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We report on the triggering of localized and confined chaos described
by a general cubic order damped nonlinear Schrödinger amplitude equa-
tion containing a conjugate amplitude term, representing the time-periodic
parametric driving, and a spatially periodic term representing the exter-
nal potential that cuts and confines the chaotic patterns promoted by the
former, leading to trapped chaotic space-localized structures. Numerical
simulations in 1 + 1, 1 + 2, and 1 + 3 dimensions, Lagrangian and Hamil-
tonian theories for continuous fields, moments method, largest Lyapunov
exponents, spectral distributions, and bifurcations diagrams are used to
characterize and analyze these chaotic solitons.
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1. Introduction

All of physical phenomena are nonlinear in nature. Mechanics [1], fluid
dynamics, plasma physics, gas dynamics, Bose–Einstein condensates [2, 3],
magnetism [4, 5], cosmology [6], nonlinear optics [7–13], superconductiv-
ity [14], and water wave propagation [15, 16] are some of the many branches
of science in which plenty of research is developed regarding nonlinear equa-
tions. This is the motivation for investigation in these fields, despite their
analytical and mathematical complexity. The mathematical nonlinear anal-
ysis of complex systems is distinguished for the invalidity of the superpo-
sition principle, the nonexistence of a single solution, and the inaccuracy
of the numerical approximations. This leads to the development of several
techniques in order to characterize the solutions of these systems [17–22].

(2159)
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One of the most studied and important equations that describes non-
linear systems is the nonlinear Schrödinger equation (NLSE). It took great
importance in 1950 when Ginzburg and Landau were studying the macro-
scopic theory of superconductivity [23, 24]. It was later seen that the NLSE
could be applied to a wide variety of fields, including nonlinear optics, water
waves, optical communications, photonics, plasmas, Bose–Einstein conden-
sates, micromagnetism, semiconductor electronics, etc. [25–27]. The NLSE
can be modified by the inclusion of several terms in order to account for
different physical phenomena regarding a particular physical system under
consideration [17, 28]. These terms can represent phenomena that are as-
sociated with dispersion, dissipation, energy injection, etc. It is important
to note that, despite its name, the NLSE does not necessarily have a quan-
tum interpretation, because only its mathematical structure is similar to the
Schrödinger equation of quantum mechanics [29–32].

Solitons are typical NLSE solutions with the form of localized structures
in space or time, which are stationary (although not necessarily motionless)
in the case of integrable NLSEs [33], periodic, quasiperiodic with complex
oscillations in the case of breathers [5], or chaotic, as in the case of dissipative
solitons subject to significant external driving [34, 35]. To solve spatial sys-
tems, perhaps the simplest approach is to consider a stationary soliton with
the shape of a hyperbolic-secant function [36–38]. It is well-known that this
kind of initial conditions can lead to quasiperiodic or chaotic behavior [39],
or even to spatio-temporal chaos [40].

Periodic potentials are widely studied in the context of nonlinear am-
plitude equations because of its importance as a model in several physical
phenomena to describe a diverse complex behavior. The most important and
numerically abundant effect of such potentials is nontrivial motion. These
include seesaw oscillations [41] centering at or in-between potential valleys,
and confinement in a single potential valley [27, 42–44]. Other noteworthy
examples are splitting [45–47] and the emission of radiation by a nonstation-
ary soliton [2, 27, 48, 49].

Alternate nonlinear amplitude equations include not only periodic po-
tentials but also damping and parametric driving such as the parametrically-
driven damped nonlinear Schrödinger equation [50, 51]; in fact, the interplay
between dispersion and nonlinearity is characteristic of solitons. This type
of systems allows the existence of structures such as standard and dissipative
breather solitons, which are nonchaotic quasiperiodic localized patterns [5].

Soliton-bearing systems have been analytically studied using collective
coordinate theories often called method of moments, which are equivalent to
the variational Lagrangian method [52]. The results of both methods allow
qualitative descriptions, where the agreement of such models and numerical
simulations is often deemed appropriate when sufficiently small perturba-
tions are considered [53].
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These approaches allow the construction of nonintegrable many-particle
soliton dynamics with an effective Hamiltonian which ultimately leads to
chaos [54]. Employing particle models instead of the NLSE also allows the
existence of chaotic dynamics for the three-soliton system [37]. Similar non-
integrable problems, such as coupled nonlinear Schrödinger equations, ex-
hibit solitons which are surrounded by chaotic regions [55].

Experimental evidence of chaotic solitons has been reported [56, 57] and
modeled in different contexts of pulsatile, periodic and/or chaotic soliton
dynamics (either in its structure [58] or its propagation [38]), and in phe-
nomena such as breaking of spatial and temporal symmetry [59]. This dy-
namic wealth is associated with the nonintegrability of the system due to
an increase in the degree of nonlinearity of the equations [58, 60] which
include terms that take into account several factors, namely: the nature
and geometry of the medium [36, 60, 61] as well as the potential associated
with it [36, 37, 59, 62], the soliton–soliton interaction potentials [37, 63], the
parametric forcing [5, 64], and gain–loss effects [58, 60]. The increase of the
dimension and the coupling of solitons also influences the complexity of the
system [38, 61].

