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The experimental energy ratio R4+1 /2+1
∼= 2 suggests 116Te as a proto-

typical vibrational nucleus. To test this hypothesis and also consider the
possibility of deformation signatures in this nucleus, the energy spectra
and energy surface are derived using the Interacting Boson Model includ-
ing Configuration Mixing (IBMCM) and also an SU(1,1)-based transitional
Hamiltonian in the both IBM 1 and 2 versions between U(5) and SO(6)
dynamical limits. Both models reproduced the experimental energy levels
by acceptable accuracy when the deformation effect is neglected. In ad-
dition, the results for control parameters of transitional Hamiltonians and
the shape of energy surface propose an exactly U(5)-like structure for this
nucleus.
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1. Introduction

The vibrational nuclei are the subject of many recent studies due to
the large amount of data which has been accumulated for these nuclei [1–
14]. These data allow an exact calculation of phonon and multi-phonon
structures, anharmonicities in vibrational spectra, and different theoretical
approaches to understand this class of nuclei. On the other hand, the concept
of deformed shapes and the appearance of different shapes in a given nucleus
which lead to the shape coexistence phenomena force us to consider the effect
of other symmetries in nuclei which are known as the best candidates for a
special symmetry limit [1–10].
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The most commonly used framework to consider dynamical symmetries
and related topics such as quantum phase transition and shape coexistence
is the Interacting Boson Model [11–25]. This model in the s- and d-bosons
version describes the nuclear structure of even–even nuclei within the U(6)
symmetry, possessing U(5), SU(3) and O(6) dynamical symmetry limits.
These descriptions point out that there is a first order shape phase transi-
tion between U(5) and SU(3) limits and a second order shape phase tran-
sition between U(5) and O(6) limits. The analytical description of nuclear
structure at the critical point of phase transitions has attracted extensive
interest in the recent decades. One has to employ some complicated numer-
ical methods to diagonalize the transitional Hamiltonian in these situations
but Pan and Draayer in Refs. [11, 12] have proposed a new solution which
is based on affine SU(1,1)-algebraic technique and explores the properties of
nuclei classified in the U(5) ↔ SO(6) transitional region of IBM.

It was long believed that the tellurium isotopes were good examples of the
quadrupole vibrational nuclei, namely U(5) nuclei [13–34]. However, during
the last few years, new experimental data and calculations have led to a
modified picture of these nuclei. By using the collective models in describing
the structure of tellurium isotopes [13], these nuclei can be considered to be
soft with regard to the γ deformation with an almost maximum effective
trixiality of γ ≈ 30◦. This means that the tellurium isotopes appear to
evolve from the U(5) to O(6)-like structure in the IBM classification. On
the other hand, if we use the results of the Casten et al. [3] which suggest the
energy ratio as R4+1 /2

+
1

∼= 2.00 for spherical nuclei corresponding with the
U(5) symmetry, the 116Te fulfills exactly this criterion, e.g. R4+1 /2

+
1

∼= 2.003.
In this study, we have focused on the 116Te nucleus to consider the va-

lidity of R4+1 /2
+
1

∼= 2.00 measure to assume a nucleus as a spherical one. We
have used two formalisms which contain the mixing of spherical and axially-
deformed symmetries, namely interacting boson model including configura-
tion mixing (IBMCM) and SU(1,1)-based transitional Hamiltonian [35, 36]
to consider the energy spectra of this nucleus. Moreover, the catastrophe
theory formalism [37–44] is used to determine the exact values of control
parameter and the energy surface of 116Te.

2. Theoretical framework

The Interacting Boson Model (IBM) describes the collective properties
of several medium- and heavy-mass nuclei via algebraic methods. IBM has
three dynamical symmetries of U(5), SU(3) and O(6) which correspond to
harmonic vibrator, axial rotor and γ-unstable rotor as the geometrical ana-
logues, respectively [1–3]. Iachello in Refs. [1, 2] introduced a new set of
dynamical symmetries, i.e. E(5) and X(5), for nuclei which are located at
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the critical point of transitional regions in addition to three dynamical sym-
metry limits. These new symmetries are used to an analytical description
of nuclear structure at the critical point of phase transition. The E(5) sym-
metry describes a second order phase transition between U(5) and O(6)
symmetries of IBM [13–49].

