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In this article, we construct the [sc|a [3¢]v — [sc]v[5€|a-type tensor cur-
rent to study the mass and width of the X(4274) with the QCD sum
rules in detail. The predicted mass Mx = (4.27 £ 0.09) GeV for the
JPC = 17+ tetraquark state is in excellent agreement with the experi-
mental data 4273.3 £ 8.371%% MeV from the LHCb Collaboration. The
central value of the width I'(X (4274) — J/¢¢) = 47.9 MeV is in excellent
agreement with the experimental data 56 + 111§, MeV from the LHCb
Collaboration. The present work supports assigning the X (4274) to be
the JPC = 17+ [sc|a[5¢]v — [sc]v[5¢]a tetraquark state with a relative
P-wave between the diquark and antidiquark constituents. Furthermore,
we obtain the mass of the [sc|a[5¢]v — [sc]v[5¢]a-type tetraquark state with
JPC =1~7 as a byproduct.

DOI:10.5506/ APhysPolB.51.435

1. Introduction

In 2011, the CDF Collaboration confirmed the X (4140) in the B* —
J/v $K* decays produced in pp collisions at /s = 1.96 TeV with a statis-
tical significance greater than 50, and observed an evidence for the X (4274)
with approximate significance of 3.10. The measured mass and width are
42744757 £ 1.9 MeV and 32.3713 £ 7.6 MeV, respectively [1]. In 2013,
the CMS Collaboration observed an evidence for a second peaking struc-
ture (which is consistent with the X (4274)2 besides the X (4140) with the
mass 4313.8 £5.3 + 7.3 MeV and width 38flg 4+ 16 MeV, respectively, in the
BT — J/¢ $K* decays produced in pp collisions at /s = 7 TeV collected
with the CMS detector at the LHC [2].

* Funded by SCOAP? under Creative Commons License, CC-BY 4.0.

(435)



436 7Z.-G. WANG

In 2016, the LHCDb Collaboration performed the first full amplitude anal-
ysis of the Bt — J/1¢ K+ decays with a data sample of 3 fb~! of pp collision
data collected at /s = 7 and 8 TeV with the LHCb detector, and confirmed
the two old particles X (4140) and X (4274) in the J/1¢ mass spectrum with
statistical significances 8.40 and 6.00, respectively. The measured masses
and widths are

X(4140) : My = 4146.5+4.5755 MeV,  I'y =83+ 2117 MeV,
X(4274) : My = 4273.3+£83% %2 MeV, Iy =56+117% MeV. (1)

Furthermore, the LHCb Collaboration determined for the first time the spin-
parity-charge-conjugation of the X (4140) and X (4274) to be JF¢ = 1t+
with statistical significances 5.70 and 5.80, respectively [3, 4|, which rules
out the 0~ molecule assignment, and it is consistent with our previous
work [5].

There have been several possible assignments, such as the color sextet—
sextet-type cscs tetraquark state [6-8|, the conventional orbitally excited
state x.1(3P) [9, 10], the color triplet-triplet-type %(ua + dd — 2s5)cé
tetraquark state [11]|, etc. In Ref. [12], Maiani, Polosa and Riquer take
the mass of the X (4140) as an input parameter, and obtain the mass spec-
trum of the scs¢ tetraquark states with positive parity based on the effective
Hamiltonian with the spin—spin and spin—orbit interactions. However, they
observe that there is no room for the X (4274), and suggest that the X (4274)
corresponds to two, almost degenerate, unresolved lines with JF¢ = 0+
and 21+,

In Ref. [10], we construct the color octet—octet-type axialvector cur-
rent to study the mass and width of the X (4274) with the QCD sum rules
in detail. The predicted mass strongly favors assigning the X(4274) to
be the color octet—octet-type tetraquark molecule-like state, but the pre-
dicted width disfavors assigning the X (4274) to be the color octet—octet-type
tetraquark molecule-like state.

In Ref. [13], we study in detail the masses of the [sc|s[s¢]a +£ [sc]a[5¢]s-
type and [sc]p[sc]v F [sc]v[5¢]p-type tetraquark states with J'C = 1+%
respectively, with the QCD sum rules, where the subscripts S, P, A and V
denote the scalar, pseudoscalar, axialvector and vector diquark constituents,
respectively. The numerical results Mx = 3.95 £ 0.09 GeV and 5.00 £
0.10 GeV disfavor assigning the X (4140/4274) to be the JP¢ = 17+ [sc]g
[s¢]a + [sc]alsc]s-type and [sc]p[sc]y — [sc]v[s¢|p-type tetraquark states.

