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MASSIVE CHARGED PARTICLE WITH A UNIFORM

MAGNETIC FIELD IN SOM–RAYCHAUDHURI
SPACE-TIME WITH A COSMIC STRING
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We study the relativistic quantum dynamics of spin-0 massive charged
particle in a Gödel-type space-time with electromagnetic interactions. We
solve the Klein–Gordon equation subject to a uniform magnetic field in
the Som–Raychaudhuri space-time with a cosmic string. In addition, we
include a magnetic quantum flux into the relativistic quantum system, and
obtain the energy eigenvalues and analyze an analogue of the Aharonov–
Bohm (AB) effect.
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1. Introduction

The relativistic quantum dynamics of spin-0 and spin-1
2 particles have

been investigated by several researchers. Spin-0 particles such as bosons,
mesons are described by the Klein–Gordon equation and spin-1

2 particles
such as fermions by the Dirac equation. The exact solutions of the wave
equations are very important since they contain all the necessary informa-
tion regarding the quantum system under consideration. However, analyti-
cal solutions are possible only in few cases, such as the hydrogen atom and
harmonic oscillator [1, 2]. In recent years, many studies have been car-
ried out to explore the relativistic energy eigenvalues and the corresponding
wave-functions of these wave equations with or without external fields. The
relativistic wave equations have been of current research interest for theo-
retical physicists [3, 4] including nuclear and high-energy physics [5, 6]. The
relativistic quantum dynamics of spin-0 particles in the presence of external
fields have been of great interest. The physical properties of the systems
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are accessed by the solution of the Klein–Gordon equation with electromag-
netic interactions [6, 7]. The electromagnetic interactions are introduced
into the Klein–Gordon equation through the so-called minimal substitution,
pµ → pµ− eAµ, where e is the charge and Aµ is the four-vector potential of
the electromagnetic field.

The relativistic quantum dynamics of spin-0 massive charged particles
of mass M is described by the KG equation [8][

1√
−g

Dµ

(√
−g gµν Dν

)
− ξ R−M2

]
Ψ = 0 , (1)

where Dµ = ∂µ− i eAµ is the minimal substitution with e being the electric
charge, Aµ is the potential of electromagnetic field, R is the scalar curvature,
and ξ is the non-minimal coupling constant.

In recent years, several researchers have investigated the relativistic quan-
tum dynamics of scalar particles in the background of the Gödel-type geome-
tries. For example, the relativistic quantum dynamics of scalar particles [9],
the Klein–Gordon oscillator with an external fields [10], scalar particles with
a cosmic string [11], linear confinement of a scalar particle [12] (see also [13]),
ground state of a bosonic massive charged particle in the presence of external
fields in [14] (see also [15]). Furthermore, the relativistic quantum dynam-
ics of a scalar particle in the Som–Raychaudhuri metric was investigated
in [16, 17] and the similarity of the energy eigenvalues with the Landau
levels in flat space was observed [1, 18]. The behavior of scalar particles
with the Yukawa-like confining potential in the Som–Raychaudhuri space-
time in the presence of topological defects was investigated in [19]. Other
works are the scalar field subject to a Cornell potential [20], survey on the
Klein–Gordon equation [21], bound states solution of spin-0 massive in a
Gödel-type space-time with Coulomb potential [22]. In addition, spin-half
particles have been studied in the Gödel-type space-time [9], in the Som–
Raychaudhuri space-time with torsion and cosmic string [23], with topologi-
cal defect [24], the Fermi field and Dirac oscillator in the Som–Raychaudhuri
space-time [25], the Dirac Fermi field with scalar and vector potentials in
the Som–Raychaudhuri space-time [26].

Our main motivation is to study the relativistic quantum dynamics of
spin-0 scalar charged particles in the presence of an external fields includ-
ing magnetic quantum flux in the Som–Raychaudhuri space-time with the
cosmic string which was not studied in [11, 16]. We solve the Klein–Gordon
equation in the considered framework and evaluate the energy eigenvalues
and eigenfunctions, and analyze the relativistic analogue of the Aharonov–
Bohm effect for bound states. We compare our results with [8, 11, 16] and
see that the energy eigenvalues obtain here get modified due to the presence
of various physical parameters.
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2. Spin-0 scalar massive charged particles: The KG equation