2.1. Investigation of symmetry mixing by using IBMCM formalism

In many nuclei, the coexistence of two quite different structures in the
same energy region is manifested in the experimental data. In addition, the
low-lying excited 0+ states close in energy to the 0+ ground state are known
as the signature of symmetry mixing. Generally, there is a configuration
mixing between these structures. A particularly striking example of this
effect is observed in the Hg and Pt isotopes. In terms of the nuclear shell
model [6–11], the emergence of low-lying excited 0+ states can be traced
back to multi-particle–multi-hole excitations. The residual interaction be-
tween the valence protons and neutrons becomes subsequently enhanced,
leading to the lowering the excited 0+ energies such as condition which are
available for Hg [22] isotopes or for light nuclei such as Te isotopes [46].
The second method consists in describing the general features of the two
different configurations in terms of two different IBM calculations, and then
mixing the results of these two calculations using an appropriate IBM mix-
ing Hamiltonian [22]. Due to this technique, they made first two different
IBA calculations for the vibrational and the rotational part of the energy
spectrum, respectively. Then they mixed the two configurations using a
specifically chosen mixing-Hamiltonian to obtain the final spectrum.

3. Results and discussion

This section consists of three subsections, (i) the framework of IBMCM,
(ii) transitional Hamiltonian based on affine SU(1,1) algebra, and (iii) cal-
culation of energy surfaces. In the following, each of the subsections will be
examined.

3.1. The framework of IBMCM

Specifically, 0p–0h, 2p–2h, 4p–4h . . . shell-model configurations corre-
spond to systems of N , N + 2, N + 4, . . . interacting bosons which are
simultaneously treated and possibly mixed in configuration-mixed version
of IBM. In IBM [17–22], the regular (reg) 0h–0p states are described in
terms of N bosons, while the intruder 2p–2h and 4p–4h states require N +2
and N + 4 bosons. IBMCM allows the simultaneous treatment and mixing
of several boson configurations which correspond to different particle–hole
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(p–h) shell-model excitations [25–30]. On the basis of intruder spin symme-
try [28, 29], no distinction is made between particle and hole bosons. Hence,
the model space which includes the regular proton 2h configurations and a
number of valence neutrons outside of the N = 82 closed shell as well as
the proton 4h–2p configurations and the same number of valence neutrons,
correspond to an [N ]

⊕
[N +2] boson space. Consequently, the Hamiltonian

for two configuration mixings can be written as [22]

Ĥ = P̂ †NĤ
N
ecqf P̂N + P̂ †N+2

(
ĤN+2
ecqf +∆N+2

)
P̂N+2 + V̂ N,N+2

mix , (1)

where P̂N and P̂N+2 are projection operators onto the [N ] and the [N + 2]

boson spaces, respectively, V̂ N,N+2
mix describes the mixing between the [N ]

and the [N + 2] boson subspaces, and

Ĥ i
ecqf = εin̂d + κ′iL̂ · L̂+ κiQ̂(χi) · Q̂(χi)

is the extended consistent-Q Hamiltonian (ECQF) with i = N,N+2, n̂d the
d boson number operator,

L̂µ =
[
d† × d̃

](1)
µ

is the angular momentum operator, and

Q̂µ(χi) =
[
s† × d̃+ d† × s

](2)
µ

+ χi

[
d† × d̃

](2)
µ

is the quadrupole operator. We are not considering the most general IBM
Hamiltonian in each Hilbert space, [N ] and [N+2], but we are restricting to
an ECQF formalism [22] in each subspace. This approach has been shown to
be a rather good approximation in many calculations and, in particular, in
two recent papers describing the Pt isotopes [22, 23]. The parameter ∆N+2

can be associated with the energy needed to excite two proton particles
across the Z = 82 shell gap, giving rise to 2p–2h excitations, corrected for the
pairing interaction gain and including monopole effects [22]. The operator
V̂ N,N+2
mix describes the mixing between the N and the N + 2 configurations,

and is defined as

V̂ N,N+2
mix = ωN,N+2

0

(
s† × s† + s× s

)
+ ωN,N+2

2

(
d† × d† + d̃× d̃

)(0)
,

where the ei(i = N,N +2) are the effective boson charges and Q̂µ(χi) is the
quadrupole operator. García-Ramos and Heyde [22] have used the following
wave-function:
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ψ(k, JM)=
∑
i

aki (J ;N)ψ
(
(s, d)Ni ; JM

)
+
∑
j

bkj (J ;N+2)ψ
(
(s, d)N+2

j ; JM
)

(2)
to determine the parameters appearing in the IBMCM Hamiltonian as well
as in the T̂ (E2) operator. In the above-mentioned relation, where k, i, and
j are rank numbers. The weight of the wave function contained within the
[N ]-boson subspace can then be defined as the sum of the squared ampli-
tudes ωk(J,N) ≡

