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In this paper, we revisit the two theoretical approaches for the formula-
tion of the tachyonic Dirac equation. The first approach works within the
theory of restricted relativity, starting from a Lorentz-invariant Lagrangian
consistent with a space-like four-momentum. The second approach uses the
theory of relativity extended to superluminal motions and works directly
on the ordinary Dirac equation through superluminal Lorentz transforma-
tions. The equations resulting from the two approaches show mostly dif-
ferent, if not opposite, properties. In particular, the first equation violates
the invariance under the action of the parity and charge conjugation oper-
ations. Although it is a good mathematical tool to describe the dynamics
of a space-like particle, it also shows that the mean particle velocity is sub-
luminal. In contrast, the second equation is invariant under the action of
parity and charge conjugation symmetries, but the particle it describes is
consistent with the classical dynamics of a tachyon. This study shows that
it is not possible with the currently available theories to formulate a co-
variant equation that coherently describes the neutrino in the framework
of the physics of tachyons, and depending on the experiment, one equation
rather than the other should be used.
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1. Introduction

The Dirac equation is one of the most widely used mathematical tools
in modern theoretical physics [1–4]. It was formulated in 1928 and has
since then been mentioned in the literature of most scientific areas. In
physics and quantum chemistry, the Dirac equation and the Schrödinger
equation together form the main foundation. In its non-linear version [5–7],
the Dirac equation is used in condensed matter physics [8–10] and quan-
tum optics [11–14]. The Dirac equation has also been generalised for curved
space-time in order to study the behaviour of fermions in gravitational fields
[15–17]. In the framework of mathematical physics, the Dirac equation has
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been studied for different potentials (e.g., Coulomb, Yukawa, and Pöschl–
Teller) in order to test or find new methods of solving the associated Cauchy
problem [18–20]. However, the Dirac equation has not been adequately con-
sidered in the framework of quantum physics of tachyonic fermions. This
is mainly because its original formulation is not suitable to describe the
dynamics of a superluminal particle that violates the Lorentz invariance.
However, experiments performed on neutrinos show that this particle, un-
der certain conditions, fulfils the energy–momentum relationship typical of
tachyons [21]. In particular, in tritium beta decay measurements, the elec-
tron neutrino shows a negative mass-square (mve = −2.5 ± 3.3 eV2) [22].
A similar result was also obtained for the muon neutrino in pion decay [23].
SN1987A data also has evidence for the superluminal behaviour of neutrinos
[24]. In this context, there is a need to have a suitable covariant equation
to describe the dynamics of 1

2 -spin fermions, which would represent the first
step in constructing a theory capable of interpreting the mentioned experi-
mental results, especially for the purpose of designing new experiments that
can provide more precise measurements of the neutrino mass-square.

In this study, two physical-mathematical approaches are adopted and
reworked in order to formulate a Dirac-type equation consistent with the
tachyonic energy–momentum relationship. By tachyonic Dirac-type equa-
tion we mean a covariant equation that describes, in the quantum me-
chanics framework, the dynamics of a 1

2 -spin particle moving with super-
luminal velocity. The first approach is based on the Tanaka Lagrangian,
which although Lorentz-invariant is nonetheless consistent with the space-
like energy–momentum relationship owing to the presence of the fifth current
operator in the mass energy term. This approach was introduced in the 1980s
by Chodos [25] and recently investigated by Jentschura [26]. The purpose of
revisiting this approach in this study is to highlight the physical meaning of
the results obtained by solving exactly the obtained tachyonic equation. In
particular, this study proves that this equation describes a new type of parti-
cle that fulfils the tachyonic energy–momentum relationship but propagates
at subluminal velocity. This unexpected result is related to the symmetry
of the obtained wave functions and to the duality between tachyonic and
ordinary spacetime. The second approach is instead based on the introduc-
tion of superluminal Lorentz transformations (SLTs) that are typical of the
theory of relativity extended to superluminal motions (ETRR) [27]. The
results obtained from the second approach are substantially different than
those obtained from the first approach, showing that the resulting tachyonic
equation in the second approach is more suitable for describing the dynam-
ics of a particle that is closest to the classical concept of the tachyon. The
behaviours of the solutions of the two obtained equations under the action of
discrete symmetries (parity, time-reversal and charge-conjugation) are also
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investigated. In this aspect too, the two equations have substantial differ-
ences. The first equation describes the symmetries of the phenomena in
which the hypothetical space-like neutrino is involved, whereas the second
equation is the only choice if we accept that the neutrino propagates at
superluminal velocity.