In Ref. [14], we construct both the [sc]1[5¢]a +[sc]a[5¢]r-type and [sc]r[5¢]v—
[sc]v[5¢]r-type axialvector currents with JP¢ = 1+ to study the mass and
width of the X (4140) with the QCD sum rules, where the subscript T de-
notes the tensor diquark operator. The predicted masses support assigning
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the X (4140) to be the [sc|r[sc]y — [sc]v[5¢|r-type axialvector tetraquark
state; the predicted decay width I'(X (4140) — J/¢¢) = 86.9 £ 22.6 MeV is
in excellent agreement with the experimental data 83 £ 21Jr21 MeV from the
LHCb Collaboration, which also supports assigning the X(4140) to be the
[sc]r[sc]v — [sc]v[sc]p-type axialvector tetraquark state.

In Refs. [8, 15], the [sc]s[5¢]a + [sc]a [5¢]s-type and [sc|8[5¢]S + [sc]§ [5¢]S-
type tetraquark states with J©¢ = 17+ are studied with the QCD sum
rules — the criteria for choosing the Borel windows are different from our
previous works [10, 13, 14|, see Section 2 for the technical details. The quark
structures, predicted masses and widths are all shown explicitly in Table I.

TABLE 1

The structures, masses and widths of the sc3¢ tetraquark states with J©¢ = 1++
from the QCD sum rules, where the superscript P denotes the parity, the .S denotes
the spin, the L denotes the relative angular momentum, the J denotes the total
angular momentum, the superscript 8 denotes the color octet, the superscripts 6
and 6 denote the color sextet and antisextet, respectively. The superscripts 3 and
3 for the color triplet and antitriplet are neglected for simplicity.

|SE SE: L J) Structures M [GeV] | T [MeV] |Refs.

10+, 17;0; 1)+ (17, 0+;0; 1) | [se]s[57]a+[sc]a[5ds | 3.95£0.00 [13]
07 17:0: ) —[17,07:0: 1) | [sc]p[sely — [sc]v[se]p | 5.00+0.10 [13]
11+, 1+;0; 1) +[1+,1+;0; 1) | [sclp[5e]a+[sc]a 58T |5.2040.11 [14]
11717:0: 1) — 1,175 0:1) | [sclr[se]y — [sclv [sdr |4.14+0.10 |86.9422.6 | [14]
0F,1750; 1)+ (17,075 0; 1) | [sc]s[5¢]a+[sc]a[5¢]s |4.07£0.10 [15]
|07, 17;0; 1)+ [1F,07;0; 1) | [sc][5¢]% +[sc]& [s€]S |4.2240.10 [15]
0%, 17505 1)+[1+,0+;0;1) | [scls[5¢a+[sclalsc]s |4.1840.12| 80429 | [8]
0,15 0: 1)1+, 073 0: 1) | [sclS[5)% +[sclS [se)% |4.2640.12| 272481 | [3]
(53 [es]S — [sc]S [es]p | 4.2740.09 1800 [10]

[, 1751;1)—|17,17;1; 1) | [sc]a[5c]v —[sc]v[5€]a This
work

In this article, we extend our previous works [10, 13, 14|, construct the
[sc]a[5€]v —[sc]v[5€]a-type tensor current to study the mass and decay width
of the X (4274) with the QCD sum rules, and explore the possible assignment
of the X (4274) as the diquark—antidiquark-type axialvector tetraquark state
once more.
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The article is arranged as follows: we derive the QCD sum rules for the
mass and width of the diquark—antidiquark-type axialvector tetraquark state
X (4274) in Section 2 and in Section 3 respectively; Section 4 is reserved for
our conclusion.

2. The mass of the X (4274) as the axialvector tetraquark state

In the following, we write down the two-point correlation function
I1,,,05(p) in the QCD sum rules

Myuaalv) = i [ dlae? O {7,u(@) 50 }10). 2)
where
Ez’jkgimn
V2
x {SJT(;U)nyuck(a;)§m(x)’y5’yyCéz(a:) —sT(2)Cyyscn (a:)gm(a:)fmCEE(w)}, 3)

JMV(x) =

the 4, 7, k, m, n are color indexes, the C' is the charge conjugation matrix.
Under charge conjugation (parity) transform C' (P), the current J,, (x) has
the properties

Clu()C™" = +Ju(2),
PJu(@)P~' = —Jm (&), (4)

where z# = (t,#) and & = (t,— ). The current has definite charge conju-
gation, and couples potentially to the tetraquark states with positive charge
conjugation. The component Jy;(z) has the positive parity, while the com-
ponent J;;(x) has the negative parity, where the space indexes i, j = 1,
2, 3. The current J,, couples potentially to both the spin-parity-charge-
conjugation JF¢ =11+ and 1= tetraquark states

OTlOIX (B} = 35 s’
O OIX0) = 325 e =cmi) )

where ¢, are the polarization vectors of the vector and axialvector tetraquark
states, the Mx+ and Ay+ are the masses and pole residues, respectively.
The scattering amplitude for one-gluon exchange is proportional to

A“) <)\> Ne+1 ,a Ne—lg g
<2 G \2 )y AN, U YN, R
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where

tﬁct% = 0ij0k; — 0i10kj = EmikEmyl »
titl; = 040 + Sy , (7)

the A\? is the Gell-Mann matrix, the ¢, j, k, m and [ are color indexes, the
N, is the color number. The negative sign in front of the antisymmetric
antitriplet 3. indicates the interaction is attractive, which favors formation
of the diquarks in color antitriplet, while the positive sign in front of the
symmetric sextet 6. indicates the interaction is repulsive, which disfavors
formation of the diquarks in color sextet. We prefer the diquarks in color
antitriplet 3. to the diquarks in color sextet 6. in constructing the tetraquark
current operators.

