m → ∞, we have β → L. In the present paper, we
set L = 1 and so preselect the interval [−1, 1] as a support for the limiting
distribution.

For odd values of m = 2k + 1, we have [4] the following expression for
the stationary solution ρ∗(x) of the superharmonic fractional Fokker–Planck
equation:

ρ∗(x) =
1

π(x2 + 1)

k−1∏
l=0

1

x4 − 2x2 cos[π(4l + 1)/(4k + 1)] + 1
, (51)

while for even values of m = 2k, we have
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ρ∗(x) =
1

π

k−1∏
l=0

1

x4 − 2x2 cos[π(4l + 1)/(4k − 1)] + 1
. (52)

A representative sample of pdf shapes ρ∗(x) for low values of m ≥ 5 is
depicted in Fig. 3, while a sample of square root pdfs ρ1/2∗ (x) for larger
(medium-sized) superharmonic exponents (m = 10 to m = 100) is displayed
in Fig. 4.
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Fig. 3. (Color online) Top panel: The superharmonic potential U(x) = x2m/2m is
depicted for m = 1, 2, 10, 50. The dotted line indicates the shape of the infinitely
deep well potential, supported on the interval [−1, 1] with the bottom energy level
equal to zero. We note that U(±1) = 1/2m goes to zero as m → ∞. Bottom
panel: We depict stationary pdfs ρ∗(x) of the (Langevin-induced) superharmonic
Cauchy–Fokker–Planck equation for m = 1 (turquois), 2 (blue), 3 (green), 4 (red),
5 (black).
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Fig. 4. Top panel: Superharmonic stationary probability densities ρ∗(x) are de-
picted for m = 1, 2, 5, 10, 25, 50 (indices correspond to consecutive maxima in the
growing sequence). The dotted line indicates the arcsine pdf ρ∗(x)[m → ∞] =

1/π
√

1− x2, which “lives” exclusively within the open interval (−1, 1) and is un-
defined (actually does not exist) at ±1. Bottom panel: Enlarged vicinity of the
endpoint x = 1. Locations of maxima (for each mth pdf) relative to the arcsine
curve are clearly displayed: they are bounded from above by this curve. The latter
is not an envelope, since for all finite m > 1, we encounter two intersection points
at every arcsine branch.

4.2. Large m behavior: boundary jeopardies

Let us take advantage of the rearrangement of formulas (51) and (52),
deduced in the Appendix of Ref. [4], which explicitly captures the near-
boundary behavior in the interval [−1, 1] ⊂ R. (The derivation is formal
under a presumption that no obstacles come from infinite summations.)

We have the following expression for the 2mth pdf (the original formula
refers to the interval [−L,L] and has more clumsy form in view of the pres-
ence of dimensional constants):
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ρ∗(x) =
1

π
exp

{ ∞∑
l=1

x2l

2l cos [πl/(2m− 1)]

}
(53)

in the interior (−1, 1) of the interval of interest (we note that originally [4]
the statement was “for |x| ≤ 1”, hence referred to the endpoints of the
interval as well). The formula valid in the exterior of the interval (originally
“for |x| > 1”) reads

ρ∗(x) =
1

πx2m
exp

{ ∞∑
l=1

1

2lx2l cos [πl/(2m− 1)]

}
. (54)

Let us analyze point-wise the large m behavior of definitions (53) and
(54) (to be considered jointly on R) of the 2mth pdf ρ∗(x). First, let us
notice that (53) and (54) actually coincide at endpoints ±1 of the interval
of interest, provided the series converge. This is the case for all finite values
of m. However, ρ∗(±1) diverges in the m→∞ limit, which is the property
of both expressions (53) and (54).

Let us assume that |x| > 1. For all finite values of m, the large m
behavior of Eq. (54) is ruled by the factor 1/x2m. Hence, for all |x| > 1, ρ∗(x)

(and likewise ρ1/2∗ (x)) rapidly drops down to zero as m→∞. Compare, e.g.
Figs. 3 and 4.

For all |x| < 1, the infinite series in the exponent of Eq. (53) converge to
finite values, producing function shapes of Figs. 3 and 4, with a visually per-
suasive m-dependence, showing symptoms of the convergence to the arcsine
distribution (alternatively, its square root). This feature deserves a more
detailed examination.