To our knowledge, these results have not been published previously.
These findings could help formulate a suitable theory to interpret the exper-
imental data mentioned above, even though current theoretical models fail
to consistently reconcile the physics of tachyons with quantum mechanics.

2. Tachyonic Dirac equation from the Tanaka Lagrangian

The Tanaka Lagrangian [28] formulated to describe the tachyonic neu-
trino is as follows (in natural units):

Lt = iψ̄γµ∂µψ −mψ̄ψ , (1)

where ψ̄ = ψ†γ0, γ5 = iγ0γ1γ2γ3, (γ5)2 = 1, γµ are the ordinary gamma
Dirac matrices andm is the real part of the tachyon’s imaginary rest mass im.
ψ̄ and ψ are independent coordinates of the Lagrangian operator. As can
be seen, the mass energy term of this Lagrangian is identical to that of
Dirac, whereas the kinetic energy component changes due to the introduc-
tion of the γ5 matrix (fifth current) which does not commute with the other
gamma matrices. This feature ensures that the associated tachyon equation,
obtained by taking variations with respect to the ψ̄ coordinate, fulfils the
tachyonic energy–momentum relationship. It should also be stressed that
Lagrangian (1) is Lorentz-invariant and, therefore, describes the dynamics
of the superluminal neutrino without the need to extend the theory of rela-
tivity (TRR) to superluminal motions, thus avoiding the problem of having
to introduce a privileged reference frame. This also allows us to write the
tachyonic equation using the ordinary Dirac matrices that do not depend on
the subluminal reference frame. The equation obtained from Lagrangian (1)
is the tachyonic Dirac equation for a free particle and reads(

i~γ0∂t − i~cγk∂k − γ5mc2
)
ψ = 0 . (2)

From now on, we set k = 1, 2, 3 and the zero index of the gamma ma-
trix in the temporal term will be always written explicitly. Multiplying
equation (2) with its transpose conjugate gives the tachyonic Klein–Gordon
equation (

~2∂2t − ~2c2∇2 + (im)2c4
)
ψ = 0 . (3)

Let us solve equation (2) considering that, as it is true for the ordinary Dirac
equation, the wave functions are the product of four-spinors and a plane
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wave. For particle states, these functions are

ψ+ (↑) =


1
0
u+1
u+2

 e{−
i
~ (p·x−Et)} ; ψ+ (↓) =


0
1
u+3
u+4

 e{−
i
~ (p·x−Et)} , (4)

whereas for antiparticles, they are

ψ− (↑) =


u−1
u−2
1
0

 e{
i
~ (p·x−Et)} ; ψ− (↓) =


u−3
u−4
0
1

 e{
i
~ (p·x−Et)} , (5)

where p and E are space-like momentum and energy respectively, given by

E = γ imc2 = |γ|mc2 ; pj = γ imuj = |γ|mcβj ; j = x, y, z , (6)

where γ is the (imaginary) tachyonic Lorentz factor
[
1− (uj/c)

2
]−1/2 and

β is the relativistic coefficient (uj/c). Substituting the explicit form of the
gamma matrices in equation (2), we obtain a set of four linear equations i~∂t 0 −i~c∂z −

(
i~c∂x+~c∂y+mc2

)
0 i~∂t

(
−i~c∂x+~c∂y−mc2

)
i~c∂z

i~c∂z

(
i~c∂x+~c∂y−mc2

)
−i~∂t 0(

i~c∂x−~c∂y−mc2
)

−i~c∂z −i~∂t


× ψ(±) (↑↓) e{∓

i
~ (p·x−Et)} = 0 , (7)

where ψ(±)(↑↓) is the spinor part of the wave function. By calculating all
the partial derivatives, we get a set of algebraical equations by which the
coefficients u±1,3 and u±2,4 are explicitly obtained

u+1 = pzc/E ; u+2 =
[
c(px + ipy)−mc2

]
/E ,

u+3 =
[
c(px − ipy)−mc2

]
/E ; u+4 = −pzc/E ,

u−1 = pzc/E ; u−2 =
[
c(px + ipy)−mc2

]
/E ,

u−3 =
[
c(px − ipy)−mc2

]
/E ; u−4 = −pzc/E .