The spin-dependent hypersplitting chromomagnetic interactions H.s can
be expressed in terms of Pauli spin matrices ¢ and SU.(3) generators A\* as

8
Heo ==Y ) G- 3AX = 8N + 3Cg(tot) — 350t (Stot + 1)
a i>j

+C3(Q) + 550(Sg + 1) — C6(Q) + C5 (Q) + §55(55 +1) — Cs (Q) ,(8)

where N is the total number of quarks, @ and Q are the diquark and antidi-
quark respectively, and C3 and Cg are quadratic Casimir operators of SU.(3)
and SU.4(6), respectively. The chromomagnetic interaction H., favors tak-
ing the scalar diquarks or “good” diquarks in color antitriplet as the most
stable building blocks of the tetraquark states [16, 17]. However, it cannot
exclude taking the axialvector diquarks or “bad” diquarks in color antitriplet
and other diquarks as the building blocks of the tetraquark states because
the dominant contributions to the tetraquark masses do not originate from
the chromomagnetic interaction H.;. We need those “bad” diquarks besides
the “good” diquarks in studying the higher tetraquark states. The calcula-
tions based on the QCD sum rules indicate that the favored configurations
are the scalar and axialvector diquark states [18, 19|, and the heavy-light
scalar and axialvector diquark states have almost degenerate masses [18§],
the heavy-light axialvector (or “bad”) diquark states are not “bad”.

In fact, we can obtain the four-quark interactions 7' from the one-gluon
exchange, then perform Fierz re-arrangement both in the color and Dirac-
spinor spaces to obtain the result
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a

S U
T = Qw;@qv”gq

Ne+1 = _ = ,
= — = { Tt Q Q10T + ¢t QQCH "
C
1 - N 1 - g
—54" Ot Q@' 1sCtA T — Sa" Cyut™Q Qv“CtAqT}
N +1 _ § S
o { OB + T CQ QLT
C

1 . 1 _
—50" Cust°Q Qy"sCH T — ST Ot Q ny“CtSch} . (9)

We can obtain the diquark operators ¢TCys5t*Q, ¢TCt*Q, qTCWH%tAQ,
qTC’y#tAQ in the attractive channels from the QCD indeed. Although we
cannot obtain the tensor diquark operators qTCUa575tAQ and qTCaagtAQ
from the one-gluon exchange, they play an important role in building the
tetraquark currents. In the QCD sum rules, we can take the scalar, pseu-
doscalar, vector, axialvector and tensor diquark and antidiquark operators
as basic constituents to construct the tetraquark currents, then calculate the
two-point and three-point correlation functions in full QCD (not just for the
chromomagnetic interaction) to study the masses and partial decay widths,
respectively, and finally, we confront the predictions to the experimental
data to examine the structures of the tetraquark states.

We can also construct the following currents to interpolate the axialvec-
tor tetraquark states with JF¢ = 1++

8ij/cgimn

@) = T[sTf<x>cfy5ck<x>§m<xmcé“<x>
57 ()09 (@)5™ ()50 ()|
gtikgimn )

Ti(@) = S [P @) 0@ ), C @)
=" (2)0y5et (@)5" (@) 07" (@)
ijk ~imn )

Ji(az) = %[ST](x)CUW'y5ck(x)gm(x)'y”CéT”(x)
57 (2)07" et (2)5™ (2)750,0 O (2)|

Jﬁ(:(}) = Ejj§[sTj(x)CUW,ck(a:)§m(x)’y57”CET"(x)

—sT9(2)Cy"y5cF (m)gm(x)aWCéT”(w)] :
(10)



Revisit the X(4274) as the Axialvector Tetraquark State 441

The predicted masses are not consistent with the experimental value of the
mass of the X (4274) [13, 14], see Table I. In Table I, we also present the
results from the diquark—antidiquark-type interpolating currents with the
color sextet—sextet structure [8, 15].

At the hadron side, we can insert a complete set of intermediate hadronic
states with the same quantum numbers as the current operator J,, (x) into
the correlation function I7,,,3(p) to obtain the hadronic representation
[20, 21]. After isolating the ground state contributions of the lowest axi-
alvector and vector tetraquark states, we get the following results:

_ M-

- M (M3 -p?)