∑
i |aki (J ;N)|2. Likewise, one obtains the content in the

[N + 2]-boson subspace. García-Ramos and Heyde [22] considered the Hg
isotopic chain in their analyses and extracted the constants of Eq. (1) in
such a way that some of these quantities were kept fixed for all members of
isotopic chain. They have also considered some states and limited number of
transitions but we have used all the available experimental data for energy
levels. We have tried to obtain the best possible agreement with the experi-
mental data for the excitation energies. Using the expression of the IBMCM
Hamiltonian, as given in Eq. (1), in the most general case, 10 parameters
show up. Following the method introduced by García-Ramos and Heyde in
Ref. [22], we imposed a constraint of obtaining parameters change smoothly
in passing from isotope to isotope. Note also that we constrained εN+2 = 0,
κ′N = 0 at the first step of calculations. We have explored the validity of
this assumption and we have found very little improvement in the value of
quality measure of fitting processes

χ2 =
1

N −N ′
N∑
i=1

|Xi,exp −Xi,th|2

σ2i
,

where N is the number of experimental data, N ′ is the number of parameter
of IBMCM model, χi,exp is the experimental energy of a given state, and
σi is an error assigned to each χi,exp point. On the other hand, we have
kept the value that is needed to create an extra particle–hole pair constant.
This fixed value yields from strong similarity between experimental energy
spectra and switching off the mixing term and shifting this fixed value.
We performed a set of exploratory calculations with different set of these
quantities and found that best agreement corresponds to ωN,N+2

0 = 18 and
ωN,N+2
2 = 7.45 (in keV). The minimization is carried out using εN , εN+2,
κN , κ′N , χN , κN+2, κ′N+2, χN+2 as free parameters and other quantities as
fixed ones. We minimize the χ2 function by using the package Minuit [25]
which allows us to minimize any multi-variable function. In this way, we
obtain εN = 460.1, εN+2 = 74.3, κN = −0.06, κ′N = 0.47, χN = 0.02,
κN+2 = −0.01, κ′N+2 = 0.02, χN+2 = −0.85, ∆N+2 = 3140, ωN,N+2

0 = 18
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and ωN,N+2
2 = 7.45 (all of them are expressed in keV unit). We used these

quantities in calculation of energy levels presented in Fig. 1 and compared
them with experimental counterparts. We plotted all levels which appear for
the first time in energy spectra in the first column (it is not ground band).
Other columns contain the second and third levels with the same spin-parity
assignment.

Fig. 1. Predictions of IBMCM for energy levels and their experimental counterparts
in the 116Te nucleus. Numbers between levels describe the distance between each
other.

Energy spectra obtained using this technique are generally in good agree-
ment with the experimental data and indicate the elegance of extraction
procedure presented in this technique and they suggest the success of guess
in parameterization. In the IBMCM formalism, εi and κi are considered
as control parameters of the model which describe the effect of n̂d and
Q̂(χi) · Q̂(χi) terms in Hamiltonian. Different κ′i values which describe the
effect of quadrupole interactions in Hamiltonian yield small negative values
near zero. These results derived via extraction process suggest the main role
of n̂d term, namely, this nucleus corresponds with the U(5) symmetry. This
means that our idea to consider 116Te as a candidate for U(5) symmetry can
be approved. The negative values may depend on the type of asymmetry of
the electronic charge distribution but with the lack of enough experimental
data on dipole magnetic transition rates, it is impossible to discuss the origin
of this behavior. One may expect intruder configurations appearing in nuclei
located in the transitional regions, by construction at an excitation energy
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that is much higher than the regular configurations. This is so because the
large energy is needed to create the 2p–2h excitation across the Z = 50
closed shell. In the case of the 116Te nucleus, ∆N+2 is about 3140 keV, but
according to the results of Ref. [22], the single-particle energy cost has to be
corrected due to the strong pairing energy gain when forming two extra 4+

coupled (particle and hole) pairs, and also the quadrupole energy gain when
opening up the proton shell, as well as by the monopole correction caused
by a change in the single-particle energy gap at Z = 50 as a function of
the neutron number. In some cases, specifically around the mid-shell point
at N = 66, the energy gain through these correlations can become so large
that the intruder configurations are located below the energy of the regular
configurations. In this case, one speaks about “islands of inversion” [18]. In
U(6)-based algorithms of IBM, we must diagonalize the considered Hamilto-
nian by some complicated numerical calculation. Pan and Draayer [11, 12]
have proposed a new method based on the affine SU(1,1) Lie algebra to
exhibit the properties of nuclei which are located in the U(5)↔ SO(6) tran-
sitional region. The details of this model are available in Refs. [11, 12]. Here,
we briefly outline the basic Ansatz and summarize the results.