Let us consider the following Som–Raychaudhuri (SR) space-time with
a cosmic-string given by [11, 19, 22, 25, 26]

ds2 = −
(
dt+ αΩ r2 dφ

)2
+ α2 r2 dφ2 + dr2 + dz2 , (2)

where α and Ω characterize the cosmic string and the vorticity parameter
of the space-time, respectively. The scalar curvature R of the space-time is
given by

R = 2Ω2 . (3)

We choose the four-vector potential of electromagnetic fields Aµ = (0, ~A )
with

~A = (0, Aφ, 0) . (4)

For geometry (2), KG equation (1) becomes[
− ∂2

∂t2
+

1

r

∂

∂r

(
r
∂

∂r

)
+

{
1

α r

(
∂

∂φ
− i eAφ

)
−Ω r

∂

∂t

}2

+
∂2

∂z2
−
(
M2 + 2 ξ Ω2

)]
Ψ(t, r, φ, z) = 0 . (5)

Since the line element is independent of time and symmetrical by translations
along the z-axis, as well by rotations, it is reasonable to write the solution
to Eq. (5) as

Ψ(t, r, φ, z) = ei (−E t+l φ+k z) ψ(r) , (6)

where E is the energy of charged particle, l = 0,±1,±2, . . . are the eigen-
values of the z-component of the angular momentum operator, and k are
the eigenvalues of z-component of the linear momentum operator.

Substituting solution (6) into Eq. (5), we obtain the following equation
for the radial wave function ψ(r):[

d2

dr2
+

1

r

d

dr
+ E2 −M2 − k2 − 2 ξ Ω2 −

(l − eAφ)2

α2r2
−Ω2E2r2

−2ΩE

α
(l − eAφ)

]
ψ(r) = 0 . (7)
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2.1. Interactions with a uniform magnetic field

Let us consider the electromagnetic four-vector potential associated with
a uniform external magnetic field given by [8]

Aφ = −1

2
αB0 r

2 (8)

such that the magnetic field is along the z-axis ~B = ~∇× ~A = −B0 k̂.
Substituting potential (8) into Eq. (7), we obtain the following radial-

wave equation:

ψ′′(r) +
1

r
ψ′(r) +

[
λ− ω2 r2 − l2

α2 r2

]
ψ(r) = 0 , (9)

where we define

λ = E2 −M2 − k2 − 2 (ΩE +M ωc) l

α
− 2 ξ Ω2 ,

ω =
√
Ω2E2 + 2M ωcΩE +M2 ω2

c = (ΩE +M ωc) ,

and ωc =
eB0

2M
(10)

is called the cyclotron frequency of the charged particle moving in the mag-
netic field.

Transforming x = ω r2 into the above Eq. (9), we obtain the following
differential equation:

ψ′′(x) +
1

x
ψ′(x) +

1

x2

(
−ξ1 x

2 + ξ2 x− ξ3

)
ψ(x) = 0 , (11)

where

ξ1 =
1

4
, ξ2 =

λ

4ω
, ξ3 =

l2

4α2
. (12)

Comparing Eq. (11) with (A.1) in Appendix A, we get

α1 = 1 , α2 = 0 , α3 = 0 , α4 = 0 , α5 = 0 ,

α6 = ξ1 , α7 = −ξ2 , α8 = ξ3 , α9 = ξ1 , α10 = 1 + 2
√
ξ3 ,

α11 = 2
√
ξ1 , α12 =

√
ξ3 , α13 = −

√
ξ1 . (13)

Therefore, the energy eigenvalues expression after inserting Eqs. (12)–
(13) into the Eq. (A.8) in Appendix A is

E2
n,l − 2Ω

(
2n+ 1 +

|l|
α

+
l

α

)
En,l −M2 − k2 − 2 ξ Ω2

−2M ωc

(
2n+ 1 +

|l|
α

+
l

α

)
= 0 (14)
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with the energy eigenvalues associated with nth radial modes is

En,l = Ω

(
2n+ 1 +

l

α
+
|l|
α

)
±
{
Ω2

(
2n+ 1 +

l

α
+
|l|
α

)2

+M2 + k2

+2M ωc

(
2n+ 1 +

|l|
α

+
l

α

)
+ 2 ξ Ω2

} 1
2

, (15)

where n = 0, 1, 2, . . . and k is a constant.
The corresponding eigenfunctions is

ψn,l(x) = |N |n,l x
|l|
2α e−

x
2 L

(
|l|
α

)
n (x) , (16)

where |N |n,l =

(
n!(

n+
|l|
α

)
!

