
Vol. 51 (2020) Acta Physica Polonica B No 12

REVISITING WEAK RADIATIVE DECAYS OF
HYPERONS∗

Piotr Żenczykowski

Division of Theoretical Physics
H. Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences

Radzikowskiego 152, 31-342 Kraków, Poland
piotr.zenczykowski@ifj.edu.pl

(Received October 12, 2020; accepted October 17, 2020)

Triggered by the experimentally-driven renewed interest in hyperon
properties, we address the subject of weak radiative hyperon decays
(WRHD). We start with the issue of Hara’s theorem and briefly discuss
the question of its possible evasion. Then, we give a short review of the
story of vector-meson-dominance (VMD) approach to WRHD. We stress
the shift from the Hara’s-theorem-violating to Hara’s-theorem-satisfying
version of the VMD approach that did occur over time. Finally, spurred by
a recent theoretical paper, we discuss the pole model description of WRHD,
putting special attention to the issue of the contributions from the inter-
mediate Λ(1405) state. We point out that the measurement of the Λ→ nγ
decay asymmetry could resolve the encountered ambiguities and definitely
answer the question of whether Hara’s theorem is violated or not.
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1. Introduction

The problem of weak radiative hyperon decays (WRHD) has been with
us for some 60 years. It may be regarded as a weak-interaction-involving
counterpart of the issue of baryon magnetic moments. Just as understand-
ing of the latter gave us important information on the electromagnetic in-
teraction of strongly interacting particles, WRHD present us with a unique
and very simple probe on their joint electromagnetic and weak interaction.
The two problems look very similar and simple as far as strong interac-
tions are concerned: in both processes there are only one incoming and one
outgoing hadron (plus the photon), thus maximally reducing any complica-
tions possibly induced by strong interactions. Yet, while the issue of baryon
magnetic moments has been sufficiently well understood right from the very
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beginning of the quark model, the problem of WRHD still stirrs consider-
able controversy. In effect, it is being approached by subsequent generations
of physicists again and again, with their conclusions differing conceptually
(and numerically) in substantial ways.

Recently collected BESIII data on the J/ψ production and its decay into
hyperons provide an incentive to readdress the issue of WRHD. Spurred by
these experimental developments, a new round of discussion on WRHD is to
be expected (see e.g. [1–3]). In particular, paper [2] adresses the issue in the
framework of the non-relativistic constituent quark model, used to evaluate
the weak and electromagnetic transitions relevant for their incorporation
into the baryonic pole model. The authors of paper [2] argue that the 1/2−

pole terms provide a natural mechanism for evading Hara’s theorem [4], thus
explaining the large negative asymmetry observed in the Σ+ → pγ decay.
As it is the issue of Hara’s theorem that divides the (often very respectable)
authors of various WRHD papers into two opposing camps (i.e. accepting
or rejecting the theorem), the present paper begins with a presentation of
Hara’s theorem and the assumptions it is based on (Section 2). Then, in
Section 3, the story of the vector-meson-dominance (VMD) approach to
WRHD is briefly reviewed, ending with a brief description explaining my
shift (still within the general VMD framework) from the ‘against-Hara’ to
the ‘pro-Hara’ camp. In the subsequent Section 4, the results of the old VMD
and some quark model calculations are compared with those of Ref. [2]. In
this section, a thorough discussion and our views on the results of [2] are also
presented. In particular, it is pointed out that the observed negative sign
of the (experimentally sizable) Ξ0 → Λγ asymmetry (a symmetry-related
counterpart of Σ+ → pγ) does not constitute a telltale and unquestionable
sign of a Hara’s-theorem-satisfying approach. Nonetheless, we stress that —
while the Ξ0 → Λγ asymmetry may turn out to be negative in some Hara’s-
theorem-violating calculations — there exist important experimental and
theoretical arguments that strongly support the theorem. Finally, we point
out that measurement of the Λ → nγ asymmetry should yield a definite
answer on the issue of Hara’s theorem.