3.2. Transitional Hamiltonian based on affine SU(1,1) algebra

The Lie algebra corresponding to the SU(1,1) group is generated by Sν ,
ν = 0 and ±, which satisfies the following commutation relations:[

S0, S±
]
= ±S± ,

[
S+, S−

]
= −2S0 . (3)

On the other hand, the infinite dimensional SU(1,1) algebra is generated
using [11, 12]

S±n = c2n+1
s S±(s) + c2n+1

d S±(d) , S0
n = c2ns S

0(s) + c2nd S
0(d) , (4)

where cs and cd are real parameters and n can be 0, ±1, ±2, . . . The
commutation relations of these operators are[

S0
m, S

±
n

]
= ±S±m+n ,

[
S+
m, S

−
n

]
= −2S0

m+n+1 . (5)

These operators {Sµm, µ = 0, +, −; ±1, ±2, . . . } generate an affine Lie
algebra SU(1,1) without central extension. A transitional Hamiltonian can
be set by using the generators of SU(1,1) algebra to describe the transitional
region between U(5) and SO(6) limits [11, 12]

Ĥ = gS+
0 S
−
0 + εS0

1 + γĈ2(SO(5)) + δĈ2(SO(3)) , (6)

where g, ε, γ and δ are real parameters, Ĉ2(SO(3)) and Ĉ2(SO(5)) denote the
Casimir operators of these groups. If we consider cs = cd, Hamiltonian (6)
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is similar to SO(6) Hamiltonian and would be the same as U(5) Hamiltonian
when cs = 0 and cd 6= 0. Therefore, the U(5) ↔ SO(6) transitional region
can be described by cs 6= cd 6= 0 condition. In our calculation, we take
cd(= 1) constant value and cs vary between 0 and cd.

One can use the Fourier–Laurent expansion of eigenstates and SU(1,1)
generators in terms of unknown c-number parameters xi with i = 1, 2, . . . k
to determine eigenstates of Hamiltonian (6). We can consider the eigenstates
as [11, 12]

|k; νsνn∆LM〉 =
∑
ni∈Z

an1an2 . . . ankx
n1
1 x

n2
2 . . . xnkk S

+
n1
S+
n2
. . . S+

nk
|lw〉 . (7)

The analytical behavior of wave functions suffices to consider xi near zero.
With using the commutation relations between the generators of SU(1,1)
algebra, wave functions are

|k; νsνn∆LM〉 = NS+
x1S

+
x2 . . . S

+
xk
|lw〉 ,

N is the normalization factor and

S+
xi =

cs
1− c2sxi

S+(s) +
cd

1− c2dxi
S+(d) . (8)

The following set of equations makes it possible to determine c-numbers of
xi variables:

ε

xi
=
gc2s
(
νs +

1
2

)
1− c2sxi

+
gc2d
(
ν + 5

2

)
1− c2dxi

−
∑
i 6=j

2

xi − xj
, for i = 1, 2, . . . , k . (9)

Now, we can express the eigenvalues of Hamiltonian (9), i.e. E(k), as [11, 12]

E(k) = h(k) + γν(ν + 3) + δL(L+ 1) + εΛ0
1 ,

Λ0
1 =

1

2

[
c2s

(
νs +

1

2

)
+ c2d

(
ν +

5

2

)]
, (10)

where

h(k) =

k∑
i=1

ε

xi
. (11)

The quantum number k is related to total boson number N by

N = 2k + νs + ν .
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To get the energy levels of this model, a set of nonlinear Bethe-Ansatz
equations (BAE) with k unknowns for k-pair excitations has been solved.
First, we have changed the variables as

ε =
ε

g
(g = 1 keV [11, 12]) , c =

cs
cd
≤ 1 , yi = c2dxi .