To this end, presuming |x| < 1, let us pass to the (formal) m→∞ limit
in the exponent of Eq. (53). We realize that

ρ∗(x)m→∞ =
1

π
exp

{
1

2

∞∑
l=1

x2l

l

}
. (55)

The series in the exponent can be summed by invoking the Taylor expansion
of the function ln(1−z) = −(z+z2/2+z3/3+ . . . ), which upon substitution
z → x2 gives rise to the arcsine distribution in (−1, 1)

ρ∗(x)m→∞ =
1

π
exp

[
−1

2
ln
(
1− x2

)]
=

1

π
√

1− x2
. (56)

We note that the arcsine distribution has been here associated exclusively
with the interior (−1, 1) of the interval [−1, 1], with endpoints (and the
whole exterior of [−1, 1] in R0) excluded from consideration. The pertinent
distribution diverges as we approach ±1.
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4.3. Non-Langevin approach: Cauchy–Schrödinger semigroup
and its equilibrium state

In accordance with arguments of Section 2, the non-Langevin approach
amounts to the reconstruction of the dynamics from the ground-state func-
tion of a suitable fractional energy operator (fractional Hamiltonian). We
have in hands the Langevin–Fokker–Planck induced superharmonic station-
ary densities. These are supposed to be shared by the non-Langevin alter-
native as well.

The m-labeled ground-state functions are numerically inferred by taking
the square root of the mth stationary pdf: ψ1(x) = ρ

1/2
∗ (x) and depicted

in Fig. 5. We note that, like in Fig. 4, all maxima of superharmonic func-
tions (pdfs and their square roots) are located below the arcsine curve and
its square root, correspondingly. The arcsine curves cannot be considered
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Fig. 5. Top panel: ψ1(x) ≡ ρ
1/2
∗ (x) for m = 10, 20, 30, 50, 100. Indices correspond

to consecutive maxima in the growing order. Bottom panel: Enlarged vicinity
of x = 1. For large values of m (say m ≥ 100), within the adopted graphical
resolution limits, shapes of superharmonic ground-states functions are practically
indistinguishable from the square root of the arcsine law: ρ

1/2
∗ [m → ∞](x) ∼

(1− x2)−1/4, depicted by a dotted line. Compare, e.g. [4, 5, 13].
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as envelopes of superharmonic function families since, generically in each
branch, they have two intersection points (hence no tangent point) with
each superharmonic one. Nonetheless, for large values of m, their rough
interpretation as fapp envelopes is surely admissible (“fapp” abbreviates “for
all practical purposes”).

To infer the Feynman–Kac (landscape) potentials V(x), in accordance
with the discussion of Section 2, we rely on the numerically assisted proce-
dure as well. Its workings (specifically on how to handle effects of integration
cutoffs) have been tested before [1, 2, 22, 46–48], see also [15] and [18]. Given
ψ1(x), we numerically evaluate integral (5), while adjusted to the Cauchy
case −(|∆|1/2ψ1)(x), and point-wise divide the outcome by ψ1(x), so arriving
(point-wise again) at the resultant V(x).

The Feynman–Kac potentials V(x), inferred from a priori given
m-sequence ψ1(x), are depicted in Figs. 6 and 7. In the right panel of Fig. 6
and its enlargement in the vicinity of x = 1 displayed in Fig. 7, the black
curve depicts the potential shape V[m → ∞](x) obtained by adopting the
general reconstruction recipe (cf. Eq. (27)) to the square root of the formal
asymptotic (m→∞) steady-state Cauchy solution ρ∗(x), Eq. (57) and [4].
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Fig. 6. (Color online) Both panels depict the potential V(x) = −ρ−1/2
∗ (x)

|∆|1/2ρ1/2∗ (x), with m-labels and colors shared with Figs. 5 and 7. Left panel:
For m = 10 (red), 20 (green), 30 (blue). Right panel: m = 50 (turquois) and 100

(pink) are additionally inserted, compare, e.g. Fig. 7.

Following our non-Langevin reconstruction principles of Section 2, we
infer the Hamiltonian Ĥ = |∆|1/2 +V(x), whose ground-state eigenfunction
(m→∞ indication is formal, the convergence is not uniform)

ρ
1/2
∗ (x)m→∞ =

1√
π
√

1− x2
(57)

is associated with zero eigenvalue. To this end, we have numerically com-
puted the corresponding V(x), see e.g. Figs. 6 and 7. Note an excellent



Lévy Flights in Steep Potential Wells: Langevin Modeling Versus Direct . . . 1993

(within graphical resolution limits) approximation of superharmonic poten-
tial profiles by asymptote (57), delineated in black in Figs. 6 and 7, in the
open interval (−1, 1). The behavior of superharmonic potential profiles at
the close vicinity of interval endpoints is drastically different (violent de-
cay followed by violent growth, cf. the case of m = 50 and m = 100 in
Fig. 7) from the monotonic decay of curve (57) towards minus infinity at
both endpoints ±1 of the interval.

0.8 0.9 1.0 1.1 1.2−
1

0
0

−
5

0
0

5
0

x

V
(x

) m=10

m=20

m=30m=50

m=100

asymptote

Fig. 7. (Color online) The enlargement of the vicinity of x = 1 in Fig. 6 clearly
shows a surprising affinity (approximation finesse in the range of V(x) ≤ 0) set
against a coexisting dramatic difference (in the vicinity of the interval endpoints)
between overall shapes of V(x) for finite (albeit arbitrarily large) values of m and
the shape of the “asymptote” V(x)[m → ∞] (black), which is reconstructed from
ρ
1/2
∗ (x)[m→∞], Eq. (57).

