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In (1 + 1) space-time dimensions, we can have two particles that are
Weyl and Majorana particles at the same time — 1D Weyl–Majorana par-
ticles. That is, the right-chiral and left-chiral parts of the two-component
Dirac wave function that satisfies the Majorana condition, in the Weyl rep-
resentation, describe these particles, and each satisfies their own Majorana
condition. Naturally, the nonzero component of each of these two two-
component wave functions satisfies a Weyl equation. We investigate and
discuss this issue and demonstrate that for a 1D Weyl–Majorana particle
in a box, the nonzero components and, therefore, the chiral wave functions
only admit the periodic and antiperiodic boundary conditions. From the
latter two boundary conditions, we can only construct four boundary con-
ditions for the entire Dirac wave function. Then, we demonstrate that these
four boundary conditions are also included within the most general set of
self-adjoint boundary conditions for a 1D Majorana particle in a box.
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1. Introduction

The equation for a first quantized free massless Dirac single particle in
(1+ 1) dimensions — or the one-dimensional free massless Dirac particle —
has the form of

iγ̂µ∂µΨ = 0 , (1)

where Ψ = Ψ(x, t) is a two-component wave function — a Dirac wave func-
tion, ∂µ = (c−1∂t, ∂x) (as usual), and the Dirac matrices γ̂µ, with µ = 0, 1,
satisfy the relations γ̂µγ̂ν + γ̂ν γ̂µ = 2gµν 1̂2, where gµν = diag(1,−1) (1̂2 is
the 2 × 2 identity matrix), and (γ̂µ)† = γ̂0γ̂µγ̂0 (the symbol † denotes the
Hermitian conjugate, or the adjoint of a matrix and an operator) [1].
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The so-called charge-conjugate wave function, ΨC ≡ ŜCΨ∗, also satisfies
Eq. (1), namely

iγ̂µ∂µΨC = 0 , (2)

but this implies that
ŜC (iγ̂µ)∗Ŝ−1C = iγ̂µ , (3)

where ŜC is the charge-conjugation matrix (the superscript ∗ represents the
complex conjugate) [2, 3]. The latter matrix can be chosen to be unitary
(up to a phase factor) [1].

Let us introduce the following wave functions:

Ψ± ≡ 1
2

(
1̂2 ± Γ̂ 5

)
Ψ , (4)

where the (Hermitian) matrix Γ̂ 5 ≡ γ̂0γ̂1 is the chirality matrix which satis-
fies the relations (Γ̂ 5)2 = 1̂2, and Γ̂ 5γ̂µ+ γ̂µΓ̂ 5 = 0̂2 (0̂2 is the 2-dimensional
zero matrix) [4, 5]. In addition, Γ̂ 5 satisfies the relation ŜC (iΓ̂ 5)∗(ŜC)

−1 =

−iΓ̂ 5, and[
1
2

(
1̂2 ± Γ̂ 5

)]2
= 1

2

(
1̂2 ± Γ̂ 5

)
and 1

2

(
1̂2 ± Γ̂ 5

)
1
2

(
1̂2 ∓ Γ̂ 5

)
= 0̂2 .

(5)
Note that the two-component Dirac wave functions Ψ+ (which must also
satisfy the relations 1

2(1̂2 + Γ̂ 5)Ψ+ = Ψ+ and 1
2(1̂2 − Γ̂ 5)Ψ+ = 0) and

Ψ− (which must also satisfy the relations 1
2(1̂2 − Γ̂

5)Ψ− = Ψ− and 1
2(1̂2 +

Γ̂ 5)Ψ− = 0) are eigenstates of Γ̂ 5. Ψ+ is called the right-chiral eigenstate
(eigenvalue +1) and Ψ− the left-chiral eigenstate (eigenvalue −1). The
charge conjugate of the wave functions Ψ± verifies that (Ψ±)C = (ΨC)±,
i.e., both Ψ+ and (Ψ+)C are right-chiral states, and similarly, both Ψ− and
(Ψ−)C are left-chiral states. This is not the case in (3 + 1) dimensions [5].