X (P*Gpavs =D GusIva — JuaPvPs — GusPuPa+ JusPrPa~+ JuaPups)
A,

M3 (M3 =p?)

H/u/oz,@ (p)

+ (= 9paPvPs—9vaPuPa~+YusPrPa~+Jvabupp)+- .. (11)

We can rewrite the correlation function I1,,,,3(p) in the following form
according to Lorentz covariance:

Hap(p) = Hx- (p*) (P°9uagvs —1* 9us9va — GuaPvPs — 9usDuPa+ 9usPvPa
+9vapups) + M x+ (P*) (—guaPuPs — GusPuPa+9usPuPa+ Guapups) - (12)

We project out the components ITyx+(p?) by introducing the operators
PHVCYB
X+

ﬁXi (p2) = pQHXi (p2) = )lél:l:algnuuaﬁ(p)? (13)
where
1 pHp® p'p’
pns = (o P2 (07T,
X 6 p2 p2
1 Hp® LAY
,LLVOlﬁ o p p 1/6 p p Vﬁ
Pyt —6<g“a—pg><9 —p2>—69“a9 : (14)

Now, we carry out the operator product expansion for the correlation
function I1,,,,5(p) up to the vacuum condensates of dimension 10. We con-
tract the quark fields s and c in the correlation function I1,,,5(p) with the
Wick theorem, and obtain the result



442 7Z.-G. WANG

i s AN AN .
H,uzzaﬁ(p) _ _72,_:1]k€zmn€zj k gim'n /d41’ e

2
x { T [ 85 (270 CSTH ()] Tr [pm582 )ymcsTm’m(—x)C]
+Tr [7,,755’“ (2)7,CST'( ZE)C] Tr [75755’”" CSTm/m(—:E)C]
+Tr {% (:c)*ym/gCST” ()C|Tr|[vaS 75%CSTmm( a:)C]
T 755 (2)95795CSTH () C | T [ "~y ST (—2)C ) (15)
where
SZ](.%') _ Z(sgé _ (5ijms B 5ij<§8> n 2(51] ¢m5<§s> B 5ijx2<§gsaGs>
2mex 422 12 48 192
z‘éz-ja? ,’tm5<§g50G8> . igngﬁt?j (¢0a5 + O'aﬁ ¢)
1152 3222
5ijx4<§8><g§GG> L v
- Y - §<sja SV + ., (16)

17 i —tk-x
59(e) = o / dh ok
X { 0ij  9sGapli; o (K +me) + (K + me)o’

F=m. 4 (2 —m2)?
gg (tatb)z‘j GgﬂGZV (fa,b’;w + fauﬁl/ + fa;w,é’)
- = +...p, (17
4 (k? —m?)

PP =k + mo)y k+ m)y K+ me)y? (§ + me),
FOPR = (K A+ me)y® (K + me)y (K + me)y" (k4 me)y” (K +me),  (18)

and " = % [21]. Then we project out the components

Ixs (p°) = P Hywas (0) (19)

and compute the integrals both in the coordinate space and momentum
space, and obtain the correlation function at the QCD side, therefore, the
QCD spectral densities through the dispersion relation

Imﬁxi (S)
77_‘_ .

p(s) = (20)

For the technical details, see Ref. [22].
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Now we take the quark—hadron duality below the continuum thresholds
so and perform the Borel transform with respect to the variable P? = —p?
to obtain two QCD sum rules

S0

M?2 s
)\g(iM)Q(i exp (— T)gi> = / ds p+(s) exp <_ﬁ> , (21)

4m2
where

p(8) = py (s) + p5 (s) + pi (s) + p5 () + pg (s) + p7 (s) + pi (s) + pio(s)

(22)
P(5) = faggs [ ez (L y = 2 (s = m2)’
+W /dydz yz(1—y—2)° (s— m§)2 (335 — 18sm2 + my) | (23)
i) = =" [ayazys (s — m2) (s - 2m)
+T§§ii> /dydz yz (1 —y — 2) (355> — 30sm? + 3m)
_7m278n7§§ss> /dydz (3 - mg) , (24)

m% asGG Z(l—y—z)g o 4, _ 2
_23047T4< - >/dydzy2[5s—mc+3s § (s —mg)

1 asGG - o L
230178 < ™ >l/ndydzz(1 y —2) (s —mg) (45 — 5mg)
1 asGG i )
+9%6w4< = >/hydz@y—y2—8ar%n2+6z—n(s—nﬁ)@s_mng
1 aGG

11059274 < >/dydz (1—y—=2) (2y—y* 262y~ 192" +202 1)

x (355 — 30sm? + 3my) (25)

+

™
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3 (s) = /dyy(l—y) (3s — 4m?)