The black-colored curve in Figs. 6 and 7 delineates the potential, which
is entirely confined in the interval [−1, 1]. The potential is non-positive, with
branches rapidly escaping to −∞ at the interval endpoints. To the contrary,
the superharmonic profiles ultimately escape to +∞, while approaching ±1.

Making a naive, but straightforward comparison with the inverted har-
monic oscillator potential, we realize that the problem refers to the scat-
tering phenomena in the interval (−1, 1). Here, one needs an additional
information (absent in the formal definition of the pertinent V(x)) that the
scattering is actually limited by impenetrable walls at ±1.

It seems that we have nothing to say about the well (interval) exterior
in R. However, we shall demonstrate that actually one cannot disregard
the exterior R \ (−1, 1) of the interval (−1, 1), in any discussion of confined
Lévy processes. It has been the case for Dirichlet enclosures of Section 3,
and appears to be a general feature of non-local generators of Lévy flights
in “confined geometries”.
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5. Meaning of “confined geometry”, “confined domain” and
“infinitely deep well” in the context of Lévy flights

In the statistical physics literature, the “infinitely deep potential well”
is typically considered as a model of a “confined domain” with impermeable
boundaries [13], and thence intuitively associated with reflected random mo-
tions that never leave the prescribed enclosure. This happens both in the
context of Lévy flights [4–16, 49] and in the case of the standard Brownian
motion [4, 18]. This presumption is conceptually amplified by reference to
the semiclassical relative of the (quantum) infinite potential well, visualized
by a mass point in uniform motion, which is perpetually reflecting from
rigid walls.

However, the “reflecting walls” association is somewhat misleading and
stays in plain conflict with our observations of Section 3 (see also a sample
of related references). Indeed, there are other random processes which relax
to equilibrium in a finite enclosure, and definitely have not much in common
with the reflection scenario [1, 15]. Some of them refer to so-called taboo
processes, where the (originally) absorbing boundaries turn over into inac-
cessible ones. The exterior Dirichlet boundary conditions are here implicit
and their workings were briefly outlined in Section 3. The corresponding
Lévy relaxation processes have been discussed in Section 2.

In Refs. [4, 13], explicitly dealing with Lévy flights in the “infinitely deep
potential well”, no link has been established with the fractional Laplacian
subject to any form of Neumann boundary data (presumably non-local).
Hence, the notion of a valid generator of the Lévy process in a bounded do-
main with reflecting boundaries appears to be absent (and basically remains
an open question [15]).

Remark 6. The issue of reflected Lévy flights is not a novelty in the mathe-
matical literature, and basically defined through a path-wise (Skorokhod SDE)
realization [50]. While passing to motion generators, restricted forms of frac-
tional Laplacians should enter the stage. Here, one encounters ambiguities in
the proper formulation of the Neumann-type condition. In the present paper,
we leave aside a discussion of various approaches to this issue and refer to
[15, 50–57]. We point out that so-called regional fractional Laplacians have
been identified as generators of reflected Lévy processes in Refs. [54, 55], see
also [56] for a discussion of censored Lévy flights.

In Ref. [13], by departing from the Langevin–Fokker–Planck approach to
the study of Lévy flights in the “infinitely deep potential well”, the analytic
formula for steady states has been derived: “it is shown that Lévy flights
are distributed according to the beta distribution, whose probability den-
sity becomes singular at the boundaries of the well. The origin of preferred
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concentration of flying objects near the boundaries in non-equilibrium sys-
tems is clarified”. (In passing, we mention that the arcsine distribution (56)
is a member of the above beta pdfs family [4].)

The above statement needs to be kept under scrutiny, since the infnite
well enclosure is known to admit Dirichlet boundaries which are inaccessi-
ble. The boundary value zero for functions in the domain of the Dirichlet
fractional Laplacian is approached continuously (there is no accumulation
of flying objects near the boundary, they are driven away). An obvious con-
flict of the probability accumulation statement, with a plentitude of results
obtained for Lévy flights in the Dirichlet well (see Section 3 and references
cited therein), makes tempting to inquire into the roots of this incongruence.
We shall comparatively address this issue below.

5.1. How does the steady-state distribution of Lévy flights derive under
the infinite well conditions: The argument of Ref. [13]

In Ref. [13], the departure point is a formal Langevin equation ẋ(t) =
f(x(t), t) + ξ(t), where f(x, t) = −∇U(x, t) is a force field, U(x) an external
deterministic potential, and ξ(t) stands for the Lévy “white noise”. Ways to
handle the formal “noise” term and derive an associated fractional Fokker–
Planck equation have been described in [13], see also [31]. The Authors
prefer to employ the Riemann–Liouville derivatives, which in the case of the
symmetric Lévy stable noise imply a familiar [31] expression for the Lévy
Fokker–Planck equation for a time-dependent probability distribution ρ(x, t)

∂ρ(x, t)

∂t
= −∂[f(x, t)ρ(x, t)]

∂x
+ γ

∂αρ(x, t)

∂|x|α
, (58)

where γ stands for the “noise” intensity parameter (to be scaled away), while
the fractional derivative conforms with our previous notation, according to:
|∆|α/2ρ(x, t) = −∂αρ(x, t)/∂|x|α, 0 < α < 2.