2. Hara’s theorem

Hara’s theorem [4] is concerned with the properties of the parity-violating
(p.v.) Σ+ → pγ decay amplitude. Being originally formulated in the lan-
guage of local field theory at hadronic level, it assumes electromagnetic
gauge invariance and CP-invariance. Under these two unshakeable assump-
tions, it states that the said p.v. amplitude has to vanish in the limit of
exact flavour SU(3). Given the fact that the mass of strange quark is in
fact larger than that of the up and down quarks, the theorem is clearly
concerned with an unphysical limit (i.e. when the mass of Σ+ becomes
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equal to that of proton). Yet, the case of baryon magnetic moments which
are fairly well-described within the SU(3) symmetric framework (with only
some 20% observable deviations from that limit) strongly suggests that this
unphysical SU(3)-symmetry limit should give predictions for WRHD that
are not far from reality. Thus, assuming that the parity-conserving (p.c.)
Σ+ → pγ amplitude is substantial (as suggested by the sizable Σ+ → pγ
branching ratio), one would expect the Σ+ → pγ asymmetry to be small
(say, of the order of 20% of the maximal allowed asymmetry of ±1). In-
stead, experiment shows that the said asymmetry is large (and negative:
αexp(Σ+ → pγ) = −0.76 ± 0.08 [5]), implying that both p.c. and p.v. am-
plitudes are substantial.

This situation and various theoretical calculations (such as e.g. [6, 7])
may be taken to suggest that Hara’s theorem does not hold in the proper
approach to WRHD. Naturally, if Hara’s theorem is not true, at least one of
its assumptions must be incorrect. The problem is that these assumptions
(CP-invariance, electromagnetic gauge invariance, and hadron-level locality)
are fundamental and virtually untouchable. Indeed, the theorem follows
directly from the consideration of the only parity-violating Σ+pγ coupling
that is permitted by CP-conservation and gauge invariance in hadron-level
theoretical language, i.e. from[

ψ̄piσµνγ5ψΣ+ − ψ̄Σ+iσµνγ5ψp
]
qµAν . (1)

Now, the weak Hamiltonian is symmetric under the s ↔ d interchange.
Moreover, under this interchange, one has Σ+(uus)↔ p(uud). In the case of
exact SU(3), when the masses of Σ+ and p become identical, the expression
relevant for the description of the p.v. Σ+ → pγ amplitude should, therefore,
be completely symmetric under Σ+(uus) ↔ p(uud). Since expression (1)
is antisymmetric, and a symmetric part of an antisymmetric expression is
zero, Hara’s theorem immediately follows. Further details of the proof of
the theorem may be found e.g. in [8].

Since the size of the experimental Σ+ → pγ branching ratio is of the right
order for a CP-conserving process, evasion of Hara’s theorem may follow
only from modifications to locality and/or electromagnetic gauge invariance.
Both options seem to require unorthodox views concerning the concept of
spacetime point. For example, the origin of the violation of Hara’s theorem
in the quark model of Kamal and Riazuddin (KR) [6] lies in the fact that
in this calculation quarks are described by plane waves that are not really
confined. The hadron-level description used in [6] is that of amulti-local field
theory, describable in position space by ψ(x1, x2, x3) (xk being kth quark
location), with no restrictions on interquark distances |xm − xn|. Such
a framework is not reducible to the language of an effective hadron-level
local field theory used in the proof of Hara’s theorem. In the KR scheme,



2114 P. Żenczykowski

the quarks are free and do not feel the effects of confinement. In other words,
the KR calculations involve severe non-locality that provides the reason for
the violation of Hara’s theorem.

The argument that an explanation of Hara’s theorem violation could be
attributed to the point-like nature of hadrons being only approximate (but
not severely non-local in the sense of [6]) should not be expected to work,
as Hara’s theorem deals with the limit of vanishing photon momentum. In
this very long wavelength limit, the spatial internal structure of hadrons
should cease to be discernible and the hadronic behaviour should be satis-
factorily described in the language of an effective local field theory at hadron
level. Yet, various explicit quark-based calculations indicate violation of the
theorem.