) 1
2

is the normalization constant and L
(
|l|
α

)
n (x) is

the generalized Laguerre polynomials which are orthogonal over [0,∞) with
respect to the measure with weighting function x

|l|
α e−x as

∞∫
0

x
|l|
α e−xL

(
|l|
α

)
n L

(
|l|
α

)
m dx =

(
n+ |l|

α

)
!

n!
δnm . (17)

In [16], the Klein–Gordon equation in the Som–Raychaudhuri space-time
without topological defects was studied. The energy eigenvalues are given
by

En,l = Ω (2n+ 1 + l + |l|)±
√
Ω2 (2n+ 1 + l + |l|)2 +M2 + k2 . (18)

Thus, by comparing the result obtained in [16], we can see that the energy
eigenvalues Eq. (15) get modified (increase) due to the presence of a uniform
magnetic field B0, the topological defect parameter α, and the non-minimal
coupling constant ξ with the background curvature in the relativistic system.

In [11], the Klein–Gordon equation in the Som–Raychaudhuri space-time
with a cosmic string was studied. The energy eigenvalues are given by

En,l = Ω

(
2n+ 1 +

l

α
+
|l|
α

)
±

√
Ω2

(
2n+ 1 +

l

α
+
|l|
α

)2

+M2 + k2 .

(19)
By comparing the result without external field as obtained in [11], we can
see that the energy eigenvalues Eq. (15) get modified (increase) due to the
presence of a uniform magnetic field B0 and the non-minimal coupling con-
stant ξ in the relativistic system.
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In [8], the relativistic quantum dynamics of a charged scalar particles in
the presence of an external fields in the cosmic string space-time was studied.
The energy eigenvalues is given by

En,l = ±

√
M2 + k2 + 2M ωc

(
n+

1

2
+
|l|
2α

+
l

2α

)
. (20)

Again, by comparing the energy eigenvalues Eq. (15) with those in [8] or
Eq. (20), here, we can see that the present energy eigenvalues get modified
due to the presence of the vorticity parameter Ω of the space-time and the
non-minimal coupling constant ξ with the background curvature.

2.2. Interactions with an external field including the magnetic quantum flux

Let us consider the system described in Eq. (7) in the presence of an
external fields in the z-direction. We have assumed that the topological de-
fects (e.g., cosmic string) have an internal magnetic flux field (with magnetic
flux ΦB) [27–29]. The electromagnetic four-vector potential is given by the
following angular component [10, 37]:

Aφ = −1

2
αB0 r

2 +
ΦB
2π

. (21)

Here, ΦB = const. is the internal quantum magnetic flux [27–29] through the
core of the topological defects [28]. The three-vector potential in symmetric
gauge is defined by ~A = ~A1+ ~A2 such that ~∇× ~A = ~∇× ~A1+ ~∇× ~A2 = ~B =
−B0 k̂. It is worth mentioning that this Aharonov–Bohm effect [30, 31] has
been investigated in graphene [32], Newtonian theory [33], bound states of
massive fermions [34], scattering of dislocated wave fronts [35], with torsion
effects on a relativistic position-dependent mass system [36–38], and bound
states of spin-0 massive charged particles [22, 39]. In addition, this effect
has been investigated in the context of the Kaluza–Klein theory [40–45], and
with a non-minimal Lorentz-violating coupling [46].

Substituting potential (21) into Eq. (7), we obtain the following equation:

ψ′′(r) +
1

r
ψ′(r) +

[
λ0 − ω2 r2 − j2

r2

]
ψ(r) = 0 , (22)

where

λ0 = E2 −M2 − k2 − 2 (ΩE +M ωc) j − 2 ξ Ω2 ,

j =
(l − Φ)
α

. (23)
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Following the similar technique as done earlier, we obtain the relativistic
eigenvalues associated with nth radial modes

En,l = Ω

(
2n+ 1 +

l − Φ+ |l − Φ|
α

)
±
{
Ω2

(
2n+ 1 +

l − Φ+ |l − Φ|
α

)2

+k2 +M2 + 2mωc

(
2n+ 1 +

l − Φ+ |l − Φ|
α

)
+ 2 ξ Ω2

} 1
2

. (24)

Equation (24) is the energy spectrum of massive charged particles in the
presence of an external uniform magnetic field including a magnetic quantum
flux in the Som–Raychaudhuri space-time with a cosmic string. The energy
eigenvalues depend on the cosmic string parameter α, the external magnetic
field B0 including the magnetic quantum flux ΦB, and the non-minimal
coupling constant ξ. We can see that the energy eigenvalues Eq. (24) get
modified in comparison to the result of Eq. (15) due to the presence of the
magnetic quantum flux ΦB which causes shifts of the energy levels and gives
rise to a relativistic analogue of the Aharonov–Bohm effect.