The “confined geometry” of the infinitely deep potential well is created
by demanding: (i) f(x, t) = 0 within the well, i.e. for x ∈ [−L,L], where
2L is the width of the well, (ii) boundaries at x = ±L are impermeable,
i.e. ρ(x, t) = 0 for |x| > L; this restriction tacitly presumes that the term
f(x, t) × ρ(x, t) may be safely discarded if |x| > L, while nothing is said
about what actually f(x, t) outside the well is.

The subsequent conclusion of [13] reads: “with these conditions the [frac-
tional Fokker–Planck] equation for the stationary probability density ρ∗(x)
reduces to” (here, we employ the notation of Eq. (58))

|∆|α/2ρ∗(x) = 0 , (59)

where ρ∗(x) = 0 for |x| > L, and nothing is said about the (non)existence
or specific values taken by ρ∗(x) at boundary points x = ±L.
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Presuming that the fractional Fokker–Planck equation (58), and likewise
its stationary variant (59), can be (in the least formally) rewritten in the
divergence form ∂tρ(x, t) = −∇j(x, t), where j(x, t) is interpreted as a prob-
ability current. Accordingly (59), while presented in the time-independent
form ∇j(x) = 0, says that j(x) = const. At this point, a boundary condition
upon the probability flow intervenes: (iii) j(±L) = 0, whose consequence
is j(x) = 0 for all x ∈ [−1, 1]. A hidden assumption is that j(x) may be
continuously interpolated up to the boundaries, while ρ∗(x) may not.

Remark 7. A formulation of the fractional analog of the Fick law is subtle,
and likewise an inversion ∇−1 of the gradient operator is a subtle matter.
This cannot be considered a priori granted, and the procedure may fail in
some stability parameter α ranges, cf. [58, 59]. Then, the notion of a (frac-
tional) probability current cannot be introduced at all.

Conditions (i)–(iii) suggest the functional trial form of the sought for so-
lution and the subsequent computation, while restricted to symmetric Lévy
flights (0 < α < 2) in the well, ends up with the α-family of probability den-
sity functions in (−1, 1), which escape to +∞ while approaching the interval
endpoints ±L

ρ∗(x) = (2L)1−α
Γ (α)

Γ 2(α/2)

(
L2 − x2

)α/2−1
. (60)

For the Cauchy noise α = 1, and with the choice L = 1 of the interval
length parameter, we arrive at the arcsine law in the form of (56).

5.2. Boundary data issue

Our notational convention of Section 1.1 gives preference to the non-
negative operator |∆|α/2, while one should keep in memory that it is −|∆|α/2
= −(−∆)α/2 which is a valid fractional relative of the ordinary Laplacian ∆.
With reference to the normalization coefficient Aα, our version (cf. Eq. (5))
is specialized to one spatial dimension and ultimately to the Cauchy case of
α = 1.

To avoid confusion, we recall an often employed definition of the sym-
metric Lévy stable generator in Rn, in the integral form which involves an
evaluation of the Cauchy principal value (p.v.). For a suitable function f(x),
with x ∈ Rn and n ≥ 1, we have

|∆|α/2f(x) = (−∆)α/2f(x) = Aα,n lim
ε→0+

∫
Rn⊃{|y−x|>ε}

f(x)− f(y)

|x− y|α+n
dy , (61)
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where dy ≡ dny and the (normalization) coefficient

Aα,n =
2αΓ

(
α+n
2

)
πn/2|Γ

(
−α

2

)
|

=
2ααΓ

(
α+n
2

)
πn/2Γ

(
1− α

2

) (62)

is adjusted to secure the conformity of the integral definition (61) with its
Fourier transformed version. The latter actually gives rise to the Fourier
multiplier representation of the fractional Laplacian, cf. [59, 60],
F [(−∆)α/2f ](k) = |k|αF [f ](k). If the fractional operator (61) is defined
on R, coefficient (62) can be recast in the form made explicit in Eq. (5).

Let us assume to have given a function f(x), defined on the whole of R,
which has the form of f(x) = u(x) = (1 − x2)−1+α/2 for x ∈ (−1, 1) and
vanishes outside of the open interval (−1, 1), e.g. f(x) = 0 for x ∈ R \
(−1, 1). Thus, our function is presumed to vanish both at the boundary
points (endpoints) ±1 and beyond [−1, 1] as well.