The aim of this manuscript is to study the confined and localized chaos
in dissipative systems with cubic nonlinearities originated by the joint action
of external periodic spatial and temporal fields which, as far as we know,
has not been yet reported in the literature. For this task, we use the model
described by a general cubic order forced and parametrically-driven and
damped nonlinear Schrödinger amplitude equation (cubic-FPDDNLSE) in
1+1 dimensions containing a conjugate amplitude term, ηA∗, and a spatially
periodic term, AN0 sin2(Kx), where A = A(x, t) is the complex amplitude
function of the space-time coordinates, η is a constant that represents the
intensity of a periodic temporal driving field, and where N0 and K are the
amplitude and frequency of the periodic spatial field. Along with numerical
simulations, Lagrangian and Hamiltonian formulations for continuous fields
as well as the method of moments are used in order to characterize the lo-
calized solutions of the cubic-FPDDNLSE, and to analyze the impact of the
external driving fields on the dynamical properties of these chaotic solitons.

Previous work has reported the existence of localized and chaotic do-
mains triggered and confined by the action of periodic external forcing fields
described by the cubic–quintic Ginzburg–Landau equation and for the spe-
cific case of optical fibers [44]. The case we study here is essentially different,
since apart from being of cubic order, the existence of the dissipative soli-
ton is achieved by the action of the periodic temporal field, which, when
increasing in magnitude, originates the formation of an extended chaotic
pattern that expands indefinitely [5], unless it is trapped and confined by a
periodic spatial field in the form of a chaotic soliton (not domain). This is
the motivation for the present work.
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In addition, the confinement effects in 1 + 2 and 1 + 3 dimensions are
also briefly explored, considering for this purpose the actions of a 2D and
a 3D hexagonal spatial field, respectively.

This manuscript is organized as follows: in Section 2, the theoretical
model is developed; in Section 3, the results are presented and discussed;
and in Section 4, the concluding remarks are summarized.

2. Theoretical framework

2.1. Model equation

We consider a general model of amplitude equations consisting of the
collection of some variants of the nonlinear Schrödinger equation, which
apply to several problems in different physical contexts. This general form
is the cubic-FPDDNLSE

i∂tA− σ∂2xA+ γ|A|2A = (ν − iµ)A+ iηA∗ −AN0 sin2(Kx) , (1)

where A = A(x, t) is the complex amplitude, which is a function of spatial
and temporal coordinates (x, t), and where (∗) denotes the complex con-
jugation. For σ = 1, and ν = µ = η = N0 = 0, we have the standard
(or conservative) nonlinear Schrödinger equation (NLSE) [26]. For σ = 1,
γ = −1, and N0 = 0, we have the parametrically-driven and damped nonlin-
ear Schrödinger equation (PDDNLSE), where µ is the damping parameter,
η is the driving parameter, and ν is the detuning parameter (or frequency
adjustment parameter). This is the case, e.g., within the context of study-
ing precession states in parametrically-driven magnetic systems [5, 65] or
when studying a vertically driven damped chain of pendula in the contin-
uum limit [66]. For η = 0, γ > 0, and N0 = 0, we have the case of an
NLSE that describes the behavior of the amplitude of the electric field that
propagates in optical fibers, being γ the Kerr parameter, and, depending
on the sign of σ, we have the normal dispersion regime (σ = 1), or the
anomalous dispersion regime (σ = −1). The sine-squared term represents
an external periodic forcing of amplitude N0 and frequency K. The form
chosen for the latter is the simplest one that can be treated both analytically
and numerically.

As an example, a physical model that can be described by Eq. (1) is
a parametrically-driven and forced damped pendula chain, where the angle
φ(x′, t′) between a pendulum and the vertical axis in the continuum limit is
modeled by the equation

0 = φt′t′ − φx′x′ + µ′φt′ +
(
ω2
0 + δ2

[
h sin2(kx′) + γ′ sin

(
Ωt′
)])

sinφ , (2)

where x′ is the horizontal coordinate, t′ the time, µ′ the dissipation coeffi-
cient, ω2

0 the squared natural frequency, which is perturbed in the pendulum
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length by a periodic in time vertical driving [66] of amplitude δ2γ′ and by
a vertical periodic in space forcing [67] of amplitude δ2h, being δ2 the small-
ness order parameter. Working up to the cubic order, i.e. with sinφ ' φ−
φ3/6 and around the parametric resonance: Ω = −2ω0 +ν ′, being ν ′ the de-
tuning frequency, and replacing the Ansatz φ = δA exp(−i(ω0+ν ′/2)t′)+c.c.
in Eq. (2), where A is the complex modulation amplitude of slow time vari-
ation (such that ∂t′t′A and (∂t′A)2 are neglected), we obtain, up to the
δ2 order and for the quasireversible case (µ′ � ω0), our working equation,
Eq. (1), with t = δ2t′/2, σ = 1, x = δx′

√
ω0, ν = −ν ′/δ2, µ = µ′/δ2,

γ = −ω0/2, η = −γ′/2ω0, N0 = h/ω0, and K = k/
√
ω0δ.