Now, note that by multiplying the Dirac equation in Eq. (1) by 1
2(1̂2+Γ̂

5)
from the left, we obtain the following equation:

iγ̂µ∂µΨ− = 0 , (6)

and similarly, multiplying Eq. (1) by 1
2(1̂2 − Γ̂

5), we obtain

iγ̂µ∂µΨ+ = 0 . (7)

Certainly, because Ψ = Ψ+ + Ψ−, the latter pair of equations is equivalent
to the Dirac equation. Since the charge-conjugate wave function ΨC also
satisfies the Dirac equation, we also have two equations equivalent to the
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latter equation. Specifically, by multiplying the Dirac equation for ΨC by
1
2(1̂2 + Γ̂ 5) and 1

2(1̂2 − Γ̂
5), we obtain

iγ̂µ∂µ(Ψ−)C = 0 and iγ̂µ∂µ(Ψ+)C = 0 , (8)

respectively (remember that (Ψ±)C = ŜCΨ
∗
±). So far, Ψ− and (Ψ−)C, and

Ψ+ and (Ψ+)C, are different wave functions, but they (all) satisfy the same
two-component equation of motion.

The so-called (Lorentz-covariant) Majorana condition (see, for example,
Refs. [5, 6]),

Ψ = ΨC , (9)

imposed upon the two-component Dirac wave function Ψ gives us the fol-
lowing relations:

Ψ+ = (Ψ+)C and Ψ− = (Ψ−)C . (10)

Thus, in (1 + 1) dimensions, if Ψ satisfies the Majorana condition, then
both Ψ+ and Ψ− satisfy this condition. Clearly, the pair of Eqs. (6) and (7)
and the pair of restrictions in (10) describe a massless Majorana particle in
(1 + 1) dimensions. Naturally, by imposing the Majorana condition on the
equations in (8), we again obtain Eqs. (6) and (7).

In the Weyl representation, the two-component wave function and the
Dirac matrices can be written as follows [5]:

Ψ ≡
[
ϕ1

ϕ2

]
, γ̂0 = σ̂x , γ̂1 = −iσ̂y (11)

(σ̂x and σ̂y are Pauli matrices). By substituting Ψ , γ̂0 and γ̂1 from Eq. (11)
into Eq. (1), we obtain two decoupled differential equations, namely

i~ (∂t + c∂x)ϕ1 = 0 ,

i~ (∂t − c∂x)ϕ2 = 0 . (12)

Likewise, in the Weyl representation, we have that Γ̂ 5 = σ̂z, Ψ+ = 1
2(1̂2 +

Γ̂ 5)Ψ = [ϕ1 0]
T, and Ψ− = 1

2(1̂2 − Γ̂ 5)Ψ = [0 ϕ2]
T, as expected (super-

script T represents the transpose of a matrix); thus, the first of the equations
in (12) can also be obtained from Eq. (7), and the second equation can be
obtained from Eq. (6) (also as expected). Naturally, the wave function Ψ
that describes the one-dimensional Dirac particle has two independent com-
plex components, or two complex degrees of freedom, i.e., four real degrees
of freedom. On the other hand, as said before, the Dirac equation (1) can
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also describe a one-dimensional massless Majorana single particle if, in addi-
tion, Ψ complies with the Majorana condition, Ψ = ΨC. Again, in the Weyl
representation, we can write

ŜC = exp(iν)γ̂0γ̂1 = exp(iν)σ̂z

(
∝ Γ̂ 5

)
, (13)

where ν = [0, 2π) is an arbitrary phase certainly not fixed by Eq. (3) but
by us. Consequently, the Majorana condition in the form given in Eq. (10)
gives us the following two (independent) relations:

ϕ1 = exp(iν)ϕ∗1 and ϕ2 = − exp(iν)ϕ∗2 . (14)

Thus, the equation that describes the massless Majorana particle in (1 + 1)
dimensions, in the Weyl representation, is a pair of decoupled one-component
first-order equations, i.e., the pair of equations in (12), with the restrictions
given in Eq. (14). In the end, the wave function Ψ that describes this kind
of particle has only two real degrees of freedom (half of those of the Dirac
particle, but it has the same degrees of freedom as that of the Weyl particle,
as we will see below).