The computational outcome of Ref. [61] reads |∆|α/2u(x) = 0 for all
x ∈ (−1, 1). An analogous outcome is obtained for functions v(x) = xu(x).
There holds |∆|α/2v(x) = 0 as well for all x ∈ (−1, 1). Functions that
remain constant in D = (−1, 1) and vanish in R \ D are valid elements of
the (domain) kernel of the operator |∆|α/2 as well.

The Cauchy case refers to α = 1, and the arcsine law (56), while extended
to the whole R, as a function identically vanishing on the complement of
(−1, 1) provides an example of the above introduced function u(x).

Remark 8. We point out that the computation of eigenfunctions and eigen-
values of the (Cauchy) fractional Laplacian with exterior Dirichlet bound-
ary conditions (e.g. that in the “infinite potential well”), cf. Section III.C
of Ref. [46], makes an explicit usage of the assumption that the (bounded)
eigenfunctions ψ(x) of |∆|1/2 continuously approach the value 0, while reach-
ing the endpoints ±1 of [−1, 1] from its interior (−1, 1). C.f. Eqs. (5)–(7)
and (47) in Ref. [46], where this demand is explicitly stated

lim
x→±1

|∆|1/2ψ(x) = 0 , (63)

for solutions of the eigenvalue problem |∆|1/2ψ(x) = λψ(x), with λ ≥ 0
(actually λ > 0 in the exterior Dirichlet enclosure [17, 29, 43–45]).

It is condition (63) which makes a crucial difference between two “in-
finitely deep well” cases discussed in the present paper: this described in
Section 3 respects (64), while this outlined in the present section, following
Ref. [13], does not. The difference is evidenced in the boundary properties of
functions depicted in Fig. 1 (convergence to 0) and the divergence of steady
state pdfs (46) and (60), as depicted in Fig. 4. We shall come back to this
point below, by means of analytic arguments.
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5.3. Singular α-harmonic functions

Since functions (56) and (60) may be interpreted as solutions of the frac-
tional Laplacian eigenvalue problem with the eigenvalue zero, we have here
a natural link with the concept of singular α-harmonic functions [56, 62] and
closely related blow-up phenomena for “large solutions” of fractional elliptic
equations [60, 63–65]. An inspection of Fig. 4 reveals another link, with the
concept of locally accurate approximations to “almost every function”, which
are provided by suitable α-harmonic ones.

In the Cauchy context, we have an explicit statement [62] concerning the
concept of α-harmonicity. Let α < 2, and suppose that D is an open unit ball
in Rn. Then, the function f(x) = (1−|x|2)α/2−1 for |x| < 1 and f(x) = 0 for
|x| ≥ 1 is α-harmonic in D and limx→Q∈∂D = ∞. Here, Q refers to points
of the boundary ∂D of D (i.e. interval endpoints if n = 1 and D = (−1, 1)).

According to Refs. [57, 66]: (i) a function f is singular α-harmonic in
an open set D if it is α-harmonic in D and f(x) = 0 for x ∈ Dc = Rn \D;
(ii) a function f is α-harmonic in D if and only if it is C2 on D and
|∆|α/2f(x) = 0 for all x ∈ D.

It is (ii), which directly refers to our previous discussion. We emphasize
that for (ii) to hold true, the function f(x) must be defined on the whole
of Rn. The values of f(x) on Dc are indispensable for this property and must
not be disregarded (or ignored). This reflects the fact that the fractional
Laplacian is a non-local operator and without special precautions [15, 56],
there is no way to eliminate a direct influence (e.g. jumps) between distant
points x and y in the domain of f .

On the other hand, the notion of α-harmonicity can be introduced in
the purely probabilistic lore, with direct reference to Lévy flights, thus pro-
viding hints toward computer-assisted path-wise procedures, yielding the
singular α-harmonic functions as would-be steady states of Lévy flights in
the (appropriately defined) “infinite potential well” [4, 5, 13].

To this (probabilistic/stochastic) end, cf. [57, 66], we employ the notion
of the first exit time from A ⊂ Rn (alternatively, first entrance time to
Ac = Rn \ A) of the isotropic α-stable Lévy process Xt. Given the Borel
set A, we define τA = inf{t ≥ 0 : Xt ∈ Ac} as the first exit time from A. For
a bounded set A, we have τA <∞ a.s. We define a local expectation value

u(x) = Exu(XτA) = Ex [u(XτA); τA <∞] , (64)

interpreted as an average taken at random (exit/entrance) time τA values,
with respect to the process Xt started in x at t = 0, with values Xt = y ∈ A.

For a Borel measurable function u ≥ 0 on Rn, we say that

(i) u(x) is regular α-harmonic in an open set A ⊂ Rn, if u(x) =
Ex[u(XτA)] <∞, x ∈ A;
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(ii) u(x) is α-harmonic in A, if for every bounded open set B with the
closure B̄ contained in A, we have u(x) = Ex[u(XτB)] <∞, x ∈ B;

(iii) u(x) is singular α-harmonic in A, if u(x) actually is α-harmonic in A
and u(x) = 0 for all x ∈ Ac.