2.2. Lagrangian and Hamiltonian formalisms for the complex amplitude

Lagrangian and Hamiltonian formulations for continuous fields are widely
used to study the NLSE and their variants whenever they could be derived
from a variational principle [39, 52]. In this case, the Hamilton principle
states that the dynamics of a physical system is determined by a functional
L called the Lagrangian density, which contains all the information about
the system dynamics, regarding all the forces that act on it. The principle
expresses that given the complex continuous field, A = A(x, t) (which in this
case is our amplitude function), the action integral

S =

∫ ∫
L (A,A∗, ∂xA, ∂xA

∗, ∂tA, ∂tA
∗;x, t) dxdt (3)

is such that from its null variation, δS = 0, the Euler–Lagrange equation
for A(x, t) is obtained

∂x

[
∂L

∂(∂xA∗)

]
+ ∂t

[
∂L

∂(∂tA∗)

]
− ∂L
∂A∗

= 0 . (4)

In this work, we are interested in studying those physical phenomena that
may be described by amplitude equations such as the variants of the nonlin-
ear Schrödinger equation or, in general, by the Ginzburg–Landau equation.
In this case, the continuous field A(x, t) is identified as the complex am-
plitude in those equations and, in general, a suitable Lagrangian density
to address those kinds of problems without damping (µ = 0) could be the
following:

L =
i

2
(A∂tA

∗ −A∗∂tA)− σ|∂xA|2 + i
η

2

(
A∗2 −A2

)
−γ

2
|A|4 + |A|2

[
ν −N0 sin2(Kx)

]
. (5)

Hence, replacing this Lagrangian density in the Euler–Lagrange equation (4),
gives the amplitude equation (1) for the µ = 0 case.
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From the Lagrangian density, the corresponding Hamiltonian density
can be deduced [68]. In this case, the Hamiltonian density is related to the
energy of the system and has the form of

H = P∂tA+ P∗∂tA∗ − L , (6)

where P = ∂L/∂(∂tA) is the canonical momentum density. Thus, by using
Eq. (5), we arrive at

H = σ|∂xA|2 − i
η

2

(
A∗2 −A2

)
+
γ

2
|A|4 − |A|2

[
ν −N0 sin2(Kx)

]
. (7)

We can observe that this equation is not an explicit function of time. There-
fore, the energy of the whole system, Eν , will be conserved

Eν =

+∞∫
−∞

{
σ|∂xA|2 − i

η

2

(
A∗2 −A2

)
+
γ

2
|A|4 − |A|2

[
ν −N0 sin2(Kx)

]}
dx = const. (8)

In this work, we see convenient to establish a global description in terms
of ordinary differential equations from the original problem described by
partial differential equations. In order to achieve this goal, the variational
and moment methods described below allow us to pass from a system of
infinite spatial degrees of freedom to one with a finite number of dynamical
parameters, which are only related to the intrinsic soliton properties. In this
sense, we talk about the spatial nonlocality of this global description.

2.3. Nonlocal Lagrangian method

Based on the numerical simulations, we adopt the same Ansatz of Ref. [41]
for the space-time profile of a soliton, with the only difference that we ex-
change the space and time variables to be in accordance with the standard
notation of the NLSE

A(x, t) = ρ(t) sech

[
x− x0(t)
τ(t)

]
ei(θ(t)+ω(t)x) , (9)

where ρ(t), τ(t), and x0(t) are the soliton amplitude, mean width, and mean
position, respectively; while ω(t) and θ(t) are their spatial frequency and
phase, respectively.
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The nonlocality or globality of the method consists in replacing this
Ansatz in the Lagrangian density and then integrating it over the whole
space. By doing so, we obtain an averaged Lagrangian that is only a function
of time

L =

∞∫
−∞

L dx = 2τρ2
{
θ̇ + x0ω̇ − σω2 − σ

3τ2
− γρ2

3
+ ν

− N0

2

[
1− cos(2Kx0)

sinhc(πKτ)

]
+ η

sin(2 [θ + x0ω])
sinhc(πωτ)

}
,

(10)

where the dot represents the derivative with respect to time and sinhc(·) =
sinh(·)/(·). Using this Lagrangian in the Euler–Lagrange equations, d

dt
∂L
∂ξ̇
−

∂L
∂ξ , where ξ = {τ, ω, x0, θ, ρ}, we obtain, respectively

1

τ
= − γ

2σ
τρ2 +

3N0τ

4σ
{cothc(πKτ)− 1} cos(2Kx0)

sinhc(πKτ)

+
3ητ

2σ
{cothc(πωτ)− 1}sin(2[θ + x0ω])

sinhc(πωτ)
, (11)

ẋ0 = −2σω − η

ω
{cothc(πωτ)− 1}sin(2[θ + x0ω])

sinhc(πωτ)
, (12)