At this point, certain remarks are in order. The wave function Ψ for the
one-dimensional massless Majorana particle must satisfy the one-dimensional
Dirac equation (in the so-called chiral limit m = 0, or the massless limit)
as well as the Majorana condition (thus, ultimately, we could also call it
a massless (Dirac)–Majorana particle). This is true in any representation.
Precisely, the most general set of boundary conditions for this particle when
it is within a box, in the Weyl representation, was presented in Ref. [5]. (In
fact, the latter reference dealt with the massive Majorana particle, but the
most general set of boundary conditions presented there does not depend on
the value of the mass.) This set consists of two one-parametric families of
(complex) boundary conditions for the Dirac wave function Ψ = [ϕ1 ϕ2]

T (we
write and use them in Section 2). Certainly, all these boundary conditions
arise when the self-adjointness condition is imposed on the Dirac Hamilto-
nian operator of the system, namely Ĥ = −i~c σ̂z∂x = Ĥ† (remember that
the Dirac equation in Eq. (1) in its canonical form is i~ ∂tΨ = ĤΨ), and
inside its domain D(Ĥ) = D(Ĥ†), we have precisely only these boundary
conditions. Incidentally, in Ref. [5], ν = 3π/2 was specifically selected when
choosing the charge-conjugation matrix ŜC (see Eq. (13)); nevertheless, this
choice does not change the two families of boundary conditions.

Let us now return to the pair of equations in (12), forgetting how we
obtained them. Precisely, these equations would be the (free) Weyl equations
in (1 + 1) dimensions [7]. Each of the equations in (12) would describe
a specific type of one-dimensional uncharged Weyl particle (a Weyl particle
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is always massless). In fact, ϕ1 and ϕ2 in Eq. (12) are transformed in two
different ways under the Lorentz boost, i.e., they transform according to two
inequivalent representations of the Lorentz group [5, 8]. Now, note that if,
for example, the one-component wave function ϕ1 that describes this kind of
particle is complex-valued, then ϕ1 has one complex degree of freedom, i.e.,
two real degrees of freedom. The same is valid for the one-component wave
function ϕ2. Thus, a one-dimensional Weyl particle has the same degrees of
freedom as the one-dimensional massless Majorana particle.

It can be noticed, although not without some surprise, that from the
results given in Eqs. (6) and (7), as well as (10), one can introduce two
other types of (relativistic) one-dimensional particles. Indeed, the equation
that describes the first type of one-dimensional particle is given by Eq. (6),
with its respective restriction given in Eq. (10), namely

iγ̂µ∂µΨ− = 0 and Ψ− = (Ψ−)C . (15)

Similarly, the equation that describes the second type of one-dimensional
particle is given by Eq. (7) with its respective restriction given in Eq. (10),
namely

iγ̂µ∂µΨ+ = 0 and Ψ+ = (Ψ+)C . (16)
Clearly, the two-component Dirac wave functions with definite chirality, Ψ+
and Ψ−, each satisfy the one-dimensional Dirac equation (in the massless
limit) and their own Majorana conditions (thus, in principle, we could call
these particles Dirac–Majorana particles again). However, it is only in the
Weyl representation that it is explicitly shown that Ψ+ and Ψ− have each
one-only one-nonzero (complex) components, which are transformed inde-
pendently under the Lorentz transformation (or the Lorentz boost). Cer-
tainly, this Lorentz transformation does not change the chirality of the wave
function [8]. We mention in passing that due to their characteristics, the
wave functions Ψ+ and Ψ− are sometimes also called Weyl wave functions
or said to satisfy the Weyl condition (thus, certainly, we could call the par-
ticles described by these wave functions Weyl–Majorana particles) [9]. The
possibility that a wave function in (1 + 1) dimensions (and in other dis-
tinct space-time dimensions) can simultaneously satisfy the aforementioned
Weyl condition (in even dimensions) and that of Majorana has been noted
in the literature. For more details on this issue, see, for example, Ref. [9,
Appendix B], and Ref. [10, pp. 35–45].