Accordingly, the “steady state functions” (56) and (60), while interpreted
as valid solutions of Eqs. (63) and (59), respectively (and thus complemented
by the exterior boundary condition), are examples of singular α-harmonic
functions in D = (−1, 1).

Let us note that a visual inspection of both panels in Fig. 4 clearly
indicates that, while in (−1, 1), the singular α-harmonic function ρ∗(x) may
be considered as a perfect approximation of large m superharmonic pdfs.
(This property stays in conformity with recent Ref. [67], according to which
“all functions are locally α-harmonic up to a small error”.)

In the exterior of [−1, 1], i.e. for x > 1, the pertinent pdfs in the large
m regime rapidly decay to zero. The behavior (with m→∞) of these pdfs
is subtle: we have (i) growth to ∞ for |x| ≤ 1, |x| ↑ 1, and (ii) decay to zero
for |x| ≥ 1, |x| ↓ 1.

5.4. Domain intricacies and the relevance of exterior contributions

A formal statement of the exterior Dirichlet boundary data for the frac-
tional operator (negative fractional Laplacian) |∆|α/2 may be condensed in
the notion of the elliptic problem [53]: |∆|α/2u = f in Ω and u = 0 in Rn\Ω,
where Ω ⊂ Rn is an arbitrary bounded open set. Actually, this is a depar-
ture point for the study of the eigenvalue problem |∆|α/2u = λu, provided
|∆|α/2 has a realization in L2(Ω), e.g. both u and f are elements of L2(Ω).
The eigenvalues λ are known to be positive, λ > 0, cf. [17, 29, 46, 47].

The Cauchy (α = 1) version of the pertinent spectral problem, under
exterior Dirichlet boundary data, has been briefly summarized in Section 3,
with the notational replacement of Ω by D.

Right at this point, we emphasize that the singular α-harmonic functions
(56) and (60) formally correspond to the eigenvalue zero of the fractional
Laplacian, while considered in L(Ω), e.g. not in L2(Ω). Note that to employ
the framework of Section 2, we were forced to introduce the square root of
the arcsine pdf (57), to deal with the L2(Ω) (actually L2(D)) setting.

Our further analysis pertains to the Cauchy case. For a while, we dis-
regard the domain issues, i.e. L versus L2, and/or involved Sobolev spaces
[53], and formally address the existence of solutions of the fractional equa-
tion |∆|1/2ρ∗(x) = 0 in D = (−1, 1), with exterior Dirichlet boundary data
in R \ D, cf. (59). We know that not only positive solutions are admitted
[61], and that arbitrary constants do this job as well.
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We are interested in an explicit justification of the existence of positive
solutions with the blow-up at the boundaries ±1 of Dc = [−1, 1]. Below, we
shall analytically demonstrate that the arcsine pdf (56) is an example of a
fully-fledged singular α = 1-harmonic function in D = (−1, 1) and indicate:
(i) an exterior to (−1, 1) input to the solution, and (ii) the role (acceptance
or abandonment) of the “continuity up to the boundary” condition (64).

We depart form the integral definition (4) of the fractional operator
|∆|1/2, where A1 = 1/π. Let us tentatively consider the action of |∆|1/2
on C∞0 (R) functions ψ(x) supported in D = (−1, 1), i.e. such that ψ(x) = 0
for all x ∈ R \D. We have ((p.v.) means Cauchy principal value)

|∆|1/2D ψ(x) = − 1

π
(p.v.)

∫
R

ψ(x+ y)− ψ(x)

y2
dy . (65)

Given x ∈ (−1, 1), we realize that ψ(x + y) does not vanish identically if
x + y ∈ (−1, 1), i.e. for −1 − x < y < 1 − x. Hence, integration (65) can
be simplified by decomposing R into (−∞ < y ≤ −1− x) ∪ (−1− x < y <
1− x)∪ (1− x ≤ y <∞). Therefore, we end up with a restricted fractional
operator

|∆|1/2D ψ = − 1

π

−ψ(x)

 −1−x∫
−∞

dy

y2
+

∞∫
1−x

dy

y2

+

1−x∫
−1−x

ψ(x+y)− ψ(x)

y2
dy


=

2

π

ψ(x)

1− x2
+

1

π

1−x∫
−1−x

ψ(x)− ψ(x+ y)

y2
dy , (66)

where the second integral should be understood as the Cauchy principal
value with respect to 0, i.e.

∫ 1−x
−1−x = limε→0

[∫ −ε
−1−x +

∫ 1−x
−ε

]
.