ω̇ = N0
K sin(2Kx0)

sinhc(πKτ)
− 2η

ω cos(2[θ + x0ω])

sinhc(πωτ)
, (13)

d

dt
log
(
τρ2
)

= 2η
cos(2[θ + x0ω])

sinhc(πωτ)
, (14)

θ̇ =
1

2
γρ2 + σω2 − ν +

1

2
N0

−
{
N0

K sin(2Kx0)

sinhc(πKτ)
− 2η

ω cos(2[θ + x0ω])

sinhc(πωτ)

}
x0

−N0

4
{3− cothc(πKτ)} cos(2Kx0)

sinhc(πKτ)

−η
2
{3− cothc(πωτ)}sin(2[θ + x0ω])

sinhc(πωτ)
, (15)

where cothc(·) = (·)/tanh(·).
At this point, our model still does not consider dissipative processes.

These are taken into account in the method below, and although the dis-
sipative term can formally be obtained from a variational principle, as in
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Ref. [69], in this work, we obtain it from the method of moments, which is
used mainly to characterize the mean behavior of the numerical solutions
found.

2.4. Method of moments

To characterize the solutions of the cubic-FPDDNLSE and to comple-
ment the results of the previous method, we use the method of moments.
This method is based on constructing a system of equations that allow us to
analyze the evolution of the properties of a solitary wave before knowing its
explicit form [21]. Each of these properties is assigned to an integral called
moment. The lower order ones we consider are

I1 =

∞∫
−∞

|A|2dx , I2 =
1

2

∞∫
−∞

(A∂xA
∗ −A∗∂xA)dx ,

D1 =

∞∫
−∞

x|A|2dx , D2 =

∞∫
−∞

(x− x0)2|A|2dx ,

M1 =

∞∫
−∞

(x− x0)(A∗∂xA−A∂xA∗)dx . (16)

By using the Ansatz given by Eq. (9), we have that I1 = 2τρ2 = Q measures
the area below the curve of the squared |A| amplitude. Depending on the
context, it could be called mass, charge, intensity, energy, power, etc. [70].
iI2 = ωI1 = P is called momentum associated to the function A [70], and
although its mathematical structure is similar to that of the probability
current in quantum mechanics, its interpretation here is different because it
is rather related to a phase parameter of the soliton. D1/I1 = x0 represents
the coordinate of the center of mass of the |A|2 distribution, giving us an
idea of its global position. D2 = π2τ2I1/12 is related to the squared width
of the |A|2 pulse, and M1 is a higher-order moment which is zero for the
Ansatz of Eq. (9), and whose interpretation is similar to that of D1 except
that the weight distribution is a probability current density type function
instead of a probability density type one. It is noteworthy that among these
values, the θ phase does not appear, which is because we have considered
this parameter only as a function of time.

The equations of system evolution can be obtained by deriving the mo-
ments given by Eq. (16) with respect to time. For the integrations, and
since we are considering spatially localized solutions, the amplitude A and
its derivatives are considered to be quadratically integrable functions that
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cancel out at infinity. In this way, we obtain the set of equations

İ1
2

= η

∞∫
−∞

ReA2dx− µI1 , (17)

İ2
2

= −iN0

2
K

∞∫
−∞

|A|2 sin(2Kx)dx− µI2 , (18)

Ḋ1

2
= η

∞∫
−∞

xReA2dx− iσI2 − µD1 , (19)

Ḋ2

2
= η

∞∫
−∞

(x− x0)2ReA2dx+ iσM1 − µD2 , (20)

Ṁ1

2
= −2iσ

∞∫
−∞

|∂xA|2dx− i
γ

2

∞∫
−∞

|A|4dx− µM1

+iN0K

∞∫
−∞

(x− x0)|A|2 sin(2Kx)dx+ I2ẋ0 . (21)

Replacing the Ansatz given by Eq. (9) in the preceding equations, we arrive
at the same set of Eqs. (11), (12), (13), and (14), except that in the latter,
the additional dissipation term 2µ appears in the form of

d

dt
log
(
τρ2
)

= −2µ+ 2η
cos [2 (θ + x0ω)]

sinhc(πωτ)
. (22)

The presence of this dissipative term makes the energy Eν no longer con-
stant. Replacing the Ansatz Eq. (9) in Eq. (8), we obtain for Eν

Eν
2τρ2

=
σ

3τ2
+
N0

2
− ν +

γρ2

3
+ σω2

−N0

2

cos(2Kx0)

sinhc(πKτ)
− η sin (2 [θ + x0ω])

sinhc(πωτ)
, (23)

which could be useful to follow the energy balance, even in the dissipative
case.

In summary, each of the above described methods delivers partial infor-
mation about the soliton dynamics given by a set of ordinary differential
equations. The variational method for conservative systems introduces the
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complete set of independent variables and its temporal variation; addition-
ally, the method of moments allows us to introduce dissipative processes at
the dynamical level in the system energy balance equation (22). The com-
plementation of these two methods gives us four differential equations (12),
(13), (15), and (22), and one constraint equation (11), for the five vari-
ables of our Ansatz {τ, ω, x0, θ, ρ} which will be used to both analyse and
characterize the results of the numerical simulations below.

