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A simple model of alpha decay with the Dirac delta potential is studied.
The model leads to breakdown of the exponential decay and to the power
law behavior at asymptotic times. Time dependence of the survival proba-
bility of the particle in the potential well is analyzed numerically with two
methods: integration of the Green’s function representation and numerical
solution of the time-dependent Schrödinger equation. The numerical re-
sults confirm power law with exponent n = 3 after the turnover into the
non-exponential decay regime. Moreover, oscillations of non-escape prob-
ability are observed in the intermediate stage of the process. The simple
alpha-decay model is compared to the results of the Rothe–Hintschich–
Monkman experiment which was the first experimental proof of violation
of the exponential law.
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1. Introduction

The exponential law in alpha decay was first explained by Gamow in
1928 [1]. In his reasoning, eigenfunctions with complex eigenenegies are
present, which initially caused some concerns about validity of this approach.
Nevertheless, this method leads to correct predictions about the exponen-
tial time dependence and the Geiger–Nutall law. Although the exponential
decay law provides a very good description for quasi-stationary states, it is
only an approximate solution. It was observed by Khalfin in 1958 [2] that
the exponential behavior cannot hold for all times t ∈ (0,∞). In partic-
ular, for asymptotic times t → ∞, the survival probability S(t) of a state
decreases slower than any exponential function [2–4]

S(t) ≥ A e−bt
q

(1)

if the energy distribution density is bounded from below or above (A > 0,
b > 0 and 0 < q < 1). The first detailed description of the delta-barrier po-
tential discussed in this paper was done by Winter [5] in 1961. He shows that

(2015)
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non-escape probability in such a system decreases exponentially with time
first, then oscillations of probability occur and, finally, non-escape probabil-
ity behaves like a power of time.

It is important to distinguish between survival and non-escape probabil-
ity. The non-escape probability P (t) of a state initially confined in a poten-
tial well (ψ(x, 0) = 0 for x > R) is the probability that a particle remains
in the well at a time t

P (t) =

R∫
0

dx |ψ(x, t)|2 . (2)

The survival probability is the probability that the state remains the same

S(t) = | 〈ψ(t)|ψ(0)〉 |2 =

∣∣∣∣∣∣
R∫
0

dx ψ(x, t)∗ψ(x, 0)

∣∣∣∣∣∣
2

. (3)

In particular, one can think of a situation such that the state evolves through
different, even orthogonal states, but all these states are confined in the well.
Then, S(t) < 1 while P (t) = 1. Thus, survival and non-escape probabilities
are related, yet distinct quantities.

Several models of systems that exhibit violation of the exponential law
were studied (see e.g. [6–9]). Among the physical phenomena described
by these models, one can find: spontaneous decay in two-level systems,
alpha-decay, single photon ionization of atoms, etc. For a certain model of
a phenomenon, it can be shown that both, the non-escape and the survival
probability obey power law for sufficiently large times [2, 3, 5–7, 10–14]

S(t), P (t) ∼

{
e−t/τ ; for t . tbreakdown ,

t−n; for t & tbreakdown .
(4)

The exponent n depends on the phenomenon and the model. Typically, it
takes values between 1 and 4.

It is shown, e.g. in [13], that both P (t) and S(t) decrease exponentially
first and behave like a power of time for large times. Therefore, for the
purpose of understanding the origin of exponential decay and deviation from
exponential behavior, we will focus on survival probability S(t), because it
is simpler. Let us consider the time evolution of a state [2–4, 15]

|ψ(t)〉 =
∞∫
−∞

dE e−iEt/}c(E) |E〉 , (5)
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where |E〉 are eigenstates of the Hamiltonian. The amplitude that the initial
state has not decayed at time t is

a(t) = 〈ψ(0)|ψ(t)〉 =
∞∫
−∞

dE e−iEt/}ω(E) . (6)

Here, ω(E) = c∗(E)c(E) is the energy distribution. If the energy density is
modeled by the Breit–Wigner distribution

ω(E) =
1

2π

Γ

(E − E0)2 + (Γ/2)2
, (7)

the amplitude equals

a(t) = exp

(
−−iE0t

}
− Γ |t|

2}

)
. (8)

Thus, in this case, the time dependence of the survival probability is given by
an exponential function. However, the energy density must be bounded from
below in order for the ground state to exist. Distribution (7) is therefore
approximate, some corrections in ω(E)must be included, and new terms will
also appear in the formulas for the amplitude and the probability. These
terms decrease slower than the exponential function and become dominant
for large times [2].