Thus, from the results in (15), we can say that the first type of one-
dimensional particle is completely defined by

i~ (∂t − c ∂x)ϕ2 = 0 with ϕ2 = − exp(iν)ϕ∗2 (17)

(if ϕ2 ∈ C, then we just have here one real degree of freedom). Similarly,
from the results in (16), we can say that the second type of one-dimensional
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particle is completely defined by

i~ (∂t + c ∂x)ϕ1 = 0 with ϕ1 = exp(iν)ϕ∗1 (18)

(and again, if ϕ1 ∈ C, then we just have one real degree of freedom). Clearly,
the one-component (Weyl) wave functions ϕ1 and ϕ2 satisfy each a one-
dimensional Weyl equation and a condition that comes from imposing the
Majorana condition on the entire wave function Ψ = [ϕ1 ϕ2]

T, i.e., on the
wave functions Ψ+ = [ϕ1 0]

T and Ψ− = [0 ϕ2]
T. In this way, we can now

decide to call these particles Weyl–Majorana particles, i.e., two particles that
are each aWeyl particle and a Majorana particle at the same time. Certainly,
each Weyl–Majorana particle has half the (real) degrees of freedom of the
Weyl particle as well as the Majorana particle. In the next section, we find
the physically acceptable boundary conditions for this type of particle when
it can only be inside a box.

2. A 1D Weyl–Majorana particle in a box

Let us consider a one-dimensional Weyl–Majorana particle in a box of
size L, with ends, for example, at x = 0 and x = L. First, we write the
two Weyl equations in Eqs. (17) and (18) in their canonical forms in a single
equation as follows:

i~ ∂tϕa = ĥaϕa , a = 1, 2 , (19)

where
ĥa ≡ −i~c(−1)a−1∂x (20)

is the formally self-adjoint, or Hermitian, one-dimensional Weyl Hamiltonian
operator, i.e., ĥa = ĥ†a (i.e., essentially without the specification of its do-
main). Clearly, ĥa is very similar to the usual nonrelativistic momentum op-
erator (see, for example, Ref. [11]). The Hamiltonian ĥa is also a self-adjoint
operator; this is essentially because its domain, i.e., the set of Weyl one-
component wave functions ϕa = ϕa(x, t) in the Hilbert space of the square
integrable functions H = L2[0, L] on which ĥa can act (≡ D(ĥa) ⊂ H),
includes the following general boundary condition dependent on a single
parameter, namely,

ϕa(L, t) = exp(iθ)ϕa(0, t) , (21)

with θ ∈ [0, 2π); in addition, ĥaϕa ∈ H [11]. Moreover, the scalar product in
H is denoted by 〈ψa, χa〉 ≡

∫ L
0 dxψ∗aχa, and the norm is ‖ψa ‖ ≡

√
〈ψa, ψa〉.
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Precisely, ĥa satisfies the hermiticity condition, or the self-adjointness con-
dition, namely〈

ψa, ĥaχa

〉
=
〈
ĥaψa, χa

〉
− i~c(−1)a−1 [ψ∗aχa ]