3. Results and discussion

We solve numerically Eq. (1) in space and time varying only the am-
plitudes of the forcing fields, η and N0, on the one hand, and varying only
their frequencies ν and K, on the other hand. The results of this integra-
tion are shown in Figs. 1 and 2. We take as referencing parameter values
the following set: µ = 1, η = 3, ν = −3, σ = 1, γ = −1, K = 0.2, and
N0 = 1.5. Furthermore, for a more detailed numerical analysis, whose re-
sults are shown in Figs. 3 and 4, we use two testing lines within the diagrams
of Figs. 1 and 2. Finally, six objects were selected as examples over these
lines, whose results are summarized in Figs. 5–10. Clearly, the results ob-
served in all these figures show the existence of regions of chaotic localized
structures that coexist alongside regions of null and breather solutions for
different ranges of the control parameters, which in this case are the ampli-
tudes and frequencies of the temporal and spatial forcing fields. Moreover,
the solutions of the presented theoretical model are shown, which give a
trend of the average behavior of the numerical solutions, allowing a qualita-
tive analysis and, to a certain extent, also a quantitative description of the
physics involved. Hence, a brief analysis is performed with the aid of the
preceding equations.

In Figs. 1 and 2, we show the regions where localized and extended
chaotic structures exist for the two sets of chosen ranges of amplitudes and
frequencies of the external forcing fields, which are identified by values of
the amplitude ρ other than zero in panels (a) of these figures. What we
can see from these diagrams is that no structure is found for relatively large
(small) amplitudes of the spatial (temporal) field, which can be interpreted
as that the small disturbances promoted by the temporal field are completely
smashed by the intense space field in these regions. Besides, there are no
structures for relatively low (high) spatial (temporal) frequencies, which can
be interpreted by saying that the increase in the frequency of the spatial
field counteracts the destructive effect due to rapidly oscillating temporal
fields. Note that in all cases, the height of the profiles obtained are of the
same order, between ρ ' 3 and ρ ' 4.
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Fig. 1. Diagrams for the soliton amplitude, ρ, the soliton or soliton cluster width,
τ (in K−1 units), the largest Lyapunov exponent, λmax, and the fractal exponent
α in the case of µ = 1, σ = 1, γ = −1, and for the forcing amplitudes scanning
with fixed frequencies ν = −3 and K = 0.2. Dash-dotted lines represent test lines
to study in more detail the characteristic magnitudes in Fig. 3. Over each of those
lines, three objects were selected, whose spatio-temporal behavior, energy, phase
diagrams, and spectral distributions are shown in Figs. 5 and 8. These results were
obtained numerically for the range of t ∈ [0, 400].

As a next step, we analyze the product Kτ , which gives us an estimation
of the soliton or solitons cluster width, τ , in units of the minimum distance
between peaks of the spatial field, K−1. Corresponding results are shown in
panels (b) of Figs. 1 and 2, where the relative width Kτ is mapped. What
we can see in these panels is that the maps are dominated by structures that
are constricted between only two contiguous peaks of the spatial potential,
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those for which Kτ ≤ 1, and that the structures become more extended
(with greater widths) for greater values of the intensity of the temporal
field, η.
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Fig. 2. Idem Fig. 1 but for the forcing fields frequencies scanning with fixed ampli-
tudes η = 3 and N0 = 1.5.

In order to characterize the chaotic content of these structures, the
largest Lyapunov exponent (λmax) is numerically obtained for each one. The
λmax calculation is made as in Refs. [44, 71], solving additionally the equation
that comes from performing a virtual variation of the complex amplitude in
Eq. (1)

i∂tδA−σ∂2xδA+γ
(
2|A|2δA+A2δA∗

)
= (ν−iµ)δA+iηδA∗−N0 sin2(Kx)δA ,

(24)
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where δA is the fluctuation in the amplitude of two paths initially very
close to each other. By defining the average “distance” between these paths
as d(t) =

√∫
|δA|2dx, and knowing that for the chaotic case this length

tends to increase exponentially fast, we rescale δA as δAd(t0)/d(t) af-
ter every step ∆t to the initial length at t0. Therefore, the largest Lya-
punov exponent is obtained as an average from the expression λmax =
limM→∞

∑M
i=1 log[d(t0 +M∆t)/d(t0)]/M∆t. Thus, a positive value of λmax

indicates that the structure under study is chaotic, in the sense that two ini-
tially very close paths are quickly separated, exponentially, at the rate given
by λmax. Results for λmax are shown in panels (c) of Figs. 1 and 2. What
we can see in these panels is that all the structures obtained are chaotic,
and that they are more chaotic for higher values of the amplitudes of the
space-time fields, N0 and η, as well as for lower values of the frequencies of
these fields, K and |ν|, respectively.