Although the power-like evolution is expected at large times, its experi-
mental observation is not trivial. If the exponential stage of a process lasts
20 or more lifetimes, the non-escape probability may be too low to be mea-
sured. This would require accuracy of the order of e−20 ≈ 10−9 or better,
but no high-energy resonance is measured with such a precision. Therefore,
discovery of decay processes which cease to follow the exponential behavior
sufficiently early is a major theoretical and experimental challenge. The first
experimental proof of the turnover into the non-exponential decay regime,
based on the measurements of the luminescence decays of dissolved organic
materials, was found only quite recently, namely in 2006 [12]. Another proof
of non-exponential behavior at large times was found in the scattering pro-
cess α+α→ 8Be(2+)→ α+α [16]. It is somehow indirect in a sense that the
energy density was measured, the difference from the Breit–Wigner distri-
bution was observed, but the survival probability was obtained from these
calculations.

The paper is organized as follows. Section 2 provides an analysis of the
simple, one-dimensional model of alpha decay from [6]. Section 3 includes
numerical results for this model. In particular, behavior in exponential and
power law regimes, and in the intermediate stage between them is compared
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with our predictions. For the first time, calculations for this theoretical
model are compared to the results of the Rothe–Hintschich–Monkman ex-
periment [12]. Quite satisfactory agreement is found. The final remarks and
discussion are presented in Section 4.

2. Model

The alpha-decay model studied in this paper assumes a potential

V (x) =

{
λ}2
2maδ(x− a) for x > 0 ,

+∞ for x ≤ 0 .
(9)

Analysis of this potential can be found in [5, 6, 10, 11]. Following Gamow’s
reasoning [1], one could use an outgoing wave Ansatz in the region outside
the potential well, ϕ2(x) = Beikx for x > a. Such an assumption leads
to a discrete spectrum of complex eigenenergies En and the eigenfunctions
which decay exponentially in time. The most troublesome corollary of this
approach is the fact that the eigenfuctions diverge when x → ∞ (because
Im kn < 0), so are not normalizable.

The way out of this problem is to treat the process as a scattering one,
i.e. an incoming wave must be included in the solution for the outer region,
ϕ2(x) = e−ikx +Beikx for x > a. It can be easily seen that, taking into ac-
count the boundary conditions, the most general form of the solution inside
the potential well is ϕ1(x) = A sin kx (0 < x < a). From the matching con-
ditions at x = a, one finds that the spectrum of eigenenergies is continuous
and real. The coefficients A = A(k) and B = B(k) are

A(k) = − 2ika

ka+ λeika sin ka
, (10)

B(k) = −ka+ λe−ika sin ka

ka+ λeika sin ka
. (11)

Under such a choice of coefficients, the basis is normalized as [11]

∞∫
x=0

ϕk(x)ϕ
∗
k′(x) dx = 2πδ(k − k′) .

With the aid of the Green’s function formalism, one can find the time-depen-
dent wavefunction inside the well [6]

ψ(x, t) =
1

2π

∞∫
0

e−
i}
2m

k2tφ(k)|A(k)|2 sin kx dk , (12)
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where

φ(k) ≡
a∫

0

ψ(x′, 0) sin kx′ dx′ (13)

depends on the initial wavefunction. When λ � 1, the poles of analytic
continuation of |A(k)|2

W (k) = −A(−k)A(k) = 4k2a2

(ka)2 + λka sin(2ka) + λ2 sin2(ka)
(14)

are very close to the real axis. Thus, the leading contribution to integral (12)
comes from points on the real axis that lie in the vicinity of poles of W (k).
To proceed, one would like to expose the role of poles and get rid of the
oscillatory factor e−(i}/2m)k2t in Eq. (12). This can be achieved by shifting
the integration contour. After rotation in the clockwise sense by 45◦, one
obtains