3. A brief history of the VMD approach

A somewhat different scheme that suggests evasion of Hara’s theorem
is the calculation of [7] which is based on the idea of vector-meson dom-
inance (VMD). According to VMD, the coupling of photon to hadrons is
proportional to an appropriate vector-meson–hadron coupling, with the fac-
tor of proportionality being basically the ratio of electric charge and a strong
hadron-level vector-meson–hadron coupling. The rationale for the applica-
tion of VMD in [7] was simple: it followed from the general acceptation of
the view that ‘VMD always works’. It appears then that when the parity-
violating couplings of vector mesons to baryons are assumed to be of the
form derived in simple quark model/SU(6)W studies on nuclear parity viola-
tion [9], the application of the idea of VMD leads to the violation of Hara’s
theorem. The origin of this result stems from the form of vector-meson–
baryon–baryon parity-violating Bi → BfV couplings, identified in [9] with

V µψ̄fγµγ5ψi . (2)

Using VMD, Eq. (2) suggests the existence of a non-vanishing Aµψ̄fγµγ5ψi
photon–baryon term. If such a term does exist in addition to the standard
Aµψ̄fσµνγ5ψi coupling of Eq. (1), the assumptions of Hara’s theorem are
not satisfied and the theorem could be violated. The problem is that such
a term violates electromagnetic gauge invariance at hadronic level (see e.g.
[8]). Thus, if such an effective term exists in the real world, something very
peculiar must be going on.

Instead of addressing directly the theoretical aspects of the puzzle raised
by the suggested existence of the Aµψ̄fγµγ5ψi coupling, one can look for
experimental clues that could help with its solution. Indeed, by analogy with
the issue of baryon magnetic moments, one can expect that experimental
data on Σ+ → pγ and its symmetry-related WRHD counterparts (i.e. Σ0 →
nγ, Λ → nγ, Ξ0 → Λγ, Ξ0 → Σ0γ, and Ξ− → Σ−γ) should not deviate
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far from the SU(3) limit. Thus, if the Hara’s-violating and Hara’s-satisfying
alternatives lead to two sets of well-distinguishable predictions for other weak
radiative parity-violating amplitudes, experiment could give us important
hints on the theoretical issue of what happens in the SU(3) limit.

Since the very small size of the experimental Ξ− → Σ−γ branching ratio
tells us that the s → dγ single-quark transition is negligible, the dominant
part of weak transition should involve W -exchange between quarks. Fur-
thermore, one should be concerned mainly with its contribution to the p.v.
WRHD amplitudes (as no substantial controversies surface in the p.c. am-
plitudes). There are two possible time orderings in which the interquark
W -exchange and the photon emission may occur. In the SU(3)-symmetric
approach and for each one of the two orderings separately, the contributions
to the amplitudes of the Σ+ → pγ, Σ0 → nγ, Λ → nγ, Ξ0 → Λγ, and
Ξ0 → Σ0γ decays are related by SU(3). There remains the question of how
the amplitudes corresponding to these two orderings should be combined
with one another, i.e. should they be added or subtracted (for relatively
real amplitudes). This involves the issue of the symmetry properties of the
whole amplitude under i ↔ f interchange. One can convince oneself (see
e.g. [8]) that the Aµψ̄fσµνγ5ψi (Aµψ̄fγµγ5ψi) expressions correspond to the
subtraction (addition) of the amplitudes relevant for the two time orderings
(the A and B amplitudes of [2]). Thus, if the two resulting possibilities
for the total p.v. amplitudes markedly differ, data on branching ratios and
asymmetries may resolve the issue of the violation of Hara’s theorem. The
set of relevant Bi → BfV baryon–baryon–vector-meson SU(3)-symmetric
A- and B-type amplitudes is given in Table I (it is taken from [10] with
amplitude signs adjusted to fit those of the p.c. amplitudes from the re-
cent work of [2]). Hara’s theorem appears in the subtraction prescription
as a result of the cancellation of the identical coefficients (−1/3

√
2 ) at the

A- and B-type amplitudes contributing to Σ+ → pγ. In other words, the
relative scale of the A and B amplitudes is fixed in the SU(3) symmetry
limit. Detailed calculations (e.g. in [11]) show that the relevant amplitude is
+(A−B) (i.e. not −(A−B)). Thanks to the essential differences between
the subtraction and addition alternatives, the signs of some WRHD asym-
metries appear to be of particular significance (see Table I). In fact, it was
argued in [8] that the crucial experimental number is the sign (and size) of
the Ξ0 → Λγ decay asymmetry1. Actually, this conclusion is valid provided
a ‘sufficiently symmetric description’ of the p.v. amplitudes is adopted. The
meaning of the term ‘sufficiently symmetric’ will become clear at the end of
this section.