In addition, in order to characterize the behavior of the objects found
in the space of frequencies, $, we consider the spectral distribution N(s)
defined as the number of peaks with heights greater than s of the normalized
Fourier power spectrum, |S($)|/|S($)|max [72]. What we have found is
that all chaotic objects have a spectral distribution that obeys the form
logN(s) = α s + b0, with relatively high values of the spectral index −α,
as shown in panels (d) of Figs. 1 and 2. However, due to an insufficient
number of peaks, α is not statistically obtainable for objects with very low
positive values of the largest Lyapunov exponent, as can be seen in Figs. 1
and 2.

In Figs. 3 and 4, the results of some characteristic magnitudes for the
structures on the dash-dotted test lines specified in Figs. 1 and 2 are shown,
all this once the transient state is far overcome at t = 400. What can be
observed in these figures is that by increasing (decreasing) the intensity (the
frequency module) of the temporal field on those lines, the chaotic content
of the structures also increases: they become more widespread and with
a greater maximum Lyapunov exponent. In turn, the values of the spec-
tral index −α become obtainable with low scattering, while the maximum
and minimum of energy and momentum become increasingly scattered and
disordered.

For the example objects indicated in Figs. 1 and 2, we solve numerically
the set of model global equations (11), (12), (13), (15), (22), (23), and
compare (Figs. 5–10) the results with the corresponding data of the direct
spatio-temporal integration and with the averages made on them via the
moments method. All this in order to assess to what extent the nonlocal
equations can give us a precise and enough quantitative image of the objects
studied in this manuscript. As expected, the model given by the Ansatz of
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Fig. 3. Characteristic magnitudes for the sampling line of equation N0(η) = 13[η−
2.7]/7 + 1.5 for ν = −3 and K = 0.2 (shown in Fig. 1). From up to down: maps of
|A| at t = 400, where the dashed lines represent the maxima of the periodic spatial
field of amplitude N0; the largest Lyapunov exponent, λmax; spectral index −α (if
calculable); and bifurcation diagrams made with the extrema values (maxima and
minima) of the energy, Q = 2τρ2, and momentum, P = ωQ. The three examples
selected in Fig. 1 are also indicated.

Eq. (9) represents a kind of ultimate average with respect to the numerical
results, reaching stationary values for the parameters of the model within the
ranges of the corresponding numerical values obtained. Note that, examining
the confined objects in Figs. 5–10, they can be seen as molecules of two or
more simple solitons that seem to interact with each other in an intricate
way. Moreover, in some cases, quasiperiodic-like chaotic objects coexist with
highly chaotic ones, as in the case of the breather shown in Fig. 8.

Figures 5–10 show the results for the six structures chosen on the test
lines indicated in figures 1–4. These objects were selected in order to perform
a more detailed analysis on the behavior of the structures that appear for
different values of the control parameters. To carry out this task, we will
resort to the equations of the global model described in previous sections.
Then, for a qualitative analysis of the numerical results, we consider, as
a convenient approach, the stationary state, which is reached numerically
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Fig. 4. Idem Fig. 3 but for the sampling line of equation K(ν) = −3[ν + 3.1]/35 +

0.25 for η = 3 and N0 = 1.5 (shown in Fig. 2).

for enough large times. In this case, Eq. (12) turns into ẋ0 = 0, indicating
that the momentum ω = 0 and that the soliton bulk position is static. This
approach works well by observing that it matches the results of the model in
panels (c) of Figs. 5–10, once the initial relaxation process has been passed,
where ω = 0 and x0 has a fixed value in the middle of two maxima of the
spatial field, which can be explained considering that Eq. (13) becomes

0 = ω̇ = N0
K sin(2Kx0)

sinhc(πKτ)
, (25)

with zeros: 2Kx0 = mπ, m = 0,±1,±2, . . . Hence, in the stationary case,
the object is centered in a maximum of the spatial field for m odd, and in
between two adjacent maxima of the same field for m even, which is our
case for σ > 0 and γ < 0. We can see that this effect also takes place for
the structures shown in the space-time maps of Figs. 3, 4, and panels (a)
of Figs. 5–10, as well as for the phase coordinates shown in panels (c) of
Figs. 5–10, except for the moments average when the structures extend be-
yond the initial potential well. This localization within the wells of the
spatial potential is what we recognize as soliton confinement.
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Fig. 5. Dynamical results for object ¶ of Fig. 1, with parameters {η;N0} =

{2.844; 1.767} and λmax = 0.075. Integrations were made from t = 0 to t = 400

starting from a displaced sech-like arbitrary initial condition. Dashed lines rep-
resent the maxima of the spatial periodic field. Panel (a) shows the amplitude
module spatio-temporal maps (where t0 = 385 and ξ = 2Kx/π). Panel (b) shows
the energy per single soliton, Q/n (where n is the estimated number of single
solitons for the whole structure), and the system energy per total object energy,
Eν/Q (Eq. (23)). Panel (c) shows phase sections for t ∈ [350, 400] and for three
cases: Numerical, where the phase points of soliton peaks are shown as dots,
being ξ = 2Kxpeaks/π its normalized position. Moments, where the continuous
lines are obtained by applying the moment averages over numerical data, being
ξ = 2KD1/I1π. Model, where the only one point is obtained by integrating the
ordinary differential equations system that comes from the Ansatz, Eq. (9), being
in this case ξ = 2Kx0/π. Finally, in panel (d), the corresponding Fourier power
spectrum |S($)|/|S($)|max and the spectral distribution N(s) (if obtainable) are
plotted.
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Fig. 6. Idem Fig. 5 but for object · of Fig. 1, with parameters {η;N0} =

{3.321; 2.653} and λmax = 1.107.