(8)

As usual, the wave functions must be normalised by imposing the condition
〈ψ|ψ〉 = 1, which also helps obtain the normalisation factor < = E/[2(E2 +
m2c4 − |γ|βxm2c4)]1/2. For simplicity, the normalisation factor is omitted
in the following equations, as it does not contribute to the discussion of the
results. To investigate the properties of the wave functions (4) and (5), we
write the ψ matrix whose columns are the spinors of the tachyonic Dirac
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equation (2) and compare it with the equation below denoted by ψ̃, which
is obtained by the spinors of the ordinary Dirac equation [29]

ψ =


1 0 pzc

E
[c(px−ipy)−mc2]

E

0 1
[c(px+ipy)−mc2]

E −pzc
E

pzc
E

[c(px−ipy)−mc2]
E 1 0

[c(px+ipy)−mc2]
E −pzc

E 0 1

 , (9)

ψ̃ =


1 0 p̃zc

Ẽ+mc2
c(p̃x−ip̃y)
Ẽ+mc2

0 1
c(p̃x+ip̃y)

Ẽ+mc2
− p̃zc

Ẽ+mc2

p̃zc

Ẽ+mc2
c(p̃x−ip̃y)
Ẽ+mc2

1 0

c(p̃x+ip̃y)

Ẽ+mc2
− p̃zc

Ẽ+mc2
0 1

 . (10)

The tilde above the energy and momentum denotes time-like observables.
We can immediately recognise that the main difference between the non-
trivial components of the two matrices ψ and ψ̃ is represented by the change
of position of the mass energy. This difference is due to the matrix γ5 in
equation (2), which moves the mass terms on the secondary diagonal of
the energy operator. This ensures that the Hermitian product equation (2)
times itself is consistent with the tachyonic energy–momentum relationship.
The physical meaning of this difference lies in the duality between the time-
like and space-like observables. In this regard, let us consider the tachyonic
momentum from the classical framework p = |γ|mu. The superluminal ve-
locity u can always be written as u = c2/ũ, where ũ < c. In other words, it
is always possible to find a subluminal velocity ũ such that u is tachyonic.
Each superluminal reference frame is in biunivocal correspondence with its
bradyonic dual. Under this assumption, it is easy to verify that the momen-
tum of a tachyon is directly related to the energy of the corresponding dual
bradyon and vice versa [30]{

pc = i
(
1− (u/c)2

)−1/2
muc =

(
1− (ũ/c)2

)−1/2
mc2 = Ẽ ,

E = i
(
1− (u/c)2

)−1/2
mc2 =

(
1− (ũ/c)2

)−1/2
mũc = p̃c .

(11)

From equations (11), one clearly sees that the kinetic component of the
total energy of the particle in the subluminal reference frame is equal to
the kinetic component in the tachyonic reference frame deprived of the mass
energy, namely p̃2c2 = p2c2−m2c4. This is the reason why in the non-trivial
components of matrix (9) only the total energy of the particle appears in
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the denominator and a negative mass energy is added to the numerator.
This is the physical interpretation of how the fifth current operator works
in equation (2). Equations (11) are useful to find the physical correlation
between the subluminal rest frame, where ũ = 0, and the superluminal
transcend rest frame, where u→∞

ũ = 0⇒ u =
c2

ũ
→∞ ;

Ẽ = mc2 ⇒ p =
Ẽ

c
= mc ;

p̃ = 0⇒ E = p̃c = 0 . (12)

Matrices (9) and (10) converge when u, ũ → c and when the energy mass
mc2 → 0. These limits represent the analytic continuity between the tachy-
onic and ordinary wave functions. This property is a consequence of the
fact that the Lagrangian from which the ordinary and tachyon Dirac equa-
tions are obtained are both Lorentz invariant. Finally, one notes that the
structures of the two matrices ψ and ψ̃ are conserved. That is, there is a cor-
respondence between a given subluminal state and a tachyonic one with the
same spin projection and the same energy sign.

Let us now write the Hamiltonian operator associated with equation (2)

H = i~cαk∂k + γ0γ5mc2 . (13)
This operator is not Hermitian because γ0γ5 is anti-Hermitian. In the quan-
tum mechanics of ordinary particles, all operators representing observables
are Hermitian. In the quantum mechanics of tachyons, non-Hermitian opera-
tors work properly [26]. In fact, the eigenvalues (continuous spectrum) of the
energy operator (13) are all real E = ±

√
p2c2 −m2c4 and the time evolution

operator is unitary. The necessary and sufficient condition is that the non-
Hermitian Hamiltonian is PJ invariant (spacetime inversion). Otherwise, it
would have imaginary eigenvalues, or the time-evolution operator would be
non-unitary (with consequent non-conservation of probability) [31]. Let us
clarify this aspect further. To better understand the algebraical structure of
matrix (13), let us break it down into the sum of four matrices