1 As can be seen from Table I, there is another Hara’s-theorem-sensitive asymmetry,
namely that of Λ → nγ. Yet, as this asymmetry is very hard to be determined
experimentally, no stress was put in the past on the importance of its measurement.
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TABLE I

Parity-conserving and parity-violating Bi → BfU0 baryon–baryon–vector-meson
amplitudes (in units of 10−7; bR = 5.3) [10]. U0 denotes U -spin-0 vector meson.
The p.v. amplitudes, adapted from [10], respect SU(3) symmetry. Amplitudes
A and B correspond to the A and B pieces of the p.v. WRHD amplitudes as
discussed in [2]. Columns 4 and 5 contain the coefficients at bR in the A and B
amplitudes respectively. In the last two columns the signs of asymmetries for the
Hara’s satisfying (violating) combinations of the A and B amplitudes are given.
The signs of all amplitudes are adjusted to fit the signs of p.c. amplitudes in [2,
Table II].

Decay Tot p.c. Tot p.v. p.v. A p.v. B Asym. signs
(A−B) A−B A+B

(Hara) (no Hara)

Σ+ → pU0 +18.8
(
− 1

3
√
2

+ 1
3
√
2

)
bR − 1

3
√
2
− 1

3
√
2

0 −

Σ0 → nU0 +42.1
(
+ 1

6 −
1
6

)
bR + 1

6 + 1
6 0 +

Λ→ nU0 +15.7
(

+ 1
6
√
3
− 1

2
√
3

)
bR + 1

6
√
3

+ 1
2
√
3

− +

Ξ0 → ΛU0 −13.9
(

0 + 1
3
√
3

)
bR 0 − 1

3
√
3

− +

Ξ0 → Σ0U0 −62.1
(
+ 1

3 − 0
)
bR + 1

3 0 − −

It was stressed in [8] that the available description of the parity-conserving
Ξ0 → Λγ is very reliable and that, for sufficiently symmetric descriptions
of the p.v. amplitudes (such as those of e.g. [6, 7, 11], see later for a more
detailed clarification), the size and sign of the Ξ0 → Λγ asymmetry are
predicted to be large (0.7–0.9 in absolute value) and negative (positive) for
the Hara’s-theorem-satisfying (violating) case. The difference in sign can be
readily traced to the difference in sign between the A ± B options, which
follows from the fact that in the appropriate symmetry limit, the relevant
total A-type Ξ0 → Λγ amplitude is zero. Thus, when Borasoy and Holstein
claimed in their paper [12] that in the ChPT (Hara’s-theorem-satisfying)
approach one gets α(Ξ0 → Λγ) = +0.46, one could suspect that their paper
contains an error. Indeed, it was soon shown [13] that the approach of [12]
omits the contribution from the intermediate 1/2− SU(3)-singlet state (i.e.
from Λ(1405)). When this contribution is added as in [11] (i.e. in a suffi-
ciently symmetric way, see later), one recovers the negative sign and signif-
icant size of the Ξ0 → Λγ asymmetry [13].

The existence of the problem with the treatment of the contribution
from the intermediate Λ(1405) may be conjectured from the consideration
of the decomposition of the A- and B-type p.v. amplitudes of Table I into
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the individual contributions from the intermediate JP = 1/2− states of 28,
48, and 21 from the (70, 1−) multiplet of SU(6)×O(3). This decomposition
is given in Table II (adapted from [13] to fit the p.c. phases in Table I and
in [2]). The coefficients at the A- and B-type amplitudes of Table I are
proportional to the relevant entries (marked all) in Table II (by construc-
tion, with positive proportionality sign, i.e. bR ∝ 2 + K) 2. Thus, simple
quark model/VMD expressions are obtained through the summation over
the individual contributions from the 1/2− intermediate states. In other
words, the relative signs of the individual pole model contributions may be
easily cross-checked from the condition that (in the appropriate symmetry
case) they should add up to the simple quark model/VMD results. When
summed up over all pole terms, the overall pattern of pole model contribu-

TABLE II

Decomposition of p.v. SU(3)-symmetric A and B amplitudes into contributions
from the (70, 1/2−) intermediate states (adapted from [13] to fit the phases in
Table I). For the value of K, see the text.