At the same time, Eq. (22) for ω = 0 is reduced to

0 =
d

dt
log
(
τρ2
)

=
d

dt
logQ = 2 [−µ+ η cos(2θ)] , (26)

which means that the soliton energy rate of change is governed by the com-
petition between the injected energy by the temporal field of amplitude η
and the dissipated energy at the rate given by its coefficient µ, as seen in
Fig. 3, for increasing or decreasing η. When the former dominates, the ob-
ject expands, being divided into pieces that are further trapped in adjacents
wells of the spatial field. On the other hand, when the latter dominates,
soliton energy Q is completely dissipated and the object disappears. In the
case of equilibrium, there is an exact energy balance between these two ef-
fects and the phase θ becomes stationary with the value cos(2θ) = µ/η,
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which is the case exemplified in the results of the model shown in panels (b)
of Figs. 5–10. In this case, the integration of the ordinary differential equa-
tions of the theoretical model informs us that the system reaches this state of
energetic equilibrium after having overcome the relaxation process. There-
fore, we emphasize that, to support stable and stationary solitons, the role
of temporal periodic driving is necessary when damping is considered [65].
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Fig. 7. Idem Fig. 5 but for object ¸ of Fig. 1, with parameters {η;N0} =

{3.570; 3.116} and λmax = 1.667.
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Fig. 8. Idem Fig. 5 but for object ¹ of Fig. 2, with parameters {ν;K} =

{−3.005; 0.242} and λmax = 0.009.

Following this approach, and for m even, Eqs. (15), (11), and (23) take
the forms of

0 = θ̇ =
N0

2

[
1− 3− cothc(πKτ)

2 sinhc(πKτ)

]
+
γρ2

2
− ν − η sin(2θ) , (27)

τ2 =
σ

−γρ
2

2
+

3N0

4

cothc(πKτ)− 1

sinhc(πKτ)

(28)

and

Eν
Q

=
N0

2

[
1− 1

sinhc(πKτ)

]
+

σ

3τ2
+
γρ2

3
− ν − η sin(2θ) . (29)
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Fig. 9. Idem Fig. 5 but for object º of Fig. 2, with parameters {ν;K} =

{−2.895; 0.232} and λmax = 0.645.

Equation (27) tells us that in the stationary regime, the soliton amplitude
is given by

ρ =

√
2

γ

(
ν + η sin(2θ)− N0

2

[
1− 3− cothc(πKτ)

2 sinhc(πKτ)

])
, (30)

being cos(2θ) = µ/η as explained above, which for N0 = 0 is a well-known
solution [5, 65] that demands ν < 0 in order to have a stable soliton. Replac-
ing Eq. (30) into Eqs. (28) and (29), we obtain, respectively, a trascendental
equation for τ and the asymptotic values of the system energy per total
object energy, Eν/Q, shown in panels (b) of Figs. 5–10.
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Fig. 10. Idem Fig. 5 but for object » of Fig. 2, with parameters {ν;K} =

{−2.800; 0.224} and λmax = 0.921.

According to numerical simulations given in Ref. [5] for N0 = 0, if η
grows to larger positive values, soliton amplitudes begin to be quasiperiodic
functions of time, in which case we have a typical breather-soliton behavior.
For still larger values of η, we have the formation of expanding chaotic
extended domains, for which the soliton model is no longer valid. ForN0 > 0,
the system is never stationary, and rather triggers the chaotic and confined
behavior of the soliton that we observe in the simulations as long as η > 0.
In this sense, we could talk about a sort of interplay of the external both
temporal driving field and spatial periodic potential: The former supports
the existence of the soliton against the damping, while the latter originates
its confinement and chaotic behavior, according to the previous analysis
and Eqs. (26) and (25), respectively. To emphasize this effect, in Fig. 11,
we show the spatio-temporal diagram of a structure obtained for the same
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set of parameters and for the same initial condition at t = 0 for object ¶
in Fig. 5, except that until t = 70, we deactivate the field taking N0 = 0.
From this moment forward, the field is activated at its original value and the
confinement effect takes place a short interval later, inhibiting the expansion
of the preceding chaotic domain.
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Fig. 11. Spatio-temporal map corresponding to the same parameters and initial
condition of object ¶ of Fig. 5 unlike the external spatial field is turned on only
from t = 70. The dashed lines represent the maxima of this field and ξ = 2Kx/π.