Thus, the new form of Eq. (9) is

ε

yi
=
c2
(
νs +

1
2

)
1− c2yi

+

(
ν + 5

2

)
1− yi

−
∑
i 6=j

2

yi − yj
, for i = 1, 2, . . . , k . (12)

We solved Eq. (12) with definite values of c and ε for i = 1 to determine the
roots of Bethe–Ansatz equations (BAE) with specified values of νs and ν.
These values are suggested from the experimental signature of nuclear shapes
where for nuclei with R4+1 /2

+
1

∼= 2.00, the first offer is c = 0 and ε = 900.
Then, we used the “Find root” command in Maple 17 software to get all yi’s.
Maple 17 is a mathematics-based software and service widely used for educa-
tional, engineering and research aims developed by the Maplesoft Company.
We extracted the best set of Hamiltonian’s parameters, i.e. γ and δ, in com-
parison with the available experimental data [45–49] for excitation energies
of selected states 0+1 , 2

+
1 , 4

+
1 , 0

+
2 , 2

+
2 , 4

+
2 and etc., e.g. 12 levels up to 2+4 .

Fig. 2. Predictions of IBM 1 for energy levels of the 116Te nucleus. Numbers
between levels describe the distance between each other.
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In summary, we have extracted γ and δ externally from empirical evidences
and other quantities of Hamiltonian, namely c and ε, would be determined
through the minimization of σ, σ = ( 1

Ntot

∑
i,tot |Eexp(i) − Ecal(i)|2)1/2.

These processes were handled several times to produce best agreement be-
tween theoretical predictions and experimental counterparts for different
energy levels.

A detailed comparison between the predictions of IBM 1 and experi-
mental counterparts are presented in Fig. 2, while the parameters of energy
eigenvalues, Eqs. (10)–(11), are listed in Table I.

TABLE I

Parameters of transitional Hamiltonian, Eq. (9). Experimental values are taken
from Refs. [45, 49].

k ν L Eexp Eth |Eth − Eexp| REP =
∣∣∣Eexp−Eth

Eexp

∣∣∣× 100

[keV] [keV]

4 0 0+1 0 0 0 0
3 2 2+1 678.92 843.9 165.0 19.55
3 1 2+2 1219 1220.1 1.1 0.08
2 3 3+1 1637.59 1282.9 354.7 27.64
3 2 4+1 1359 999.1 359.9 36.02
2 4 4+2 31746 0.5 1776.5 1.72
2 3 4+3 1811.77 2152.8 341.0 15.84
2 4 5+1 2339.87 1887.3 452.5 23.97
2 4 6+1 2002.24 2020.3 18.1 0.89
2 3 6+2 2564.5 2396.6 168.0 7.01
2 4 8+1 32773.1 3134 60.9 11.51

σ [Minimum variation] 263.42
ε [keV] 810.0442
cs 0.0151
γ [keV] −43.5709
δ [keV] 11.0824

These quantities describe the best agreement between the calculated en-
ergy levels and their experimental counterparts taken from Ref. [49], i.e.
minimum values for σ. The result for control parameter, e.g. cs = 0.01,
suggests a pure vibrational symmetry in the 116Te nucleus and confirms our
idea to consider this nucleus as a candidate for U(5) symmetry. IBM 1 con-
firms our idea to consider 116Te as a candidate for U(5) dynamical symmetry
but as it is shown in Fig. 2, this formalism predicts some intruder states.
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Different studies [21–29] reported such intruder states in Cd, Te isotopes
chains located the closed shells. This means the normal vibrational con-
struction would not explore the observed data for two phonon triplet states,
2p–4h excitation. Different authors suggested to use the IBM 2 predictions
to calculate separately the normal and intruder states.

To this aim and for a complete description of intruder levels in the Te
nucleus, we have used the same formalism to extend the IBM 2 calculation
via SU(1,1) Lie algebra. Details are available in Refs. [11, 12] and we explore
the final results. In the IBM 2 case, the Hamiltonian can be considered as

Ĥ = gS+
0 S
−
0 + εS0

1 + γ1Ĉ2(SOπ(5)) + γ2Ĉ2(SOν(5)) + δ1Ĉ2(SOπ(3))

+δ2Ĉ2(SOν(3)) + δĈ2(SO(3)) (13)

and similar to Eq. (5), the operators of such algebra are

S±n =
∑
t

c2n+1
s;t S±(s; t) + c2n+1

d;t S±(d; t) ,

S0
n =

∑
t

c2ns;tS
0(s; t) + c2nd;tS

0(d; t) . (14)

The sum is carried over proton, π, and neutron, ν, indices. The eigenstates
of Eq. (14) can be expressed as

|k;β; νπs , ννs , νπ, νν ;nπ∆Lπ, nν∆Lν ;LM〉 = NS+
x1S

+
x2 . . . S

+
xk
|lw〉 , (15)

where 2k = Nπ +Nν − νπs − ννs − νπ − νν and

S+
xi =

∑
t

cs;t
1− c2s;txi

S+(s; t) +
cd;t

1− c2d;txi
S+(d; t) . (16)