H = i~c∂xγ5γ1 + i~c∂yγ5γ2 + i~c∂zγ5γ3 +mc21 . (14)

The first three matrices at the right-hand side of equation (14) are anti-
Hermitian, whereas the latter is trivially Hermitian. However, the fifth
current γ5 does not commute with the other gamma matrices and this is the
main difference between the ordinary and tachyonic equations. We define
the self-adjoint operator as follows:

O† =
(
γ5Oγ5

)†
. (15)
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The Hermicity of the tachyonic energy operatorH is recovered. The ordinary
Dirac formalism is modified — this modification is inevitable to formulate
a tachyonic equation without using superluminal transformations.

Let us now investigate the invariance of the tachyonic Dirac equation un-
der the action of the parity P time-reversal T and charge-conjugation C sym-
metry operations. These discrete symmetries work as follows: Pψ (x, t) =
ΛPψ (−x, t), Tψ (x, t) = ΛTγ

0ψ∗ (x,−t) and Cψ(x, t) = ΛCγ
0 ψ∗ (x, t). Par-

ity performs a reflection of the space coordinates at the origin, time-reversal
operates on time coordinates and charge-conjugation transforms a particle
into its antiparticle, and vice versa. Therefore, parity changes the sign to
position and momentum, and leaves spin unchanged; time-reversal changes
the sign to spin, momentum and velocity; and charge-conjugation changes
the sign to all intrinsic charges leaving unchanged spin, momentum and
position. Since we proved the analytic continuity of the tachyonic wave-
functions, we expect that, as is true for the ordinary Dirac equation, the
superluminal one too is invariant under these transformations. This can be
illustrated by rewriting equation (2) as(

i~1∂t − i~cαk∂k − γ0γ5mc2
)
ψ = 0 (16)

and comparing it with the ordinary Dirac one(
i~1∂t − i~cαk∂k − γ0mc2

)
ψ̃ = 0 . (17)

It is well-known that for the ordinary Dirac equation, parity symmetry is en-
sured by the operator ΛP = γ0 [32]. In fact, this unitary operator transforms
the space-inverted Dirac operator into itself(

γ0
)−1 (

i~γ0∂t + i~cγk∂k − 1mc2
)
γ0 =

(
i~γ0∂t − i~cγk∂k − 1mc2

)
.

(18)
Applying this transformation to equation (2), we see that γ5 changes the
sign, and parity is violated(
γ0
)−1 (

i~γ0∂t + i~cγk∂k − γ5mc2
)
γ0 =

(
i~γ0∂t − i~cγk∂k + γ5mc2

)
.

(19)
However, comparing equations (16) and (17), we see that the tachyonic
mass operator, analogous to the Dirac one, is γ0γ5. Using this matrix
as the ΛP operator and changing the sign in the right-hand side of equa-
tion (19), the similarity transformation returns the tachyonic equation, since
(γ0γ5)−1γk(γ0γ5) = −γk and

(
γ0γ5

)−1
γ5
(
γ0γ5

)
= γ5. Arbitrarily chang-

ing the sign of one side of the equality is always licit, as the similarity trans-
formation introduces a phase factor that does not affect the result. The
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parity is then recovered but not in the usual Dirac framework. The same
approach can be followed to study the time-reversal symmetry. For the or-
dinary Dirac equation, this symmetry is assured by the operator ΛT = iγ1γ3

[32]. Since the first terms of equations (16) and (17) are identical, T symme-
try is expected to be verified also by the tachyonic equation through the same
operator ΛT. By performing the similarity transformation on the conjugate
time-reversed tachyonic equation, one gets(

iγ1γ3
)−1 (

i~
(
γ0
)∗
∂t + i~c

(
γk
)∗
∂k −

(
γ5
)∗
m c2

)
iγ1γ3

=
(
i~γ0∂t − i~cγk∂k − γ5mc2

)
. (20)