We point out that the first term on the right-hand side of Eq. (66)
includes an outcome of the integration over R \D, i.e. an input exterior to
D = (−1, 1) proper. It is instructive to notice that the change the integration
variable y = t− x in the second term of Eq. (66) gives rise to

|∆|1/2D ψ(x) =
2

π

ψ(x)

1− x2
+

1

π

1∫
−1

ψ(x)− ψ(t)

(t− x)2
dt , (67)

where the R \ D and D contributions are now clearly isolated, albeit the
ultimate overall x-dependence refers to x ∈ D only. The Cauchy principal
value of the integral in Eq. (67) is no longer evaluated with respect to 0, but
with respect to x.
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The integral expression in Eq. (67) which is restricted to t ∈ (−1, 1),
and x ∈ (−1, 1), is the Cauchy version of the so-called regional fractional
Laplacian in Dc = [−1, 1] [15, 46, 53, 56].

Our further discussion will be based on decomposition (66), which has
been used in Ref. [46], for the computer-assisted shape analysis of nonlo-
cally induced fractional (Cauchy) bound states in the infnite well. See, e.g.
Section 3 of the present paper, and the approximate formula (49) for the
ground-state function, which reproduces the ∼

√
1− x2 decay to 0, while

approaching the boundary points ±1 of the interval (−1, 1). This is in con-
formity with condition (63), and at variance with the boundary blow-up
property of (56) and (60).

5.5. Explicit evaluation of the singular (α = 1)-harmonic function in (−1,1)

In Refs. [46, 47], we have assumed that any even eigenfunction of the
Dirichlet fractional Laplacian |∆|1/2D (given by Eq. (66), restricted by the
exterior Dirichlet boundary data to D, and additionally by the local bound-
ary condition (63)) should be sought for by analyzing convergence features
of consecutive polynomial approximations of 2N,N →∞ degree in terms of
power series expansion (here given up to the normalization coefficient)

ψ(x) =
√

1− x2
N∑
k=0

α2nx
2n , α0 = 1 . (68)

In Ref. [46], our major task has been to determine expansion coefficients
α2n, for sufficiently long series expansion (we have computationally reached
2N = 500).

Given definition (66) of |∆|1/2D restricted to ψs with support in D, let us
formally proceed with its integral part, here denoted as

IDψ(x) =
1

π

−x+1∫
−x−1

ψ(x)− ψ(x+ z)

z2
dz . (69)

Let us consider the (formal) action of ID upon functions of the form of
ψ(x) = x2n

√
1− x2. We get (compare e.g. [46])

IDx
2n
√

1− x2 = − 2

π

x2n
√

1− x2
1− x2

+
(
c2n + 3c2n−2x

2 + 5c2n−4 + . . .+ (2n+1)c0x
2n
)
, (70)
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where c2k are expansion coefficients of the Taylor series for
√

1− x2√
1− x2 =

∞∑
k=0

c2kx
2k =

∞∑
k=0

(2k)!

(1− 2k)(k!)24k
x2k . (71)

We note that

1√
1− x2

=
(
1 + x2 + x4 + . . .

)√
1− x2 , (72)

where we recognize a factor which is a sum of a geometric progression with
the ratio x2, |x| < 1. This allows to evaluate term after term (presuming
suitable convergence properties of the series) the expression

|∆|1/2D

1√
1− x2

=
∞∑
n=0

|∆|1/2D

[
x2n
√

1− x2
]

=

∞∑
n=0

c2n + 3x2
∞∑
n=0

c2n + 5x4
∞∑
n=0

c2n + · · · = 0 . (73)

Here, we note that the function
√

1− x2 is defined on [−1, 1] and takes the
value 0 at x = ±1. Accordingly,

∑∞
k=0 c2k = 0 and, therefore, there holds

the expected result |∆|1/2D (1− x2)−1/2 = 0.
We emphasize that in view of (70), the exterior (by origin) term in (66)

and (67) is cancelled by the intrinsic (to D) counterterm −2ψ(x)/π(1−x2).

Remark 9. We point out that potentially troublesome issues of the inter-
change of infnite summations and integrals have been bypassed. To facili-
tate the passage from (70) to (73), let us indicate that: |∆|1/2D

√
1− x2 = 1,

|∆|1/2D x2
√

1− x2 = 3x2 − 1/2, |∆|1/2D x4
√

1− x2 = 5x4 − 3x2/2 − 1/8,
|∆|1/2D x6

√
1− x2 = 7x6 − 5x4/2 − 3x2/8 − 1/16 and so on. Summation

of these expressions, paralleled by collecting together terms standing at con-
secutive powers of x2n, n = 0, 1, 2, . . . , gives rise to geometric progressions:
x0(1−1/2,−1/8−1/16−. . . ), 3x2(1−1/2−1/8−. . . ), 5x4(1−1/2−1/8−. . . )
etc.

6. Conclusions: Path-wise justification attempts for the
relaxation process in the “confined domain”

As a brief introduction to subsequent comments, we list simple (Monte
Carlo) updating scenarios, which are supposed to mimic the random path
reflection in the two barrier problem (e.g. interval (−L,L) or the infinite
well set on this interval) [5].
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(I) Reversal (wrapping): A trajectory that ends at x < −L is wrapped
around the left boundary: x→ −L+ |x+ L|.