Decay Int. state p.v. A p.v. B A+B A−B
Σ+ → pγ 28 − 1

3
√
2
(2 +K) − 1

3
√
2
(2 +K)

48 0 0

all − 1
3
√
2
(2 +K) − 1

3
√
2
(2 +K) − 2

3
√
2
(2 +K) 0

Λ→ nγ 28 1
6
√
3

(
2 + K

3

)
1

3
√
3

(
2 + K

3

)
48 1

9
√
3
K 2

9
√
3
K

21 0 1
6
√
3
(2 +K)

all 1
6
√
3
(2 +K) 1

2
√
3
(2 +K) 2

3
√
3
(2 +K) − 1

3
√
3
(2 +K)

Ξ0 → Λγ 28 − 1
6
√
3

(
2 + K

3

)
− 1

3
√
3

(
2 + K

3

)
48 − 1

9
√
3
K − 2

9
√
3
K

21 1
6
√
3
(2 +K) 0

all 0 − 1
3
√
3
(2 +K) − 1

3
√
3
(2 +K) 1

3
√
3
(2 +K)

Ξ0 → Σ0γ 28 1
6

(
2 + K

3

)
0

48 1
9K 0

21 1
6 (2 +K) 0

all 1
3 (2 +K) 0 1

3 (2 +K) 1
3 (2 +K)

2 The K parameter was estimated in [13] to be around 1 (for Ref. [11], one finds
K ≈ ω/m ≈ 1.25, with ω being h.o. excitation frequency in the constituent quark
model, and m being SU(3)-symmetric constituent quark mass).
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tions (sometimes regarded as long-distance contributions) must reproduce
the pattern of the quark model/VMD calculations (separately for the A- and
B-type amplitudes). Any distinction between the quark-level and baryon-
level terms should be irrelevant as far as effective SU(3) properties of the
amplitudes are concerned. From Table II, it is immediately seen that the
contribution from 21 is essential for the appearance of the vanishing total
A-type Ξ0 → Λγ amplitude. As shown in [13] in more detail, when this
contribution from Λ(1405) is taken into account in a sufficiently symmet-
ric way, one tends to obtain a sizable negative Ξ0 → Λγ asymmetry, thus
reproducing the predictions of [11] quite well.

At the time Ref. [8] was written and for a couple of years afterwards,
experiment indicated substantial positive asymmetry of the Ξ0 → Λγ decay,
supporting the belief that Hara’s theorem is violated (my last paper adopt-
ing this view being [14]). It was only around the time of the publication of
[14] that the NA48 experiment [15] measured the Ξ0 → Λγ asymmetry to be
−0.78 ± 0.19, i.e. large and negative, thus providing a strong experimental
argument for Hara’s theorem being satisfied. This triggered my shift from
the against-Hara to the pro-Hara camp. In order to agree with the new data,
the subsequent VMD papers [10, 16] accepted that the so-far used (quark-
model-based) description of the vector-meson–baryon–baryon p.v. couplings
(as given in [9]) has to be substantially modified. The relevant modifica-
tion does not only explain the observed signs and absolute magnitudes of
the WRHD but — at the same time — it resolves another old problem
in weak hyperon decays: the discrepancy between the f and d SU(3) cou-
pling constants as observed in the S- and P -waves of non-leptonic hyperon
decays (NLHD) [17]. Specifically, [10, 16] explain why, contrary to the soft-
meson theorems predicting fP /fS = dP /dS = 1, one has fP /fS ≈ 1.5 and
dP /dS ≈ 2.2. Given the simultaneous resolution of the problems apppearing
in NLHD and WRHD, one has to regard the Hara-theorem-satisfying (SU(3)
breaking) approach of [10] as the most likely resolution of the relevant prob-
lems.