57674
_ms<3950G3>/ o A oo o
1021 dydzyz [bs — m; + 35 (s —m7)
Tmsm?(5g;0G's) msm?2(3g,0G's) 1
o dy — . dydz — 2
T / Y 38474 / vy (26)
Tm?2(ss)?
+ooy I 9

2 /-
oy memg(3s) [ asGG / Z s L,
P (S) - 8647’(’2 < T dydz y2 (5 TQ) K} (S mc)

o T E e (EE R O LI
+7m§;§r<235> <afG> /dydz ;2 (v—2+v75)6 (s—m?)

e (20 (oo

+?73185<6§72 <afG> /dy (120 (s —m2) |

_717;;;;2 <afG> /dydz [1 + gé (s— mg)]

B oo o))
+m§;§§§‘9> <afG> / dydz y125 (s — m?)

7msm§<§s> asGG 5 .
a0 [ (g, o

pt(s) = _7m§<§s><.§gsaGs) /dy (1 N %) 55 7%3

14472

mg(5s)(39s0Gs) 1 ,
C y 2
* 28871'2 / dy y(s (8 mc) ’ ( 9)
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Tm?2(3g50Gs)? _
+ _ c S 2 2
phote) = g [ v’ s =)

Tmg(ss)” [ asGG 1 s »
P < x >/dyy2(1_y2T2)5(S—mc)
m(ss)® [/ asGG 1 »
"~ R64AT? < 7r >/dyy(1_y)5(8—mc)

2/3 2
_W/dyg(; (s — 72)
Yy

11527274 ¢
11m2(5g;0Gs)? 1 —y
_ & d 7(5 i
9216727 / Yya—y) (s = c)
™m2(5s)? / asGG _
T Ta967 < 77 > /dy $3 (s = e (30)
_ 1 .3 B
Py () = 153670 /dydzyz (1—y— 2)2 (5 — mz) (68 - mz)
1
T 614476 /dydz yz(1—y—2)% (s —m?)” (33s — 18sm2 +ml) ,  (31)
_ Mg(SS _ -
p3 (s) = 96<774> /dydz yz (s —m?2) (7s — 2m?)
TS;S? /dyd?«‘ yz (1 —y — 2) (355> — 30sm? + 3m;)
v
3msmg 3s -
+167T4<>/dydz (s — mg) , (32)
- mg asGG z (1 -y — 2)2 _9
P1(8) = =304 < - >/dyd2y2 (95 — 4m?)

me asGG z(1—y—2)° _o 4 _9
_23047r4< T >/dyd2y2[5s—mc+38 5(5—mc)

1 <O‘SGG>/dydzz(1—y—2) (s — m2) (20s — Tm?)

T 230474\ 7

1 5 ) )
T 16087 <O‘ fG>/dydz (y>+(82—2)y+52>—6z+1) (s—m?2) (2s—m?)
1 osGG ) ,
1105927r4< >/dydz (1—y—=z) (2y—y —262zy—19z —1—2()2—1)

x (355 — 30sm? + 3m,) (33)

_l’_

™
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ps (s) = —W /dyy (1 —y) (95 — 4my)
‘W/dydzyz {55"” + 825(8— 2)}

_3m5m§i‘jﬁsaG8> / dy + msmgéiis4aGs> / dydzg, (34)
pe () = —mggf?Q /dy7 (33)

~ z o8 =2
p=(s) = 8647r2 < > d dz = " ( — T2) § (s —m7)
mgm OéSGG —Yy- Z) 1 S 82 i
< ) [ g (G e oo

2167T2
mgm OzSGG 7
+ 48ﬂ < > dydz 2——y yT,>5(3_'”£)

(5
(=2
i () [ [ o)
<O‘fG>/dydz (y+4z—1) [Hg <s+;22> 5(Sm3)]
_m;%gsg <ast> / dydzylz(s (s — m?)
<ast>/d (1+5)8 (s —2) . (36)

ps(s) = +m2<*§5> (8950Gs) /dy (1 + %) ) (s - ﬁzz)

+

1672
_m(3s)(5g;0Gs) oo 2
/dyy5( ) (37)

28872 ¢
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_ m?2(5g;0Gs)? -
p10(3> = _W/dy 825 (S —mg)

m2(ss)? / asGG 1 s 9
3672 < T >/dyy2(1_y2T2>5(S_mc)

m?2(ss)? /asGG 1 o
s (50) o)

m2(5g;,0Gs)? 1 9
+—1152772T4 /dy QS(S (s—mc)
11m2(3g;0Gs)? 1 N
02167272 / iy’ (s = me)
2
oM o [ GG 2 _ 2
44T (8s) < - >/dys 5(3 mc) , (38)

where [dydz = f;lf dy lei—y dz, [dy = fng dy, yr = ryldme/s 'l;lmg/s, Yi =
1—4/1-4m2/s _ ym?2 =2 _ (y+2)m?  ~2

2 1
2 P FT ez Me T T e = y(Tlnfy)’ fyif dy = Jo dy,
fl Ydz — fl Y dz, when the ¢ functions d (s — m2) and 6 (s — m2) appear.