Panels (d) of Figs. 5–10 show typical Fourier spectra corresponding to
the six objects selected as examples. Objects ¶ and ¹, chaotic but with
low Lyapunov exponents, show quasiperiodic-like spectra, such as those of
breathers [5]. In these cases, the number of peaks is insufficient to calculate
the −α spectral index. By contrast, for objects ·, ¸, º and », with high
values of the Lyapunov exponent, the spectra have a very high peak density;
whose heights are uneven and sparse. The high number of peaks in these
cases allows the precise calculation of α. According to the results found
in this work, −α values are relatively high in all cases for chaotic objects,
varying from ∼10 to ∼ 50.
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Fig. 12. An example of the chaos confinement effect in two (three) dimensions
(where ξ = Kx/π and ζ = Ky/π) when the spatial field, given by Eqs. (31), (32),
is turned on at t = 5 (10) and is represented by the solid line isosamples (by the
isosurfaces in panel (f)). (a), (b): the initial disturbance. (c), (d): the chaotic
pattern a little after (just before) the field is turned on. (e), (f): the final state
with chaotic 2D solitons (with a chaotic 3D soliton) confined within the valleys
(within the hole) of the space field. The complete animations are given in online
resources 1 and 2 (see footnote 1).

https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_1.mp4
https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_2.mp4
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Finally, the confinement effects of chaotic solitons in 2D and 3D have
been investigated. For this purpose, we have used for the 2D case, a space
field of hexagonal type given by [73]

U2D(x, y) =
2

9
N0

{
3− cos

(
K2−1

(
x− y

√
3
))

− cos
(
K2−1

(
x+ y

√
3
))
− cos(Kx)

}
, (31)

and for the 3D case, this potential has been used to build the corresponding
3D potential as follows:

U3D(x, y, z) =
1

2.74
[U2D(x, y) + U2D(y, z) + U2D(z, x)] . (32)

Hence, the equation to solve in these cases is modified by adding the cor-
responding Laplacian terms in y and z (∂2x → (∂2x + ∂2y)/2 for the 2D case,
and ∂2x → (∂2x + ∂2y + ∂2z )/3 for the 3D case), and replacing in Eq. (1)
U(x) = N0 sin2(Kx) by the above fields U2D(x, y) and U3D(x, y, z), respec-
tively.

For parameter values µ = 1, ν = −3, σ = 1, and γ = −1, Fig. 12 shows
the results for an example in the 2D (3D) case, with field parameters η = 2.8
(η = 3.0), K = 0.4 (K = 0.2), and N0 = 3 (N0 = 15). Starting from an ini-
tial periodic perturbation at t = 0, a chaotic pattern is rapidly formed in the
plane (space). At t = 5 (t = 10), the space field is activated and the process
of chaos confinement begins, which can be observed as already established
in panels (e) and (f) of this figure. The largest Lyapunov exponent at this
stage is λmax ' 10 (λmax ' 7). Movies of these simulations are provided as
supplementary materials in online resources 1 and 21.

4. Concluding remarks

In summary, we have proposed a model of confinement of chaotic solitons
by adding a spatially periodic external field to the cubic order parametrically-
driven and damped nonlinear Schrödinger amplitude equation. In the ab-
sence of this term, the increase in the intensity of the parametric forcing
would have caused a stationary soliton to pass to the breather stage and,
subsequently, to the expanding chaotic extended pattern state. Thanks to
the new forcing introduced, the pattern is confined between two of its ad-
jacent maxima, or if the intensity of that parametric forcing is sufficiently
high, the pattern is divided into pieces, each confined between the maxima
of the spatial field and preserving its localized and chaotic character.

1 Resource 1: https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_1.mp4,
Resource 2: https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_2.mp4

https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_1.mp4
https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_2.mp4
https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_1.mp4
https://www.actaphys.uj.edu.pl/store/appdx/v51p2159_2.mp4
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To characterize these objects, we have used numerical simulations in 1+1
dimensions, with which we have calculated different typical magnitudes such
as the maximum exponents of Lyapunov, widths, heights, momentums, en-
ergies, spectral indexes, etc. In this way, we have obtained not only the
existence diagrams of these objects together with the null and breathers so-
lutions but also their corresponding bifurcation diagrams in different regions
of interest.

To complement the analysis, suitable theoretical methods have been
used, such as the Lagrangian and Hamiltonian variational methods. The
method of moments is also used to correct the equations of the preceding
methods in order to consider dissipative processes and to generate the link,
via the moments, between theory and simulations. These methods allow us
to perform the analysis and discussion of the numerical results, finding a
very good agreement between theoretical models and simulations, being the
model a kind of average of the numerical results.

Finally, simulations in 1 + 2 and 1 + 3 dimensions were performed to
confirm that the confinement effect of chaos also occurs when fields are
present in two and three spatial dimensions.

The contribution offered to this work by G.F.M.-F. was his research
project to graduate as a physicist, that is why he wants to thank the Uni-
versidad Mayor de San Andrés (UMSA), and his teachers and colleagues.
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