As far as details are concerned, paper [10] employs a ‘sufficiently symmet-
ric’ 1/2− pole-model description of the parity-violating amplitudes (as used
in [11]). In this description (the following clarifies the idea of ‘sufficiently
symmetric’), one breaks SU(3) symmetry between the A and B amplitudes
in a simplified way. First, SU(3)-breaking is considered in the pole model
denominators only. Second, all A amplitudes are made relatively larger by
a single pole-model-induced denominator factor ω/(ω − ∆ms) (and, like-
wise, all B amplitudes are made relatively smaller by an analogous factor
ω/(ω + ∆ms)), with ω ≈ 570 MeV being the h.o. excitation frequency and
∆ms ≈ 190 MeV being the strange–non-strange quark mass difference. In
other words, in such a ‘sufficiently symmetric’ description, the relative sizes
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of all A-type amplitudes (and, separately, the relative sizes of all B-type
amplitudes) stay unchanged among themselves. Accordingly, the propor-
tions of the contributions from the 28, 48, and 21 multiplets stay unchanged
within the whole A (or B) amplitude group (i.e. when compared with those
given in Table II). Thus, for example, for the Ξ0 → Λγ decay, the A-type
contributions from the 28, 48, and 21 states still add up to 0 (as in Table II),
and it is the B-type amplitude alone that determines the relevant Ξ0 → Λγ
asymmetry.

We conclude this section on the history of the application of VMD to the
description of WRHD by stressing that the final (Hara’s-theorem-satisfying)
VMD papers [10, 16] markedly differ from the earlier ones in which Hara’s
theorem is violated (e.g. [7]): the two groups of VMD papers use two com-
pletely different forms of the p.v. Bi → BfV amplitudes (i.e. A+ B in the
first group and A−B in the second group).

4. Contributions of intermediate Λ(1405)

In a recent paper [2], the issue of the pole model description of WRHD
(considered as the dominant mechanism of these decays) was addressed
anew. In the approach of [2], the weak and electromagnetic transitions
involved in the description were evaluated within the SU(3)-symmetric con-
stituent quark model. SU(3) breaking entered through the pole model de-
nominators in which experimentally observed 1/2+ and 1/2− masses were
used. For the purposes of our discussion, in Table III we list the results
of the calculations of the p.c. and p.v. amplitudes given in Table II of [2].
When compared with the original Table II, our Table III is simplified: we
summed up the amplitudes arising from the intermediate Λ and Σ for the
28 and (separately) for the 48 multiplets. In this way, a direct comparison
with our Table II becomes possible.

Joint inspection of Tables II, III reveals various similarities and differ-
ences, and permits drawing important conclusions. Actually, a straightfor-
ward comparison of the two tables is not possible due to different treatments
of SU(3), which is exact in Table II but broken in Table III. Still, to the
extent that SU(3) is not broken too much, the two tables should exhibit im-
portant similarities. Indeed, consider first the Σ+ → pγ p.v. amplitudes A
and B. In both tables they are negative (our p.c. phases have been adjusted
to fit those of [2]). Furthermore, the A amplitude in Table III is larger in
absolute magnitude than amplitude B, which agrees with the discussion of
the ‘sufficiently symmetric’ SU(3)-breaking extension of Table II (see the
preceding section), according to which the scale of the A (B) amplitudes
becomes relatively larger (smaller) than that given in Table II.



2120 P. Żenczykowski

TABLE III

Weak radiative hyperon amplitudes as evaluated in [2]. P.v. amplitudes arising
from the intermediate excited Λ and Σ states (separately from the 28 and the 48
multiplets) have been added.