In this case, similarity transformation reverses the sign of the
(
γk
)∗ matrices

leaving unchanged the signs of the other ones. This proves the time-reversal
invariance of the tachyonic equation using the same ΛT operator used in the
ordinary Dirac theory. Finally, we study the charge-conjugation symmetry.
For this purpose, equation (2) is formulated including an external field. For
an electrically charged tachyon in an electromagnetic field, the tachyonic
equation can be obtained by minimal coupling(

i~γ0∂t − cγk
(
i~∂k −

e

c
Ak

)
− γ5mc2 − 1eϕ

)
ψ = 0 , (21)

where (ϕ,Ak) is the four-potential. Equation (21) differs from the Dirac one
only for the fifth current in the mass term. The symmetry C holds, if we
find a transformation such that

(ΛC)−1
(
i~
(
γ0
)∗
∂t − c

(
γk
)∗ (

i~∂k +
e

c
Ak

)
+
(
γ5
)∗
m c2 − 1eϕ

)
ΛC

=
(
i~γ0∂t − cγk

(
i~∂k +

e

c
Ak

)
− γ5mc2 − 1eϕ

)
. (22)

For the ordinary Dirac equation in an external electromagnetic field, ΛC is
given by iγ2 (since only the γ2 matrix changes sign under conjugation). How-
ever, this transformation does not change the sign of γ5 and equation (22)
does not hold. The charge-conjugation is then violated, at least in the
Dirac framework. In fact, if we use the new transformation ΛC = iγ2γ5

the C symmetry is recovered, provided that the sign of the right-hand side
of equation (22) gets reversed. Before going further, we check if the equa-
tion is also PT-invariant, because, as we anticipated earlier, this symme-
try is the condition that makes a non-Hermitian Hamiltonian an operator
with real eigenvalues. Such a symmetry represents the inversion of space-
time coordinates. Therefore, we need to find an operator ΛPT that ensures
the similarity transformation (ΛPT)−1

(
−i~γ0∂t + i~cγk∂k − γ5mc2

)
ΛPT =



Tachyonic Dirac Equation Revisited 2073(
i~γ0∂t − i~cγk∂k − γ5mc2

)
. For the ordinary Dirac equation, this oper-

ator is given by ΛPT = iγ5. It is easy to prove that this operator works
properly also on the tachyonic equation. Then, for the theorem proved in
reference [31], the tachyonic non-Hermitian Hamiltonian has real eigenvalues
and also ensures the unitary of the time-evolution operator.

In this section, we have studied equation (2) supposing that it is endowed
with superluminal velocity and satisfies the energy–momentum relationship
E2 = p2c2 − m2c4. This is proved for the energy–momentum relationship
but must be verified for the velocity. In quantum mechanics, the velocity
operator does not commute with the Hamiltonian and, therefore, we can
calculate only its mean value. In the present study, the particle velocity is
computed as the group velocity of the tachyonic wave packet associated to
equation (2), using the method proposed by Park [33]. This approach is
based on the formulation of the equation of motion of the envelope func-
tion that characterizes the Gaussian wave packet. In order to simplify the
calculation, we suppose the superluminal particle propagating along z-axis.
Therefore, equation (2) becomes[

i~γ0∂t − i~cγ3∂z −mc2γ5
]
ψ = 0 . (23)

In this case, the solutions are plane waves with positive (+) and negative
(−) frequencies 

ψ+ = R

(
u+1
u+2

)
exp{i(kz − w+t)} ,

ψ− = R

(
u−1
u−2

)
exp{i(kz − w−t)} ,

(24)

where u±i are the spinor components to find, N is the normalization factor,
while k = pz/~ and ω± = E±/~. Introducing the plan waves (24) into
equation (23), we get a set of algebraical equations through which the spinor
components u±i are obtained{

u+1 = −E/
(
pzc+mc2

)
; u+2 = E/

(
pzc−mc2

)
,

u−1 = −E/
(
pzc−mc2

)
; u−2 = E/

(
pzc+mc2

)
.

(25)

Considering that E = γtimc
2 |γt|mc2 and pz = γtimuz = |γt|muz, where

γt =
(
1− u2/c2

)−1/2 is the pure imaginary tachyonic Lorentz factor and
uz > c, equations (25) can be rewritten as{

u+1 = −|γt|c/ (|γt|uz + c) ; u+2 = |γt|c/ (|γt|uz − c) ,

u−1 = |γt|c/ (|γt|uz − c) ; u−2 = −|γt|c/ (|γt|uz + c) ,
(26)
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while the normalization factor is N =
√

2(|γt|2 + 1)/(|γt|2−1). We can now
construct a wave packet by multiplying the obtained plane waves times a
Gaussian envelope function f±(t, z) [33]

ψ±G =

√
2
(
|γt|2 + 1

)
(
|γt|2 − 1

) f± (t, z)