We have c-number xi parameters which satisfy a set of equations as follows:

ε

xi
=
∑
t

g

(
c2s;t
(
νts +

1
2

)
1− c2s;txi

+
c2d;t
(
νt + 5

2

)
1− c2d;txi

)
−
∑
i 6=j

2

xi − xj
,

for i = 1, 2, . . . , k . (17)

Energy spectra in the IBM 2 version of transitional Hamiltonian can be
expressed as

E(k) =
k∑
i=1

ε

xi
+ γ1ν

π(νπ + 3) + γ2ν
ν(νν + 3) + δ1Lπ(Lπ + 1)

+δ2Lν(Lν + 1) + δL(L+ 1) + εΛ0
1 ,

Λ0
1 =

∑
t

1

2

[
c2s;t

(
νts +

1

2

)
+ c2d;t

(
νt +

5

2

)]
. (18)
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We extracted the parameters of transitional Hamiltonian similar to the
IBM 1 case. We have supposed cd = 1 and then Eq. (17) have been solved
for the i = 1 case with definite values of c and ε. Other parameters of
Hamiltonian, namely δ1, δ2, δ, γ1 and γ2, have been extracted from empirical
data available for isotopic chain, and we would repeat these processes with
different values of considered quantities to obtain the smallest σ values.
Results for the parameters of Hamiltonian in the IBM 2 version are presented
in Table II. In addition, a comparison between the IBM 2 predictions and
the experimental counterpart for the 116Te nucleus is given in Fig. 3.

TABLE II

Parameters of transitional Hamiltonian in the IBM 2 version. Experimental values
are taken from Refs. [45, 49].

k L Eexp Eth |Eth − Eexp| REP =
∣∣∣Eexp−Eth

Eexp

∣∣∣× 100

[keV] [keV]

3 0+1 0 0 0 0
2 2+1 678.92 839 160.1 19.08
2 2+2 1219 7 918.4 300.6 32.73
2 3+1 1637.59 1419.9 217.6 15.33
2 4+1 1359 1518 159 10.47
2 4+2 1746 1589.6 156.4 9.84
2 4+3 1811.77 1905.9 94.1 4.94
1 5+1 2339.87 2154.2 185.7 8.62
2 6+1 2002.24 1802.8 199.4 11.06
2 6+2 2564.5 2310 243.5 10.49
2 8+1 2773.1 2467.6 305.5 12.37

σ [Minimum variation] 201.99
ε [keV] 398.6689
cs 0.0418
γ1 [keV] 30.4825
γ2 [keV] −188.7960
δ1 [keV] −11.8434
δ2 [keV] 68.2475
δ [keV] 24.6055

IBM 2 suggests more exact results, i.e. minimum σ value, in comparison
with experimental data and also the results of IBM 1. This means that
one can consider the IBM 2 framework to describe energy spectra of the
116Te nucleus. These results suggest the accuracy of this formalism and
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Fig. 3. Predictions of IBM 2 for energy levels of the 116Te nucleus. Numbers
between levels describe the distance between each other.

extraction process for such a nucleus. The results of the IBM 2 calculation
confirm our idea of the effect of pairing to reduce the distance between
theoretical predictions and experimental counterparts. In comparison with
the predictions of IBM 1, we reach low uncertainty but our result for the cs
value is more than IBM 1 counterparts. This result for the control parameter
of the model confirms the U(5)-like structure but suggests a trivial effect due
to the axial deformation on its structure.

To get the exact value of the control parameter, we have employed the
catastrophe theory in combination with the coherent state formalism in the
both IBM 1 and 2 which make it possible to get energy surfaces and deter-
mine the exact values of the control parameter.