∣∣L
0
=
〈
ĥaψa, χa

〉
, (22)

where we introduce the notation [ f ]|L0 ≡ f(x = L, t) − f(x = 0, t), and
ψa and χa are Weyl wave functions in D(ĥa) = D(ĥ†a). Now, note that
the Majorana condition imposed on the Weyl wave function ϕa, namely,
ϕa = (−1)a−1 exp(iν)ϕ∗a (see Eqs. (17) and (18)), implies that ϕ∗a must
also comply the general boundary condition in Eq. (21), in which case the
phase exp(iθ) in Eq. (21) must be real. Therefore, θ = 0, π; thus, the
boundary conditions for a one-dimensional free Weyl–Majorana particle in
a box can only be the periodic boundary condition, ϕa(L, t) = ϕa(0, t),
and the antiperiodic boundary condition, ϕa(L, t) = −ϕa(0, t). Incidentally,
these two boundary conditions are nonconfining boundary conditions, i.e.,
neither of these can cancel the probability current density at the ends of the
box. In effect, in this case, the probability current density (corresponding
to the wave function ϕa) is given by ja ≡ (−1)a−1c ϕ∗aϕa, where (ϕ∗aϕa)(x =
L, t) = (ϕ∗aϕa)(x = 0, t) (the latter relation comes out of Eq. (22) and must
be satisfied by all boundary conditions in the domain of ĥa) [8]. Thus, we
now also have the relation ja(x = L, t) = ja(x = 0, t), which is obviously
satisfied by the periodic and antiperiodic boundary conditions and by all
boundary conditions within Eq. (21). We mention in passing that, because
the solutions of the Weyl equations in (19) can always be chosen to be
real, these solutions could only admit boundary conditions that are within
Eq. (21) with the condition ϕa = ϕ∗a, which implies that only periodic and
antiperiodic boundary conditions could be imposed. The latter point was
recently noted in Ref. [8].

Thus, for the Weyl–Majorana particle described by the two-component
wave function Ψ− = [0 ϕ2]

T, which satisfies the results in (15), the two
boundary conditions given above (for ϕ2) must be written as follows (we
omit the variable t in the boundary conditions hereinafter):

Ψ−(L) = Ψ−(0) (23)

(the periodic boundary condition), and

Ψ−(L) = −Ψ−(0) (24)

(the antiperiodic boundary condition). Similarly, for the Weyl–Majorana
particle described by the two-component wave function Ψ+ = [ϕ1 0 ]

T, which
satisfies the results in (16), the boundary conditions for ϕ1 must now be
written as follows:

Ψ+(L) = Ψ+(0) , (25)
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and
Ψ+(L) = −Ψ+(0) (26)

(again, the periodic and antiperiodic boundary conditions). These are the
only boundary conditions that can be imposed on Ψ− and Ψ+ when they
describe a one-dimensional Weyl–Majorana particle.

From the boundary conditions in Eqs. (23)–(26), just four boundary
conditions for the Dirac wave function Ψ can be constructed. In effect,
because Ψ = Ψ+ + Ψ−, where Ψ+ and Ψ− are given in Eq. (4), the following
results are obtained:

Ψ(L) = −Γ̂ 5Ψ(0) , (27)

which comes from the conditions in Eqs. (23) and (26), and

Ψ(L) = Γ̂ 5Ψ(0) , (28)

which comes from the conditions in Eqs. (24) and (25). Likewise,

Ψ(L) = Ψ(0) , (29)

which comes from the conditions in Eqs. (23) and (25), and

Ψ(L) = −Ψ(0) , (30)

which comes from the conditions in Eqs. (24) and (26). On the other hand,
it can be shown (as we do below) that these four boundary conditions are
in fact included within the most general set of self-adjoint boundary condi-
tions for the one-dimensional (either massive or massless) Majorana particle
enclosed in a box. In effect, this set is formed by the following two families
of boundary conditions for the Dirac wave function Ψ = [ϕ1 ϕ2 ]

T, in the
Weyl representation (see Eqs. (35) and (36) in Ref. [5]):

Ψ(L) =
1

m2

[
−1 −im0

−im0 +1

]
Ψ(0) , (31)

where (m0)
2 + (m2)

2 = 1, and

Ψ(L) =
1

m1

[
+1 −im3

+im3 +1

]
Ψ(0) , (32)

where (m1)
2+(m3)