( |γt|c
(|γt|uz±c)

∓ γtc
(|γt|uz∓c)

)
exp

{
i
(
k0z − ω±0 t

)}
. (27)

Introducing spinor (27) into equation (23), we get the two following differ-
ential equations for the envelope functions:

(
∂
∂t − c

u+1
u−1

∣∣∣
γ0

∂
∂z +

Λ+
0

i~u−1

∣∣∣
γ0

)
f+(t, z) = 0 ,(

∂
∂t + c

u−2
u+2

∣∣∣
γ0

∂
∂z +

Λ−
0

i~u+1

∣∣∣
γ0

)
f−(t, z) = 0 ,

(28)

where γ0 is the module of the tachyonic Lorentz factor corresponding to the
velocity u0 (u0 is the particle velocity at t = 0 and corresponds to the center
of the Gaussian function), and Λ±0 = 2mc2 u±1

∣∣
γ0
. The numerical coefficient

of the second term in equation (28) is the group velocity vg, which coincides
with the propagation velocity of the wave packet [33]. Using Eq. (26), we
obtain

vg = c
u+1
u−1

∣∣∣∣
γ0

= −c u
−
2

u+2

∣∣∣∣
γ0

=

(
|γ0|uz − c
|γ0|uz + c

)
c ≤ c , ∀ u0 > c . (29)

This quantity is always lower than the speed of light, which is an unexpected
result. The tachyonic Dirac equation obtained from the Tanaka Lagrangian
de facto describes a new type of subluminal particle, which can find its place
within the Standard Model if a new symmetry is conjectured, a symmetry
that transforms an ordinary particle (antiparticle) state into a correspond-
ing one consistent with the tachyonic energy–momentum relationship [34].
This is precisely the starting hypothesis of the second approach that we will
investigate next.

3. Tachyonic Dirac equation
through SLTs of Dirac wavefunctions

In this section, the tachyonic Dirac equation is formulated by perform-
ing an SLT on the ψ̃ matrix. This approach implies that the tachyonic
wavefunctions cannot be used to realise an irreducible representation of the
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Lorentz group. The SLT, denoted by ΛSTL, transforms a subluminal ref-
erence frame K̃ in a superluminal frame K such that (u− ũ) > c. This
operator must satisfy the following requirements:

(ΛSTL)† = (ΛSTL)−1 and γ0ΛSTLγ
0 = ΛSTL (30)

so that the tachyonic spinor matrix can be written as ψ = ΛSTLψ̃. The
working of SLT is detailed in reference [27]. For our purpose, we employ
the explicit form of ΛSTL that was proposed by Lemke (but can be obtained
from any other theory concerning the generalised theory of relativity [27]).
It reads [35]

ΛSTL = (1 + iα · n) /
√

2 , (31)

where α is the vector whose components are the three Dirac matrices αk, and
n is the vector whose components are the direction cosines that determine
the relative direction of motion of the reference frame K̃ with respect to K.
This matrix is unitary and Hermitian since 1 is symmetric and α · n is
antisymmetric. For simplicity, suppose that the relative motion between
the two reference frames takes place along the x-axis. In this case, the
ΛSTL matrix is ΛSTL =

[
1 + iγ5

]
/
√

2. Applying this transformation on
matrix (10), we get

ψ =
1√
2


1 + i p̃xc

Ẽ+mc2
0 0 i+ p̃xc

Ẽ+mc2

0 1 + i p̃xc

Ẽ+mc2
i+ p̃xc

Ẽ+mc2
0

0 i+ p̃xc

Ẽ+mc2
1 + i p̃xc

Ẽ+mc2
0

i+ p̃xc

Ẽ+mc2
0 0 1 + i p̃xc

Ẽ+mc2

 . (32)

From matrix (32), we note that the structure of transformed spinors is dif-
ferent than the subluminal one (see matrix (10), with the y and z component
set to zero). However, for the limit ũ → c (or mc2 → 0), the transformed
(tachyonic) wave functions converge to the ordinary ones, less than a phase
factor of (1± i) /

√
2. We can, therefore, say that analytic continuity is ful-

filled even in this approach. However, whereas in the previous case this
property is a direct consequence of the fact that the tachyonic equation
is derived from a Lorentz-invariant Lagrangian, in this case, the analytic
continuity is due to the fact that the equation is obtained by superluminal
transformation of the ordinary Dirac one.