We derive Eq. (21) with respect to 7 = T2, then eliminate the pole
residues Ax+ to obtain the QCD sum rules for the tetraquark masses

f dS dr pi ) o
f4m% dspi( ) o

At the QCD side, we take the vacuum condensates to be the standard val-
ues (qq) = —(0.2440.01 GeV)3?, (3s) = (0.8 £0.1)(gq), (5gs0Gs) = mZ(ss),

= (0.840.1) GeV?, (%> = (0.33 GeV)* at the energy scale u = 1 GeV
[20, 21, 23], and take the MS masses mq(m.) = (1.275 + 0.025) GeV and
ms(p =2 GeV) = (0.095 £ 0.005) GeV from the Particle Data Group [24].
Moreover, we take into account the energy-scale dependence of the quark
condensate, mixed quark condensate and MS masses according to the renor-
malization group equation

2
M5y =

(39)

as(1 GeV) ] 33- T
as(pe) } 7
as(1 GeV) ]33 T
as (1) ] ’

12

Qg (M) :| 33—2ng¢

(s () = (ss)(1 Gev>[

(59s0Gs) (1) = (59s0Gs)(1 GeV) [

meli) = o) |
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ma() = my(2 GeV) [a(u))] |

(2 GeV
1 bylogt  b?(log?t —logt — 1) + boby
= —|1— 40
e e - R
5033 325
where ¢t = log b, bO _ 33123:”7 by — 15?5412an7 b2 _ 2857— 1287r3—i- f

A = 210 MeV, 292 MeV and 332 MeV for the flavors n¢g = 5, 4 and 3
respectively [24, 25|, and evolve all the input parameters to the 1dea1 energy
scales p to extract the masses of the tetraquark states. In this article, we
choose the flavor ny = 4.

The hidden-charm (and hidden-bottom) tetraquark states ¢Qg’Q can be
described by a double-well potential. In the tetraquark states ¢Qg’'Q, the
Q-quark serves as a static well potential and attracts the light quark g to
form a heavy diquark in color antitriplet, the Q-quark serves as another
static well potential and attracts the light antiquark ¢’ to form a heavy
antidiquark in color triplet [26-28]. The diquark and antidiquark attract
each other to form a compact tetraquark state [26-28|, the two heavy quarks
Q and @ stabilize the tetraquark state ¢gQg’Q, just as in the case of the
(p~eT)(pwte™) molecule in QED [29].

We can divide the tetraquark states ¢Qg’Q into the heavy and light
degrees of freedom. The heavy degree of freedom is characterized by the
effective heavy quark masses Mg, the light degree of freedom is characterized

by the virtuality V = \/M)Q(/y/z

among the light quarks and gluons. If there exists a P-wave between the light
quark and heavy quark in the heavy diquark or between the light antiquark
and heavy antiquark in the heavy antidiquark, the P-wave effect can be taken

as the light degree of freedom, the virtuality V = \/ X/v/7 — (2Mg)2. On

the other hand, if there exists a P-wave between the heavy diquark and
heavy antidiquark, the P-wave effect can be taken as the heavy degree of

— (2Mg)? which includes the interactions

freedom, the virtuality V = \/Mg(/y/z — (2Mg + Pr)?, the energy exciting

a P-wave costs about 0.5 GeV, i.e. Pg ~ 0.5 GeV.

In this article, we study the heavy-diquark—heavy-antidiquark-type tetra-
quark states, in other words, the color 3. ® 3.-type tetraquark states, just
like the charmonium and bottomnium states, where the QQ states are of
the color 3. ® 3.-type. For the charmonium states, the energy exciting a
P-wave costs 457 MeV [24]

5 3 3m .y +m
Py = 2 ESa Tl ST 57 Mev. (41)
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If we take the updated value M, = 1.82 GeV [30], then 2M,+ P = 4.10 GeV,
the energy of the heavy degree of freedom of the diquark—-andidiquark-type
tetraquark states gcg’c is estimated to be 4.10 GeV.

We set the energy scale p = V to obtain the ideal energy scales of
the QCD spectral densities [26-28, 31|. The energy scale formula works
well for the hidden-charm (and hidden-bottom) tetraquark states, for exam-
ple, X*(3860), X (3872), Z.(3900/3885), X (3915), Z.(4020/4025), X (4140),
Z.(4250), X (4360), Z.(4430), X (4500), X (4660/4630), X (4700), Z,(10610),
Zp(10650), and also works well for the hidden-charm pentaquark states,
for example, P.(4380) and P.(4450) [32, 33]. The energy scale formula can
remarkably enhance the pole contributions, and can improve the conver-
gent behaviors of the operator product expansion. In 2015, we studied the
scalar—diquark—scalar—diquark—antiquark-type pentaquark states with the
QCD sum rules by carrying out the operator product expansion up to the
vacuum condensates of dimension 10 [33]. In calculations, we took the energy

scale formula pu = /M3 — (2M,)? to determine the ideal energy scales of
the QCD spectral densities with the old value M, = 1.80 GeV and obtained

the mass Mp = 4.29 4+ 0.13 GeV for the pentaquark state with J* = 1_,
which is in excellent agreement with the value of the mass of the new pen-
taquark candidate P.(4312), 4311.9 & 0.770% MeV, observed by the LHCb
Collaboration this year [34]. Recently, we restudied the scalar—-diquark—
scalar-diquark—antiquark-type pentaquark states with the QCD sum rules
by carrying out the operator product expansion up to the vacuum conden-
sates of dimension 13 and took the updated value M, = 1.82 GeV [30], and
obtained even better pentaquark mass 4.31 £0.11 GeV [35].