ψ(x, t) = e−iπ/4
∞∫
0

e−
}k2
2m

tf
(
e−iπ/4k, x

)
dk +

∞∑
n=1

C(kn, x) e
− i}

2m
k2nt , (15)

where
f(k, x) ≡ 1

2π
φ(k)W (k) sin kx . (16)

The first term in Eq. (15) is the background integral and −C(kn, x)/2πi are
residues of f(k, x) at the poles k = kn. In the above formula, the first
term has power behavior at large times, while the second one corresponds
to the exponential decays. When the background integral in Eq. (15) can
be neglected, the non-escape probability is roughly equal to

Ppoles(t) ≈
∞∑
n=1

cne
−Γnt/} , (17)

where

cn =

a∫
0

|C(kn, x)|2dx (18)

and
Γn = −Im

(
}2k2n/m

)
. (19)

However, for sufficiently large times, the contribution of the background
integral to the non-escape probability follows the power law

Pbackground(t) ∼
m3a6

λ4t3
, (20)
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and eventually dominates over the pole contribution. The time when it
happens, i.e. the time of the breakdown of the exponential decay, can be
estimated to be tbreakdown ∼ 10(}/Γ1) lnλ [6].

The problem of a particle in potential (9) is related to the case of an
infinite potential well. When λ� 1, the two problems are almost the same
and, as can be seen from Eq. (14), the poles correspond to the momenta
which satisfy sin(kna) ≈ 0. This is the well-known condition in the case of
the infinite well. Thus, there is a correspondence between the nth excited
state

ψ(n)(x) = N sin
(nπx

a

)
(21)

and the nth pole (or the nth contributions in the sums in Eqs. (15) and (17)).
This relation should also hold approximately for finite λs. In particular, if
the initial wavefunction is chosen to be ψ(x, 0) = ψ(n)(x), cn is expected
to be the largest coefficient in sum (17). The values of the weights cn for
ψ(n)(x) taken as the initial condition, with n = 1, 2, 3, 4, are presented in
Table I. To obtain these numbers, one needs to calculate residues of f(k, x),
Eq. (16) and use Eq. (18).

TABLE I

Dependence of weights cn on the number n of the excited state ψ(n) (Eq. (21))
used as the initial condition (λ = 8).

n c1 c2 c3 c4 c5

1 1.012 0.022 0.005 0.002 0.001
2 0.016 1.059 0.060 0.013 0.006
3 0.005 0.036 1.148 0.106 0.023
4 0.003 0.013 0.057 1.270 0.157

All above statements will hold in 3 dimensions, for ` = 0. This is because
the radial equation for rR(r) (R(r) — radial part of the wavefunction),
when ` = 0, is the same as the time-independent Schrödinger equation in
1 dimension, rR(r) → 0 at r = 0 [17], the matching conditions are clearly
the same and, when calculating the probability, the extra r−2 factor cancels
out with r2 from the Jacobian.

3. Consequences of the model

3.1. Numerical results

The wavefunction is calculated with two methods. The first one is a
direct numerical solution of the time-dependent Schrödinger equation. In
this approach, a Gaussian potential barrier of width ∆ centered around
x = a is used instead of a Dirac delta potential to have a smooth function.
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Then, the results are extrapolated to ∆→ 0. Another way to obtain ψ(x, t)
is to use the Green’s function representation of the wavefunction, Eq. (15).
The two methods are compared for times of the order of 1–2 lifetimes. They
provide compatible results, e.g. the difference between their predictions for
|ψ(0.6a, 0.4τ0)|2 is about 0.1% (when λ = 8). Here, τ0 ≡ m(λa)2/(2π3}) is
a characteristic time unit of the process. For larger times, in particular when
the breakdown of the exponential decay occurs, only the Green’s function
approach is used.