The wave functions are given by

ψn,l(x) = |N |n,l x
|l−Φ|
2α e−

x
2 L

(
|l−Φ|
α

)
n (x) , (25)

where |N |n,l =
(

n!

(n+
|l−Φ|
α

)!

) 1
2

is the normalization constant and L(
|l−Φ|
α

)
n (x)

is the generalized Laguerre polynomial.

Special case

We discuss a special case that corresponds to zero vorticity parameter,
Ω → 0. In that case, the study space-time (2) reduces to a static cosmic
string space-time.

Therefore, the radial-wave equation Eq. (22) becomes

ψ′′(r) +
1

r
ψ′(r) +

[
E2 −M2 − k2 − 2M ωc j −M2 ω2

c r
2 − j2

r2

]
ψ(r) = 0 .

(26)
Transforming x =M ωc r

2 into Eq. (26), we obtain

ψ′′(x) +
1

x
ψ′(x) +

1

x2

(
−ξ1 x

2 + ξ2 x− ξ3

)
ψ(x) = 0 , (27)

where

ξ1 =
1

4
, ξ2 =

E2 −M2 − k2 − 2M ωc j

4M ωc
, ξ3 =

j2

4
. (28)
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We obtained the following energy eigenvalues expression associated with
nth radial modes:

En,l = ±
(
M2 + k2 + 4M ωc

(
n+

1

2
+
|l − Φ|
2α

+
(l − Φ)
2α

)) 1
2

, (29)

where n = 0, 1, 2, . . . and the corresponding eigenfunction is given by Eq. (25).
Equation (29) is the relativistic energy eigenvalue of a massive charged

particle in the presence of an external fields including a magnetic quantum
flux in static cosmic string space-time. Let us observe that the energy eigen-
value Eq. (29) in comparison to those result [8] gets modified due to the
presence of the magnetic quantum flux ΦB which causes shifts of the energy
levels and gives rise to a relativistic analogue of the Aharonov–Bohm effect.

We can see in the above expressions of the energy eigenvalues Eqs. (24)
and (29) that the angular momentum l is shifted

leff =
1

α
(l − Φ) , (30)

an effective angular momentum due to both the boundary condition, which
states that the total angle around the string is 2π α, and the minimal
coupling with the electromagnetic fields. We can see that the relativistic
energy eigenvalues Eqs. (24) and (29) depend on the geometric quantum
phase [27, 28]. Thus, we have that En,l(ΦB + Φ0) = En,l±τ (ΦB), where
Φ0 = ∓ 2π

e τ with τ = 0, 1, 2, . . . This dependence of the relativistic en-
ergy eigenvalues on the geometric quantum phase gives rise to a relativistic
analogue of the Aharonov–Bohm effect.

Formula (25) suggests that when the particle circles the string, the wave-
function changes according to

Ψ → Ψ ′ = e2 i π leff Ψ = exp

{
2π i

α

(
l − eΦB

2π

)}
Ψ . (31)

An immediate consequence of Eq. (31) is that the angular momentum oper-
ator may be redefined as

l̂eff = − i
α

(
∂φ − i

e ΦB
2π

)
, (32)

where the additional term, − eΦB
2π α , takes into account the Aharonov–Bohm

magnetic flux ΦB (internal magnetic field).
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3. Conclusions