4. Energy surfaces

The geometric configuration of IBM can be described in the framework
of a coherent state. The coherent state [37–44] connects the algebraic and
geometric descriptions of three dynamical symmetry limits of IBM and also
allows the study of transitions among them. By using this formalism, one can
evaluate the ground-state energy as a function of shape variables β and γ,
i.e. the deformation parameters [37], similar to what have been done for
U(5) ↔ SO(6) and U(5) ↔ SU(3) transitional regions [35, 36]. The clas-
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sical limit corresponding to Hamiltonian (9) is obtained by considering its
expectation value in the coherent state [37–41]

|N,αm〉 =

(
s† +

∑
m

αmd
†
m

)N
|0〉 , (19)

where |0〉 is the boson vacuum state, s† and d† are the boson operators
of IBM, and parameter αm can be related to the deformation collective
parameters [37]

α0 = β cos γ , α±1 = 0 , α±2 =
β√
2
cos γ . (20)

In the IBM 2 framework, the most general form of coherent state is [42–44]

|Nπ, Nν , βπ, γπ, βν , γν , φ, θ, ψ〉=
1√

(Nπ)!(Nν)!
R(θ, φ, ψ)

(
Γ †π

)Nπ(
Γ †ν

)Nν
|0〉 ,

(21)
where

Γ †ρ =

[
s†ρ + βρ cos γρd

†
ρ,0 +

1√
2
βρ sin γρ

(
d†ρ,2 + d†ρ,−2

)]
√

1 + β2ρ

, (22)

and the Euler angles (θ, φ, ψ) define the orientation of deformation variables
(βπ, γπ) for proton bosons and (βν , γν) for neutron bosons as has been shown
in Ref. [42]. In the absence of hexadecupole interactions, the Euler angles
can be taken equal to zero. The energy surface would be determined by
means of

E =
〈N,αm|H|N,αm〉
〈N,αm|N,αm〉

. (23)

Then, the energy surfaces from each part of transitional Hamiltonian can be
written as 〈

gS+
0 S
−
0

〉
=

g

4

(
Nρ(Nρ − 1)(
1 + β2ρ

)2
)(

c2s + 2cscdβ
2
ρ + c2dβ

4
ρ

)
, (24)

〈
εS1

0

〉
=

εc2s
4

(
2Nρ

1 + β2ρ
+ 1

)
+
εc2d
4

(
2Nβ2ρ
1 + β2ρ

+ 5

)
, (25)

〈
γĈ2(SOρ(5))

〉
= 2

γNρβ
2
ρ

1 + β2ρ
, (26)

〈
δĈ2(SOρ(3))

〉
=

3

5

δρNρβ
2
ρ

1 + β2ρ
. (27)
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These yields the energy surfaces in the IBM 1 framework as

E(β, γ) =
g

4

(
N(N − 1)

(1 + β2)2

)(
c2s + 2cscdβ

2 + c2dβ
4
)
+
εc2s
4

(
2N

1 + β2
+ 1

)
+
εc2d
4

(
2Nβ2

1 + β2
+ 5

)
+ 2

γNβ2

1 + β2
+

3

5

δNβ2

1 + β2
, (28)

and similarly, we can get the energy surfaces in the IBM 2 framework as

E(β, γ =
g

4

(
Nρ (Nρ − 1)(
1 + β2ρ

)2
)(

c2s + 2cscdβ
2
ρ + c2dβ

4
ρ

)
+
εc2s
4

(
2Nρ

1 + β2ρ
+ 1

)

+
εc2d
4

(
2Nρβ

2
ρ

1 + β2ρ
+ 5

)
+ 2

γ1Nπβ
2
π

1 + β2π
+ 2

γ2Nνβ
2
ν

1 + β2ν
+

3

5

δ1Nπβ
2
π

1 + β2π

+
3

5

δ2Nνβ
2
ν

1 + β2ν
+

3

5

δNρβ
2
ρ

1 + β2ρ
. (29)

To analyze the energy surfaces within the catastrophe theory formalism, we
have determined the critical points of the energy surfaces. The following
algebraic equation yields the variable β (in the IBM 1 formalism and the
procedure is similar to IBM 2), and we will denote the final result as

∂E

∂β
=

β

(1 + β2)3

[
gN(N − 1)(cs + cd)(cd − cs)β2

+2

(
N

2
εc2d + 2γN +

3

5
δN − N

2
εc2s

)(
1 + β2

) ]
. (30)

The critical points of transitional region would be obtained by this equation.
This expression shows that β = 0 is a critical point for any values of the
parameters of the energy surfaces and is the fundamental root. The Tay-
lor series expansion of the energy surfaces around this fundamental root is
given by

E(β) =
g

4
N(N − 1)c2s +

N

2
εc2s +

1

4
ε
(
c2s + 5c2d

)
+
1

2

[
N(N − 1)gcs(cd − cs) +N

(
ε
(
c2d − c2s

)
+

6

5
δ + 4γ

)]
β2

+

[
3

4
N(N − 1)gc2s −N(N − 1)gcscd +

1

4
N(N − 1)gc2d

+
1

2
Nα

(
c2s − c2d

)
− 3

5
Nδ − 2Nγ

]
β4 +O(5) + . . . , (31)