Decay Tot. p.c. Tot. p.v. Int. p.v. A p.v. B
state

Σ+ → pγ 5.10 −15.40− 2.66i 28 −9.65− 2.39i −5.75− 0.27i
48 0 0

all −9.65− 2.39i −5.75− 0.27i

Σ0 → nγ 6.69 1.33 + 1.37i 28 7.69 + 1.92i −0.13− 0.04i
48 −0.68− 0.15i 0.02− 0.05i
21 −5.58− 0.36i

all 7.01 + 1.77i −5.69− 0.45i

Λ→ nγ 5.82 −14.91− 1.48i 28 −4.72− 0.99i −6.45− 0.28i
48 0.22 + 0.03i 0.31− 0.02i
21 −4.27− 0.28i

all −4.50− 0.96i −10.41− 0.58i

Ξ0 → Λγ −7.81 −4.38− 3.88i 28 4.76 + 0.26i 6.33 + 0.22i
48 −0.23− 0.08i −0.46− 0.01i
21 −14.7 − 4.26i

all −10.17− 4.08i 5.87 + 0.21i

Ξ0 → Σ0γ −8.15 −45.65− 10.67i 28 −10.75− 0.59i 0
48 0.21 + 0.07i 0
21 −35.11− 10.15i

all −45.65− 10.67i

Upon closer inspection, a similar enhancement (reduction) of the ab-
solute magnitude of the A (B) amplitudes can be seen for the remaining
Λ → nγ, Ξ0 → Λγ, and Ξ0 → Σ0γ decays. Consider, for example, the 21
contributions to the Λ→ nγ and Ξ0 → Λγ decays. In the SU(3)-symmetric
case, they should be equal in magnitudes (see Table II), but in the SU(3)-
breaking case due to the energy denominator effects, the 21 contribution
to the A(Ξ0 → Λγ) amplitude should be larger (in absolute magnitude)
than the 21 contribution to the B(Λ → nγ) amplitude. This is well-seen
in Table III where the physical mass value of the 21 state (i.e. Λ(1405)) is
used. In fact, as calculated in [2], due to the low mass of Λ(1405), the size of
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such effects may sometimes be very substantial. For example, for the p.v.
Ξ0 → Λγ amplitude in [2], the 21 A-type contribution becomes larger than
the sum of all the remaining (A and B) terms3.

Still, there is an important difference between the Λ → nγ, Ξ0 → Λγ,
and Ξ0 → Σ0γ parity violating amplitudes of Table II and those of Table III:
the dominant (28 and 21) contributions in Table III differ in sign from those
in Table II. As stressed in the previous section, the relative signs of the
A and B amplitudes are universal in the SU(3) limit and provide a useful
cross-check on the calculations. Thus, this overall sign difference constitutes
a problem for the Λ → nγ, Ξ0 → Λγ, and Ξ0 → Σ0γ lines of Table II
in [2] (but not for the Σ+ → pγ line). It would be therefore worthwhile
to see what happens with the entries of Table II of [2] in the SU(3) limit,
compare the individual A and B amplitudes with earlier calculations (e.g.
[11, 13]) and trace the origin of sign discrepancy. This is important as the
signs of Λ → nγ and Ξ0 → Σ0γ asymmetries (as calculated in [2]) are
opposite to the experimental ones, thus hinting quite clearly that there is a
problem with the signs of the three (Λ → nγ, Ξ0 → Λγ, and Ξ0 → Σ0γ)
p.v. amplitudes of [2]. In fact, we will argue below that the signs of the
Λ → nγ and Ξ0 → Σ0γ asymmetries are much less model-dependent than
the sign of the Ξ0 → Λγ asymmetry, thus further confirming our disbelief
in the overall sign of the three relevant sets of p.v. amplitudes.

In order to correct for the sign inconsistency observed between some of
the corresponding p.v. amplitudes of Tables III and II, and for the sake of the
subsequent discussion, we now multiply all relevant (Λ→ nγ, Ξ0 → Λγ, and
Ξ0 → Σ0γ) p.v. amplitudes of Table III by −1 as suggested by Table I4. This
modification changes the signs of all involved asymmetries (calculated in [2]
to be, respectively: −0.67, +0.72, and +0.33). Thus, it leads to positive Λ→
nγ asymmetry (i.e. +0.67) and to negative asymmetries for Ξ0 → Λγ and
Ξ0 → Σ0γ (respectively: −0.72 and−0.33). With the exception ofΞ0 → Λγ
case, this modification agrees with what was expected in the Hara’s-theorem-
violating case [8] (see asymmetry signs for the Hara’s-theorem-violating (A+
B) case in Table I). It also agrees with experimental data that are available
for Ξ0 → Λγ (−0.70± 0.07) and Ξ0 → Σ0γ (−0.69± 0.06) [5]. The above
procedure of sign reversal applied to the relevant amplitudes of Table III
should not be considered as an ad hoc correction of the observed problem
of signs. Instead, it should be viewed as an estimate of what would have