In this paper, we have investigated spin-0 massive charged particles in
the presence of an external fields including a magnetic quantum flux in the
Som–Raychaudhuri space-time with a cosmic string. We have introduced
the electromagnetic interactions into the Klein–Gordon equation through
the minimal substitution. In Section 2.1, the Klein–Gordon field in the
background of the Som–Raychaudhuri space-time with a cosmic string in
the presence of external uniform magnetic field is considered and the fi-
nal form of the radial wave equation is derived. We then solved it using
the Nikiforov–Uvarov method and obtained the relativistic energy eigen-
values Eq. (15) and corresponding eigenfunctions Eq. (16). We have seen
that the relativistic energy eigenvalues depend on the cosmic string (α), the
parameter (Ω) that characterises vorticity of the space-time, the external
magnetic field (B0), and the non-minimal coupling constant (ξ). We have
seen that the energy eigenvalues Eq. (15) get modified (increase) in compar-
ison to those results obtained in [11, 16] due to the presence of an external
uniform magnetic field as well as the cosmic string with the non-minimal
coupling constant. We have also seen that the energy eigenvalues Eq. (15)
in comparison to the result in [8] get modified (increase) due to the pres-
ence of vorticity parameter (Ω) of the space-time. In Section 2.2, we have
considered an external uniform magnetic field including a magnetic quan-
tum flux and driven the final form of the radial wave equation. We have
solved this equation using the same method and obtained the relativistic
energy eigenvalues Eq. (24) and corresponding eigenfunctions Eq. (25). The
expression for the relativistic energy eigenvalues Eq. (24) reveals the possi-
bility of establishing a quantum condition between the energy eigenvalues
of a massive charged particle and the parameter that characterize the vor-
ticity of the space-time (Ω). There we have discussed a special case that
corresponds to zero vorticity parameter and seen that the energy eigenvalues
Eq. (29) get modified (decrease) in comparison to the results in [8] due to
the presence of a magnetic quantum flux. We have seen that the relativistic
eigenvalues depend on the geometric quantum phase [27, 28] and we have
that En,l(ΦB + Φ0) = En,l∓τ (ΦB), where Φ0 = ± 2π

e τ with τ = 0, 1, 2, . . .
This dependence of the energy eigenvalues on the geometric quantum phase
gives rise to an analogue of the Aharonov–Bohm effect.

In this paper, we have shown some results which in addition to the
previous results obtained in [8, 11, 16] present many interesting effects. This
is the fundamental subject in physics and connection between these theories
(gravitation and quantum mechanics) is not well-understood.
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Appendix A

Brief review of the Nikiforov–Uvarov (NU) method

The Nikiforov–Uvarov method is helpful in order to find eigenvalues and
eigenfunctions of the Schrödinger-like equation, as well as other second-
order differential equations of physical interest. According to this method,
the eigenfunctions of a second-order differential equation [47]

d2ψ(s)

ds2
+

(α1 − α2 s)

s (1− α3 s)

dψ(s)

ds
+

(
−ξ1 s

2 + ξ2 s− ξ3

)
s2 (1− α3 s)2

ψ(s) = 0 (A.1)

are given by

ψ(s) = sα12 (1− α3 s)
−α12−α13

α3 P

(
α10−1,

α11
α3
−α10−1

)
n (1− 2α3 s) , (A.2)

and the energy eigenvalues are

α2 n− (2n+ 1)α5 + (2n+ 1) (
√
α9 + α3

√
α8) + n (n− 1)α3 + α7

+2α3 α8 + 2
√
α8 α9 = 0 . (A.3)

The parameters α4, . . . , α13 are obtained from the six parameters α1, . . . , α3

and ξ1, . . . , ξ3 as follows:

α4 = 1
2 (1− α1) , α5 = 1

2 (α2 − 2α3) ,

α6 = α2
5 + ξ1 , α7 = 2α4 α5 − ξ2 ,

α8 = α2
4 + ξ3 , α9 = α6 + α3 α7 + α2

3 α8 ,

α10 = α1 + 2α4 + 2
√
α8 , α11 = α2 − 2α5 + 2 (

√
α9 + α3

√
α8 ) ,

α12 = α4 +
√
α8 , α13 = α5 − (

√
α9 + α3

√
α8 ) . (A.4)

In a special case where α3 = 0, as in our case, we find the following:

lim
α3→0

P

(
α10−1,

α11
α3
−α10−1

)
n (1− 2α3 s) = Lα10−1

n (α11 s) , (A.5)

and
lim
α3→0

(1− α3 s)
−α12−α13

α3 = eα13 s . (A.6)

Therefore, the wave-function from (A.2) becomes

ψ(s) = sα12 eα13 s Lα10−1
n (α11 s) , (A.7)

where L(α)
n (s) denotes the generalized Laguerre polynomial.
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The energy eigenvalues equation reduces to

nα2 − (2n+ 1)α5 + (2n+ 1)
√
α9 + α7 + 2

√
α8 α9 = 0 . (A.8)

Note that the simple Laguerre polynomial is the special case of α = 0 of the
generalized Laguerre polynomial

L(0)
n (s) = Ln(s) . (A.9)
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