It is interesting that direct numerical solution can be done for times ex-
ceeding 30 half-lives [18]. Yet, in this paper, we restrict to only 1–2 lifetimes,
since the main purpose of the direct simulation is to compare its results with
the Green’s function method.

To find the time dependence of the non-escape probability, the wave-
function is calculated from Eq. (15) at 100 equally spaced points from x = 0
to x = a, and then the non-escape probability, P (t) =

∫ a
0 |ψ(x, t)|

2 dx is ob-
tained by the trapezoid method (to simplify the calculations). In this part,
we assume the initial wavefunction is ψ(x, 0) =

√
2/a sin(πx/a).

The time dependence of the non-escape probability is presented in Fig. 1.
The results of the fit of the exponential function to the early time behavior
and the power function for large times are shown in Fig. 2 for λ = 1. The
time axis in Fig. 1 is chosen such that the initial slope of all curves is −1,
i.e. the time is plotted in units of τ , where τ is the lifetime of a decaying
state corresponding to a given λ. Values of τ = τ(λ) are found from the fit.
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Fig. 1. Logarithmic plot of the time dependence of the non-escape probability for
λ = 0.3, 0.65, 1, 3.6. The horizontal axis is chosen such that the initial slope of
all curves is −1, i.e. the time is plotted in units of τ , where τ is the lifetime of a
decaying state corresponding to a given λ.
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Fig. 2. Time dependence of the non-escape probability. Very close to t = 0, P (t)
deviates from exponential function (inset in Fig. 2 (a)), then its time dependence
is exponential (Fig. 2 (a)) and, after a single oscillation, it follows power law at
large times (Fig. 2 (b)). Exponential and power functions are fitted in appropriate
regimes (solid lines).

Both the exponential and power law regimes can be easily observed, so
the theoretical predictions from [6] are confirmed in these numerical calcu-
lations. The exponent n of the power law P (t) = Bt−n agrees with the
theoretical value n = 3 within uncertainty of the fit, as shown in Table II.
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TABLE II

Exponent fitted in the power law regime of time dependence of the non-escape
probability for various λ.

λ n

0.3 3.010± 0.017
0.65 2.996± 0.020
1 2.992± 0.012
3.6 3.000± 0.040

Moreower, for very small times, the observed behavior is not exponential,
but initially Ṗ (0) = 0 (see the inset in Fig. 2 (a)). The phenomenon that the
decay of a quasi-stationary state is not exponential in this regime is known
from the theory [3, 6, 19] and was seen in experiment for transition between
two 9Be+ ground-state hyperfine levels [20] and for quantum tunneling of
ultra-cold sodium atoms trapped in an optical lattice [21]. This effect is
related to the quantum Zeno paradox [19, 22].

Another effect, which was noticed, is the presence of a single (λ = 1)
or many (λ = 3.6) oscillations of the non-escape probability. They occur in
the intermediate stage of the process, between the exponential and power
law regimes. Similar oscillations were also observed in [3, 5, 10, 11, 13, 23].
In this region, the survival probability is not a monotonic function of time.
Such behavior is caused by interference between the background integral
part of Eq. (15) and the pole term when they are of comparable order. If
one splits the wavefunction as in Eq. (15)

ψ(x, t) = ψbg(x, t) + ψpoles(x, t) , (22)

not only the total non-escape probability can be calculated, but also quan-
tities

Pbg(t) =

a∫
0

|ψbg(x, t)|2 dx , (23)

Ppoles(t) =

a∫
0

|ψpoles(x, t)|2 dx , (24)

Pinterf(t) =

a∫
0

(
ψ∗bg(x, t)ψpoles(x, t) + h.c.

)
dx . (25)

They represent the separate contributions of the background, poles and in-
terference term to the total non-escape probability. The interference term
has an unexpected feature — it changes its sign abruptly. This explains
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better the origin of the oscillations. For early times, the pole contribution
dominates, and for asymptotic times, the contribution from the background
integral is leading. Only for intermediate times Pinterf(t) is comparable to
the rest of the non-escape probability Ppoles(t) + Pbg(t). When it changes
its sign in this intermediate stage, the derivative of P (t) rapidly decreases
(when Pinterf(t) changes the sign from plus to minus) or increases (the oppo-
site case). These abrupt changes of Pinterf(t) cause the oscillations. Briefly,
the reason for the oscillations is constructive and destructive interference
between the pole and background contributions. Another, probably more
physical, way of understanding these oscillations is interference of the out-
going and incoming waves included in our solution.