To obtain the tachyonic equation, we perform the following transforma-
tion on the Dirac spinor:

ψ = ΛSTLψ̃ ⇒ ψ̃ = (ΛSTL)−1 ψ =
1√
2

(1− iα · n)ψ . (33)
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Since ψ̃ is a solution of the ordinary Dirac equation, we can write(
i~γ0∂t − i~cγknk∂k − 1mc2

) 1√
2

(1− iα · n)ψ = 0 , (34)

where for consistency of formalism, we used the scalar product between the
α and n vectors. Multiplying the left-hand side with (ΛSTL), we get

1

2
(1 + iα · n)

(
i~γ0∂t − i~cγknk∂k − 1mc2

)
(1− iα · n)ψ = 0 . (35)

Performing the matrix products, we see that

ΛSTLγ
0 (ΛSTL)−1 = iγknk ; ΛSTLγ

knk (ΛSTL)−1 = iγ0 . (36)

As expected, the superluminal transformation interchanges the temporal
variable with the spatial one and vice versa, that is, operator ∂t is inter-
changed with ∂k. Therefore, substituting relations (36) into equation (35),
we arrive at the tachyonic Dirac equation(

~γ0∂t − ~cγknk∂k + 1mc2
)
ψ = 0 . (37)

Equation (37) is the superluminal transformation of the Dirac one. Its co-
variance is trivially inherent from the fact that superluminal transformations
are the components of the Lorentz group ETRR which, in turn, is consistent
with the postulates of the TRR [35]. In other words, a superluminal trans-
formation transforms in a covariant way any other equation that satisfies
the formalism of the ordinary TRR.

Let us rewrite equation (31) as(
i~1∂t − i~cαknk∂k + iγ0mc2

)
ψ = 0 . (38)

The Hamiltonian associated with equation (37) is

H = i~cαknk∂k − iγ0mc2 . (39)

This Hamiltonian is not Hermitian since the operator iγ0 is anti-Hermitian
but the eigenvalues are real. The main difference between Hamiltonians (39)
and (13) is represented by the matrix −iγ0 that replaces the anti-Hermitian
operator γ0γ5.

Let us now investigate the behaviour of equation (37) under the action
of discrete symmetries. For convenience, let us rewrite it as(

i~γ0∂t − i~cγk∂k + i1mc2
)
ψ = 0 , (40)
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where the cosine directors have been omitted to simplify the formalism.
Concerning parity, performing the similarity transformation on equation (40)
with inverted space coordinates by ΛP = γ0, the operator (i~γ0∂t−i~cγk∂k+
i1mc2) is obtained. Therefore, equation (40) is parity-invariant, as is true
for the ordinary Dirac equation. The action of time-reversal symmetry,
however, presents some surprises. In fact, operating the similarity transfor-
mation using ΛT = iγ1γ3 on the conjugate time-reversed equation (40), we
get the operator

(
i~γ0∂t − i~cγk∂k − i1mc2

)
. This is because the transfor-

mation ΛT
−1 (i1)ΛT does not change the sign of the mass energy operator.

Therefore, time-reversal symmetry is violated, and it is not possible to find
any combination of gamma Dirac matrices that are able to verify the equal-
ity between equation (40) and its time-reversed conjugate. Finally, we verify
the action of the charge-conjugation symmetry, rewriting equation (22) as
follows:

(ΛC)−1
(
i~
(
γ0
)∗
∂t − c

(
γk
)∗ (

i~∂k +
e

c
Ak

)
+ (i1)∗m c2 − 1eϕ

)
ΛC

=
(
i~γ0∂t − cγk

(
i~∂k +

e

c
Ak

)
+ i1mc2 − 1eϕ

)
. (41)

This transformation holds using the same operator that leaves unchanged
the ordinary Dirac equation, namely ΛC = iγ2. Equation (38), therefore,
fulfils the charge-conjugation invariance as the Dirac one does. Regarding
the behaviour of the equation under the PT symmetry operation, it is simply
verified that it is ensured by the operator ΛPT = iγ5, which leaves the matrix
(i1) unchanged but inverts all the others. This result was expected because
Hamiltonian (39) is non-Hermitian but with real eigenvalues.