2154 M. Seidi, H. Sabri

or can be rewritten in the form of

E(β) = A+A′β2 +A′′β4 + . . . , (32)

while the coefficients are given by

A=
g

4
N(N − 1)c2s +

N

2
εc2s +

1

4
ε
(
c2s + 5c2d

)
, (33)

A′ =
1

2

[
N(N − 1)gcs(cd − cs) +N

(
ε
(
c2d − c2s

)
+

6

5
δ + 4γ

)]
,

for IBM 1 , (34)

A′ =
1

2

[
N(N−1)gcs(cd−cs)+N

(
ε
(
c2d−c2s

)
+
6

5
(δ1+δ2)+4(γ1+γ2+γ)

)]
,

for IBM 2 , (35)

A′′ =

(
3

4
N(N − 1)gc2s −N(N − 1)gcscd+

1

4
N(N − 1)gc2d+

1

2
Nε
(
c2s − c2d

)
−3

5
Nδ − 2Nγ

)
, for IBM 1 , (36)

A′′ =
3

4
N(N − 1)gc2s −N(N − 1)gcscd +

1

4
N(N − 1)gc2d+

1

2
Nε
(
c2s − c2d

)
−3

5
(Nπδ1 +Nνδ2)− 2 (Nγ +Nπγ1 +Nνγ2) , for IBM 2 . (37)

We must determine the bifurcation set, the locus of the points in the space of
control parameters at which a transition occurs from one local minimum to
another [8], to identify the exact value of control parameter for each nucleus.
With using the det(H) = 0 condition, H is the matrix of the second derivate
of the energy surface at the critical point, which became ∂2E/∂β2 = 0 in
the case of a function of one variable [39]. One gets the expression

cs =
(N − 1)cd +

√
g2(N − 1)2c2d + 4 [g(N − 1) + ε]

[
εc2d + 4γ + 6

5δ
]

2(g(N − 1) + ε)
.

(38)
In the IBM 1 formalism and similarly in the IBM 2 formalism, we get the
following result:

cs =
g(N−1)cd+

√
g2(N−1)2c2d+4 [g(N−1)+ε]

[
εc2d+4(γ1+γ2)+

6
5 (δ1+δ2+δ)

]
2(g(N−1)+ε)

.

(39)

By using N = 9, e.g. the number of bosons in this nucleus, and other
parameters as presented in Tables I and II for IBM 1 and 2, respectively, and
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inserting it into Eqs. (38)–(39), we get cs = 0.02 and 0.017 as the control
parameters of model. These results, similar to what have been determined
via extraction process, suggest 116Te as a candidate for spherical symmetry.
Moreover, we have presented the energy surfaces of the 116Te nucleus. In
the transition from U(5) to the SO(6) limit, the evolution of energy surface
goes from a pure β2 to a combination of β2 and β4 that has a deformed
minimum [37]. Figure 4 shows the energy surface which is plotted as a
function of β and the predictions of IBM 1 and 2. In addition, the small
effect of quadrupole interactions in this nucleus, which are yielded by the
IBMCM formalism, has not any significant effect on energy surfaces.

Fig. 4. The energy surfaces of the 116Te nucleus as a function of order parameter β.
We have used the predictions of IBM 1 and 2 to evaluate energy surfaces.

From these figures and tables, one can conclude that the calculated en-
ergy spectra in this approach are generally in good agreement with the
experimental data. Our results indicate the elegance of the extraction pro-
cedures in IBMCM and IBM 2 formalisms and they suggest the success of
estimation processes.

5. Conclusion

As a conclusion of this study, our models, IBMCM and transitional
Hamiltonian in the SU(1,1) framework in the both IBM 1 and 2 versions,
describe the energy spectra of the 116Te nucleus. What is more, the con-
trol parameter of both models has values which propose the dominant role of
spherical symmetry in the 116Te nucleus. This result suggests a spherical-like
shape for this nucleus and offers it as a candidate for vibrational symmetry,
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U(5) limit, of IBM. This result corresponds to the experimental energy ratio
and the shape of energy surface of this nucleus. One may relate the U(5)-
like structure of 116Te to the occurrence of sub-closed shell in N = 64. The
obtained results in this study confirm that this technique is worth extending
for investigating the nuclear structure of other nuclei existing around the
mass of A ∼ 120.
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