An important question, especially from the point of view of experimental
observation of the breakdown of exponential decays of resonances, is what
are the parameters for which turnover to the power law regime occurs at the
earliest time. A good and general parameter for this purpose is a Q-value
of a resonance

Q =
εn
Γn

= − Re En
2 Im En

, (26)

where εn = Re En is the energy of a resonance and Γn = −2 Im En — its
width, i.e. En = εn − iΓn/2. Time of the breakdown of the exponential
behavior (in units of the lifetime) is proportional to the logarithm of Q [12],
thus the lower the Q-value, the earlier it happens. On the other hand, if
the Q-value is too small, the resonance is not well-formed. Thus, to have
a well-formed resonance and to observe breakdown of the exponential law
before there is a very low probability that the state has not decayed yet,
a compromise must be made for the optimal choice of Q. Another way to
check whether a resonance is still well-formed is to calculate the lifetime in
two ways: from the fit (as in Fig. 2 (a)) or by finding the first pole of A(k),
Eq. (10) and calculating the corresponding lifetime

τ1 =
}
Γ1

= − m

Im
(
}k21
) . (27)

If the resonance is well-formed and there is a single dominant pole, the two
methods should provide similar results.

Analysis of quality of resonances for small λ is shown in Table III. From
these data, one can infer that the optimal λ is roughly about 3.6. Certainly,
this is a somehow subjective choice — the main criteria used for this decision
are following. First, for λ ' 3.6, the exponential function becomes a decent
approximation for P (t) for early times, which can be seen e.g. from the fact
that lifetimes found from the fit and from the poles are in a good agreement.
Second, one needs Q as low as possible to observe breakdown of exponential
behavior for early times.
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TABLE III

Q-values, lifetimes from the fit, lifetimes found from the first poles, and the relative
difference between these two results for various λ.

λ Q τ/τ0 (fit) τ1/τ0 (poles) [%]

0.3 0.208 204 119 53
0.65 0.454 47.0 33.9 32
1 0.667 20.8 17.6 17
3.6 2.48 3.55 3.48 2.0
5 3.79 2.64 2.57 2.7

For this parameter, deviations from the exponential behavior start when
the signal is P (t)/P (0) ∼ 10−5 of the initial value and the system enters the
power law regime for P (t)/P (0) ∼ 10−8 (see Fig. 1).

3.2. Comparison with experiment

The main problem with observation of non-exponential regime in experi-
ment is the fact that, in general, it occurs after many lifetimes, so the signal
is too weak to be detected. Since the time of breakdown of exponential decay
is lower for lower Q-values, a process with a broad energy spectrum is needed
rather than a narrow, well-formed resonance. This fact made searches for
non-exponential decays in nuclear and particle physics inefficient. Another
physical system had to be used and the first successful experimental ob-
servation of violation of the exponential decay law was made by Rothe,
Hintschich and Monkman [12] in 2005. It was found in atomic data, namely
in measurements of the luminescent decays of dissolved organic materials.
Both the impact of the solvent environment and the fact that large, organic
molecules were used, leads to broadening of the energy spectrum. This effect
is sufficient to observe the power law behavior all the way up to about 20
lifetimes (e.g. 17 for Rhodamine 6G and 11 for polyfluorene).

Their results can be compared to the predictions of the simple model
studied here. The experimental data for Rhodamine 6G from [12] are com-
pared with the curves from numerical calculations for the alpha-decay model
in Fig. 3. In this plot, time is plotted in units of the lifetime τ of a decaying
state. To translate data of [12] to Fig. 3, we fit exponential function in the
exponential regime of the data and then use values of non-escape probability
taken directly from Fig. 2 of [12] to plot P (t/τ). The value of λ, that fits
the experimental results best, is

λ ≈ 3.6 . (28)
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Fig. 3. Comparison of the theoretical curves with the experimental data. The
curves correspond to the time dependence of the non-escape probability calculated
numerically for the alpha-decay model with a potential strength λ = 3.2, 3.6, 4.
The points are experimental results for Rhodamine 6G [12].