2 = 1; in addition, m0, m2 andm1, m3 are real quantities
(more details of boundary conditions for the problem of a Majorana particle
in a box can also be found in Refs. [12] and [13]). Then, in the first subfamily
above, one first notices that by setting m0 = 0, one has that (m2)

2 = 1 and,
therefore, m2 = ±1. Thus, setting m0 = 0 and m2 = +1 in Eq. (31), one
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obtains the boundary condition in Eq. (27), and settingm0 = 0 andm2 = −1
in Eq. (31), one obtains the boundary condition in Eq. (28). Likewise, in the
second subfamily above, one first notices that by setting m3 = 0, we have
that (m1)

2 = 1 and, therefore,m1 = ±1. Thus, settingm3 = 0 andm1 = +1
in Eq. (32), one obtains the boundary condition in Eq. (29), and setting
m3 = 0 and m1 = −1 in Eq. (32), one obtains the boundary condition in
Eq. (30). Thus, the boundary conditions in Eqs. (27)–(30) are also included
within the most general set of self-adjoint boundary conditions for the 1D
Majorana particle in a box. Since in this case the boundary conditions for
Ψ are obtained from the physically acceptable boundary conditions for Ψ+
and Ψ−, we can say that Ψ = Ψ+ + Ψ− nevertheless continues to describe a
massless one-dimensional Majorana particle in a box.

3. Conclusions

Although a Majorana particle is generally considered a massive particle
and a Weyl particle is always massless, in (1 + 1) dimensions, we can have
particles that are Weyl and Majorana particles at the same time; i.e., they
are 1D Weyl–Majorana particles. Thus, the upper and lower one-component
wave functions of the two-component Dirac wave function Ψ , in the Weyl
representation, ϕ1 and ϕ2, each satisfy their own Weyl equation, and as we
know, each belongs to a different representation of the corresponding Lorentz
group. In addition, these wave functions are independent of each other, i.e.,
they are not related after imposing the Majorana condition on Ψ = [ϕ1 ϕ2]

T,
or equivalently, on the two-component Dirac wave functions with definite
chirality (or the chiral wave functions) Ψ+ = [ϕ1 0]

T and Ψ− = [0 ϕ2]
T. In

constrast, in (3 + 1) dimensions, the upper and lower two-component wave
functions of the four-component Dirac wave function (or bispinor), in the
Weyl representation, are linked by the Majorana condition [5]. Naturally,
also in this case, these two two-component wave functions each satisfy their
own Weyl equation (certainly, in the massless limit of the (free) Dirac equa-
tion), and each belongs to a different representation of the corresponding
Lorentz group.

To summarize, in (1 + 1) dimensions, Ψ+ and Ψ− each satisfy the one-
dimensional Dirac equation (in the massless limit) and their own Majorana
condition, but only in the Weyl representation are the nonzero components
of Ψ+ and Ψ− transformed independently under the Lorentz transformation;
i.e., just under this circumstance, Ψ+ and Ψ− each describe a 1D Weyl–
Majorana particle.

For a 1D Weyl–Majorana particle in a box, the chiral wave functions only
admit the periodic and antiperiodic boundary conditions. This is because
the one-component Weyl wave functions ϕ1 and ϕ2 only admit these two
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boundary conditions. From these two boundary conditions for Ψ+ and Ψ−,
just four boundary conditions can be constructed for the entire Dirac wave
function Ψ = Ψ+ + Ψ−. Moreover, these four boundary conditions are in-
cluded within the most general set of self-adjoint boundary conditions for a
1D (either massive or massless) Majorana particle in a box. Thus, although
these boundary conditions for Ψ are obtained from the boundary conditions
for Ψ+ and Ψ−, Ψ = Ψ+ +Ψ− continues to describe a 1D massless Majorana
particle in a box. We believe that our paper will be of interest to all who
are interested in the relativistic quantum mechanics in (1 + 1) dimensions.

I thank Valedith Cusati, my wife, for all her support.
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