In Ref. [31], we introduce the relative P-wave between the diquark and
antidiquark constituents explicitly to construct the vector tetraquark cur-
rents and take the modified energy scale formula

=My, — @M.+ Po)? =\ /M3, ) — (410 GeV)?

to determine the optimal energy scales of the QCD spectral densities, and
study the vector tetraquark states with the QCD sum rules systematically.
The predictions support assigning the Y (4220/4260), Z.(4250), Y (4320/4360)
and Y (4390) to be the vector tetraquark states.

The axialvector diquark operator £7*s T( z)Cyuck(z) has the JP = 17,

while the vector diquark operator *s JT( )Cyuy5ck(z) has the JE = 17.

The tetraquark quark states X~ and X have negative parity and positive
parity respectively. The parity conservation requires that 17 +1~ — 1~ for
the X~ and 1741741~ — 17 for the X, there should exist an additional
P-wave (or 17) between the diquark and antidiquark constituents in the
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tetraquark state X . We choose the energy scale formula

= \/M} — (3.64 Gev)? (42)

for the tetraquark state X ~, where we have taken the updated value M, =
1.82 GeV [30]

\/M2 (4.10 GeV)? (43)

for the tetraquark state X+ as there exists a P-wave between the heavy
diquark and heavy antidiquark constituents. If the X (4274) can be assigned
to be the X, the optimal energy scale of the QCD spectral density is u =
1.2 GeV. At the energy scale u = 1.2 GeV, the flavor SU(3) breaking effects
are sizeable. In calculations, we take into account the effect of the finite s

quark mass, and take the energy scale y = \/M)% —(4.10 GeV)?2—2mg(p) =

1 GeV. We evolve all the input parameters in the QCD spectral densities
to the special energy scales determined by the energy scale formula, as the
integrals

S0

S
/ dsp (s, ) exp (—ﬁ> (44)
4mZ(n)

are sensitive to the heavy quark mass m. or the energy scale y. In calcu-
lations, we observe that the predicted masses decrease monotonously and
quickly with increase of the energy scales. If we abandon the energy scale

formula p = \/ M)Q( 1Y)z~ (2M,)? or modified energy scale formula y =

\/ Xz~ (2M,. + Pg)?, we are puzzled about which energy scale should

be chosen. With the help of the (modified) energy scale formula, we can
choose the acceptable or optimal energy scales of the QCD spectral den-
sities in a consistent way. The values of the effective heavy quark masses
Mg are universal for all the diquark-antidiquark-type hidden-charm and
hidden-bottom tetraquark states [26, 27, 30, 31].

Now, we search for the optimal Borel parameters 72 and continuum
threshold parameters sg to satisfy the following four criteria:

1. Pole dominance at the phenomenological side;

2. Convergence of the operator product expansion;

3. Appearance of the Borel platforms;

4. Satisfying the energy scale formula
via trial and error, and obtain the Borel windows T2, continuum threshold

parameters sg, optimal energy scales of the QCD spectral densities, and pole
contributions of the ground states, which are shown explicitly in Table II.
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TABLE II

The Borel windows, continuum threshold parameters, ideal energy scales, pole
contributions, masses and pole residues for the axialvector and vector tetraquark

states.

T? |GeV?| | /50 |GeV] | p [GeV]| Pole M [GeV] A [GeVP)
XT| 29-33 |4.804+0.10 1.0 (38-60)% | 4.2740.09 | (1.5240.25) x 1072
X~| 3743 [5154£010| 2.9 |(39-61)%|4.66-:0.08 | (7.9441.00) x 10~2

From Table II, we can see that the pole contributions are about (40—
60)% and the pole dominance criterion is well-satisfied. In calculations, we
observe that the contributions of the vacuum condensates of dimension 10
are about 1% and < 1% for the tetraquark states X and X —, respectively,
and the operator product expansion is well-convergent. The first two criteria
or the basic criteria of the QCD sum rules are satisfied.