To complete the comparison with the theory investigated in the previ-
ous section, we calculate the particle velocity described by equation (38)
using always the approach based on the tachyonic wave packet that leads
to equation (28). Even in this case, to simplify the calculation, we consider
a one-dimensional motion along z-axis. Since the structure of equation (40)
is the same as that of Dirac for an ordinary particle, the spinor components
of the positive and negative frequency plane waves become{

u+1 = − (|γt|uz + c) /|γt|c ; u+2 = (|γt|uz − c) /|γt|c ,

u−1 = − (|γt|uz − c) /|γt|c ; u−2 = − (|γt|uz + c) /|γt|c .
(42)

Substituting these components into equation (29), we get

vg = c
u+1
u−1

∣∣∣∣
γ0

= −c u
−
2

u+2

∣∣∣∣
γ0

=

(
|γ0|uz + c

|γ0|uz − c

)
c ≥ c , ∀ u0 > c . (43)

Hence, the equation obtained by superluminal transformation of the Dirac
one describes a particle whose dynamics are consistent with the classical
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tachyon, namely faster than light velocity and tachyonic energy–momentum
relationship being fulfilled. This is a consequence of the fact that the mass
operator of equation (38) does not change the structure of the ordinary Dirac
Hamiltonian unlike what happens instead for the Hamiltonian obtained from
the Tanaka Lagrangian.

4. Discussion

This paper shows that, depending on the approach used, tachyonic equa-
tions that are obtained describe different particles. The theory developed in
Section 2 was formulated working within the TRR, whereas the second the-
ory was derived within the framework of the ETRR. As deeply investigated
by Sudarshan, Bilaniuk, Recami and others [36–38], the ETRR predicts the
invariance of the speed of light and ensures that the laws of physics are the
same in all inertial reference frames (subluminal and superluminal). Causal
paradoxes may also be solved, at least in microphysics [39]. However, de-
spite this, the equation obtained by performing a superluminal transforma-
tion of the ordinary Dirac equation leads to solutions with (almost) opposite
properties to those characterising the tachyonic equation derived from the
Lorentz-invariant Lagrangian of Tanaka. In fact, the latter fulfils the tachy-
onic energy–momentum relationship because of the introduction of the fifth
current operator in the mass energy term. The consequence is the loss of
invariance under the action of parity and charge-conjugation symmetries,
at least in the Dirac framework. Only the time-reversal invariance is pre-
served. This is because, as proved, equation (2) describes the dynamics of
a subluminal particle. In other words, we are dealing with a new type of
ordinary particle, called by Salesi the pseudo-tachyon [34], which arises from
having forced an invariant Lorentz equation to fulfil the tachyonic energy–
momentum relationship. The subluminal velocity of the pseudo-tachyon
also explains why equation (2) preserves the time-reversal invariance. How-
ever, it is surprising how the parity and charge-conjugation invariance can
be recovered by modifying the ordinary operators representing the P and
C symmetries. In fact, the addition of the fifth current to these operators
ensures the invariance of equation (2), which explains why equation (2) is
widely used to describe a space-like neutrino even if its velocity still remains
subluminal.

Things are different when the tachyonic equation is formulated by su-
perluminal transformation of the ordinary Dirac equation. Equation (38)
preserves many of the properties of the ordinary Dirac equation. For in-
stance, the mean velocity of the particle is consistent with the space-like
four-momentum (just like the ordinary Dirac equation is consistent with
subluminal velocity and time-like four-momentum), and the tachyonic equa-
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tion is invariant under parity and charge-conjugation symmetries. However,
it remains to be explained why the time-reversal symmetry is violated with-
out any possibility of recovering it by changing the form of the respective
operators. We believe that the violation of this symmetry is due to the
causality violation typical of superluminal motion. Even if the reinterpreta-
tion principle introduced by Feinberg, Sudarshan and others has solved this
paradox [40], it is not possible to find an operator ΛC so as to ensure the
time-reversal invariance of equation (38).

We conclude by stating that currently it is not possible to coherently
formulate a covariant equation able of describing the hypothetical superlu-
minal behaviour of the neutrino. If we want to remain in the orthodoxy
of the TRR, then we have a good theory for describing a pseudo-tachyon
neutrino. If this theory is accepted, then the experimental research should
be directed towards the precision measurements of the square mass of the
neutrino, rather than towards measuring the travel time between the source
and the detector (because the particle is subluminal). On the other hand,
if we enter into a more speculative framework, such as the ETRR, then we
have an equation that does not adapt properly to the symmetries that char-
acterise the phenomena in which the neutrino is involved. The use of one
theory rather than the other depends, therefore, on the experiment under
consideration. The enigmatic nature of the neutrino seems to inevitably
affect the ability of theoretical physics to find a complete and satisfactory
theory in the tachyonic framework.
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