(II) Stopping: A trajectory that aims to cross −L is paused (stopped)
at −L + ε, where ε > 0 is fixed and small. The point −L + ε is
a starting point for the next jump (next in terms of the simulation
procedure/time). The barrier is inaccessible to the trajectory.

(III) Superharmonic confinement: The Langevin-type equation with a su-
perharmonic force term −∇U = −x2m−1/L2m, 2m � 2 is used to
simulate the Lévy motion.

A particular property of confined Lévy flights, we have discussed through-
out the present paper, is the accumulation (ultimately interpreted as a blow-
up) of “steady state” (or equilibrium) probability density functions (and
thence probability) near the boundaries of the confining potential well, cf.
Figs. 3 to 7, and (56) and (60). Such phenomena have been reported in com-
puter studies of anomalous diffusions and specifically the fractional Brownian
motion [68–72]. In the computation, traditional reflection-from-the-barrier
path-wise recipes (wrapping scenario) were adopted, in conjunction with
steep potential well Langevin models.

Leaving aside the case of the fractional Brownian motion and coming
back to the Lévy flights issue, we point out that the path-wise search for
a consistent implementation of the reflecting boundary data and the re-
flection event has been carried out in Refs. [4, 5, 49]. Probability density
functions were obtained by means of numerical path-wise (Monte Carlo) sim-
ulations based on the Langevin-type equation with the fractional (α-stable)
“white noise” term. In fact, stochastic differential equations were numeri-
cally integrated by applying the Euler–Maruyama–Ito method [73]. Large
numbers of sample trajectories of involved random variables X(t) were gen-
erated, which enabled an approximate reconstruction of the pdf ρ(x, t) at
a chosen (large) simulation time instant t. A stabilization of outcomes (pdf’s
shapes) for time instants t large enough has been interpreted as a symptom
of stationarity of the asymptotic stationary pdfs ρ∗(x).

In particular, for the superharmonic confinement (case (III)) of α-stable
Lévy flights, the accumulation near the endpoints of the interval [1, 1] has
been convincingly confirmed. The interpretation, Ref. [5], of the binding
potential U(x) = x2m/2m, m � 1 has been literally coined as that of
a model of the reflecting boundary. Exemplary simulations were executed
for 2m = 800. (Other models of would-be reflecting boundaries are present
in the literature as well, see e.g. [72].)
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On the available graphical resolution level, a high approximation accu-
racy of singular α-stable harmonic functions has been achieved by means
of the stopping scenario (II) for random motions between two impenetrable
barriers [4, 5].

A serious conceptual obstacle should be mentioned. Namely, if for Lévy
flights in the infinite well we adopt the wrapping (reflection) scenario (I) at
the barriers, then irrespective of the stability index 0 < α < 2, the estimated
(asymptotic) trajectory statistics corresponds to the uniform distribution
1/2 in (−1, 1), cf. [5], see e.g. also [15, 18].

On the other hand, none of the adopted path-wise reflection scenarios
has been ever tested (as useful or useless) in the mathematical research on
reflected Lévy flights, developed so far [50–56]. Interestingly, main efforts
were concentrated on the formulation of the fractional (basically non-local)
analogue of the Neumann condition (as opposed to the exterior Dirichlet
one). However, so constrained jump-type process appear not to be confined
in the interior of the well, but, in principle, may reach exterior (beyond the
barrier) locations. The “reflection” is mimicked by the instantaneous return,
i.e. the jump back to the well interior, with a prescribed jump intensity
[51, 53]. This is plainly inconsistent with the barrier “impenetrability” notion
of Ref. [13].

In the mathematically-oriented literature, the reflected Lévy process is
often invoked on a fairly abstract level of analysis, with no reference to ex-
plicit path-wise motion scenarios. With reference to the semigroup lore,
regional fractional Laplacians have been deduced as legitimate generator of
the reflecting Lévy process in the bounded domain [54, 55] and [15, 56]. In
principle (although it is not a must), the boundaries, e.g. the interval end-
points may be reached by the reflecting process, but for a suitable subclass
of processes, the barrier may happen to be inaccessible. Apart from the
wealth of sophisticated arguments, no detailed path-wise analysis, nor an-
alytic (spectral) properties of the pertinent reflected stochastic process are
available in the literature.

Let us briefly summarize our findings: (i) “steady state” pdfs (56) and
(60) cannot be justifiably associated with the concept of reflected Lévy
flights, whose mathematically rigorous theory is in existence [50–56]; (ii)
at variance with superharmonically bound Lévy flights, no relaxation pro-
cess has been ever found, with the “steady state” (56) (or (60), in general)
in its large time asymptotic; told otherwise, no thermalization process is
known that would relax to a singular α-harmonic function. These topics
need a deeper analysis.

P.G. would like to express his gratitude to Professors B. Dybiec and
J. Lőrinczi for explanatory correspondence on their own work.
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