3 A simple estimate of this effect may be obtained by considering the ratio of the pole
model energy denominators relevant for A(Ξ0 → Λγ) amplitudes with intermediate
21 and 28 states: (MΛ(1670) −MΞ(1310))/(MΛ(1405) −MΞ(1310)) ≈ 3.5. This could be
compared with the ratio of 21 and 28 A-type Ξ0 → Λγ p.v. amplitudes of Table III
which is (roughly): | − 14.7/4.76| ≈ 3.

4 Naturally, I prefer to believe in my own calculations, especially as they agree with
those of [11] and various other papers.
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happened in the Hara’s theorem violating (VMD) version [7] of the pole
model of [10] if the condition of the sufficiently symmetric treatment of
intermediate states were dropped and the physical masses of these states
were used (see footnote 3 and the subsequent paragraph).

The issue of the negative sign obtained in this way for the Ξ0 → Λγ
asymmetry appears very interesting. Indeed, in the Hara’s-theorem-violating
and ‘sufficiently symmetric’ case (compare Table II), the A-type contribu-
tions from the 28, 48, and 21 intermediate states add up to zero, in effect
leading to a positive Ξ0 → Λγ asymmetry. In the now discussed (sign-
altered) modification of [2], the substantial negative Ξ0 → Λγ asymmetry
appears because (as already discussed) the contribution from the interme-
diate 21 (i.e. from Λ(1405)) exceeds the sum of all other contributions and
reverses the expected sign of the total A + B amplitude. Thus, we have a
mechanism here (a highly dominant contribution from Λ(1405), due to the
smallness of its mass) which leads to a negative Ξ0 → Λγ asymmetry, as
observed in the data. In other words, paper [2] (or, more precisely, its sign-
modified version discussed here) brings attention to the fact that one can
get a negative Ξ0 → Λγ asymmetry in the Hara’s-theorem-violating case
provided the symmetry of the spectrum of the intermediate 1/2− states is
severely broken. Therefore, the negativeΞ0 → Λγ asymmetry, earlier argued
[8] to be crucial, does not constitute an unquestionable sign of Hara’s theo-
rem being satisfied. Yet, this concerns the contributions to the A(Ξ0 → Λγ)
amplitude only. As can be seen from an inspection of the relevant entries
in Tables II and III, a small value of the Λ(1405) mass cannot change the
predicted signs of the Λ→ nγ and/or Ξ0 → Σ0γ asymmetries: the relevant
contributions from the intermediate 21 and 28 states add up constructively.
In particular, in the case of Hara’s theorem violation, the Λ→ nγ asymme-
try is still predicted to be positive. Thus, measurement of this asymmetry
would be extremely illuminating.

5. Conclusions

Are we now back in the situation when Hara’s theorem violation becomes
a possible option? In principle yes, with the problem certainly requiring a
further study. However, it is hard to believe today in the evasion of Hara’s
theorem. The reason is that the model discussed in [10, 16] supplies a
successful unified picture of both non-leptonic and radiative weak hyperon
decays, linking them together and explaining simultaneously both (1) the
S : P puzzle in NLHD (i.e. the sizes of the ratios of relevant SU(3)-invariant
couplings fP /fS and dP /dS) and (2) the set of experimental WRHD asym-
metries and branching ratios in the orthodox (Hara’s-theorem-satisfying) ap-
proach. To the contrary, such a unified and parsimonious picture of NLHD
and WRHD is so far absent in the Hara’s-theorem-violating case.
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If one insists nonetheless on disregarding information coming from NLHD
and restricts the considered experimental input to the WRHD data only, the
resolution of the issue of Hara’s theorem could come from the measurement
of the Λ → nγ asymmetry. This asymmetry is so far unknown, but should
be definitely negative (positive) in the Hara’s-theorem-satisfying (violating)
case as discussed at the end of the previous section. Unfortunately, this
decay presents severe problems on the experimental side.
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