For λ = 3.6, the lifetime found by fitting the exponential function to the
theoretical curve is (see Table III) τth ≈ 3.55 τ0, where τ0 = m(λa)2/(2π3}).
The experimental value found in [12] reads τexp = 3.9 ns. Equating τth =
τexp, one obtains after simple transformations and substitution of the nu-
merical values
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ma2 =
2π3}
λ2

τexp
τth/τ0

≈ 1.2× 105 mpa
2
0 , (29)

where mp is the mass of proton and a0 is the Bohr radius. Large value
of this constant, in these units, originates from the fact that the organic
molecules used in the experiment are large and dissolved in the solvent, so
both the mass and length scales are much larger than mp and a0. There
is actually a very simple way to obtain this number: the molecular mass of
Rhodamine 6G (C28H31N2O3Cl) is A ≈ 479, the sum of atomic numbers of
its constituents is Z = 254 and AZ = 479× 254 ≈ 1.2× 105. Such a simple
relation does not hold for other substances from the experiment, though.
Still, even in those other cases AZ provides a reasonable estimate of the
order of magnitude.

As can be seen in Fig. 3 (b), although the time dependence in the non-
exponential region is well-described by a power function P (t) = Bt−n, its
exponent n is a bit larger for the experimental data than for the theoreti-
cal curves. The exponents of the power law found for various materials in
the Rothe–Hintschich–Monkman experiment vary from 2 to 4 [12], which
is not far from n = 3 predicted in the alpha-decay model (especially for
Coumarin 450, n ≈ 2.9), but it also indicates deviations from this very
simple model. The physics of dissolved organic materials is certainly more
complicated than the simple potential description, but apparently (9) pro-
vides a satisfactory first approximation.

There are also other models for decaying systems, e.g. the Onley–Kumar
model [23], for which the state decays as t−4. Therefore, while the Dirac delta
potential provides a decent description for luminescence decay of Coumarin
450 or Rhodamine 6G, and important features of the theoretical model and
of the experiment are in a satisfactory agreement, there exist more accurate
models for other substances studied in [12].

4. Conclusions

In the present paper, the simple model of breakdown of exponential de-
cay law was studied and compared for the first time with the experiment.
Surprisingly, the model reproduces rather well the main features of the data.
In this approximation, breakdown of the initial exponential time dependence
occurs, and at large times, the process follows power behavior. These pre-
dictions, which originate from [6], were tested numerically to check analytic
estimates and examine the low-λ behavior. The exponential and power law
regimes were directly observed. The power law exponent was found to be
n = 3 within uncertainty of the fit, as predicted. The breakdown of the ex-
ponential law was seen to occur at earlier times for low λ (low Q-value). On



2028 A. Wyrzykowski

the other hand, high Q-values mean better formation of resonances, so from
experimental point of view, a compromise must be made. Such a balanced
value is about λ ≈ 3.6 (Q ≈ 2.5). Moreover, oscillation of the non-escape
probability in the intermediate stage of the process was observed. It origi-
nates from the interference between incoming and outgoing waves. However,
the effect is likely to be model-dependent, in particular it is not observed
in [12].

The results of the model studied here were compared to the experiment
by Rothe, Hintschich and Monkman, which is the first experimental obser-
vation of turnover from the exponential time dependence to the power one.
The simple model with a Dirac delta barrier successfully describes the ex-
periment in both the exponential and power law regimes. To our knowledge,
such a quantitative comparison between theory and experiment was never
attempted before. An intriguing scaling in terms of the molecular mass and
the atomic number was also found. Although physics of dissolved organic
materials is more complex than this simple model and some deviations are
observed, the one-dimensional model (9) provides a good, effective descrip-
tion.
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