We take into account all uncertainties of the input parameters and obtain
the values of the masses and pole residues of the scsé tetraquark states, which
are shown explicitly in Figs. 1-2 and Table II

Myx+ = (4.27£0.09) GeV,

My- = (4.66+0.08) GeV, (45)
Ax+ = (1.5240.25) x 1072 GeV?,

Ax- = (7.944+1.00) x 1072 GeV®. (46)

In Figs. 1-2, we plot the masses and pole residues of the tetraquark
states with variations of the Borel parameters T? at larger intervals than
the Borel windows. From the figure, we can see that there appear platforms
in the Borel windows, the criterion 3. is also satisfied. From Table II, we
can see that the energy scale formula is satisfied. Now, the four criteria
are all satisfied and it is reliable to extract the ground-state masses. The
predicted mass my+ = (4.27+£0.09) GeV is in excellent agreement with the
experimental data 4273.3i8.3fé762 MeV from the LHCb Collaboration |3, 4],
which supports assigning the X (4274) to be the [sc|a[5¢]v — [sc]v[5¢]a-type
axialvector tetraquark state X with a relative P-wave between the diquark
and antidiquark constituents.

In the non-relativistic quark models, we naively expect that the wave
functions of the P-wave excitations vanish at the origin. In the present case,
the pole residues have the relation Ay+ < Ax-, the effect of the P-wave
between the diquark and antidiquark constituents manifests itself, which is
consistent with our naive expectation.
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Fig.1. The masses of the tetraquark states with variations of the Borel param-
eters T2, where the P and N denote to the positive parity and negative parity,

respectively.
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Fig.2. The pole residues of the tetraquark states with variations of the Borel
parameters T2, where the P and N denote to the positive parity and negative
parity, respectively.

From Eq. (45), we can see that the relation between masses is My+ <
M —. If we use the S and Sy to represent the spins of the axialvector and
vector diquarks (or antidiquarks), respectively, the effective Hamiltonian
contains a term %bi -L+2aL - g, where § = Sy + §V, the L is the relative
angular momentum [36]. In the case of X~, L = 0 and %b[_:-l_:—l— 2aL-5=0.

In the Case_'of_’X‘F, the total spin J=1L+ §, J =1and L =1, the term
$bL-L+2aL-S =b+a[J(J+1) — L(L+1) — S(S+1)] = b—aS(S+1) = b,
b—2a and b — 6a for S =0, 1 and 2, respectively. If the spin—orbit coupling
is strong enough, the b — 2a and b — 6a can have negative values and the
effect of the additional P-wave leads to a smaller tetraquark mass. At the
present time, we have rare experimental data to fit the parameters a and b
if the vector diquarks are involved, the calculations based on the QCD sum
rules indicate that My+ < Mx-.
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3. The width of the X (4274) as the axialvector tetraquark state

We can study the hadronic coupling constant gx+ /44 with the three-
point correlation function 11,8, (p, q)

Maplpv) = [ dtedtye 0T {12/ 1) 7} 0}, (47
where the currents

T (x) = e(x)yac(z),
J5(y) = 5(y)yss(y) (48)

interpolate the mesons J/¢ and ¢(1020), respectively,

(O1TJ/Y ()] T/ (p)) = Tremypéa s
(015(0)¢(q)) = fomoCs (49)

and where f;/,, and fs are the decay constants, §, and (g are polarization
vectors of the mesons J/1¢ and ¢(1020), respectively.

At the phenomenological side, we insert a complete set of intermediate
hadronic states with the same quantum numbers as the current operators
J&Z/w(:c), Jg(y), J,JL,,(O) into the three-point correlation function I1,8,, (p, q)
[20, 21|, and isolate the ground state contributions to obtain the result

foma f1wmypAx+9x+7 - Pab
Mo (p,q) = /A [v0 ) o) (— = p)

2 ) 2 2 2_ 9 Gop p?
(M =p2) (m3),~92) (m3—q

P Ly
X <_gﬁ9 + ng¢9> |:(_g/rr + ;,2 >P,// - <_gl/7' + ;/2 >p;{|
N fomofrpmgpAx— (J/0(p,€)(q, )| X (p',€))
(m%-=9) (3 =1) (m-¢?)
Fomg [ 1M Ax+9x+1/p6 1
(e =r?) (3 =9) (m=a®) (s = 97) (3, = 9?)
y 7dtﬂx+¢>’ (P’Z;P27 t) N 1 7 g Pxre (071 )
t—q (m2, —p?) <m§5—q2> p t—p

£aCa Epvpo €D+ . ..

0
5
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o0

/dth+/J/¢ (t, 0%, ¢%) +px+1g (6,07, 4%) N
2
2) (mgﬁ_qQ)sg( oy

(m 7P

( EafurD Py — EapurD Py + - ) ...
i

=11 (p”,p*, ¢*) (%,@uxp% - eaﬁmpkpu) + ..., (50)
where p' = p+¢q, Ax=z = %, mx+ = Mx+ and gx+j/4¢ 1s the hadronic
coupling constant defined by

(J/Y(@,€)p(q, OIXT (1)) = Z'QX+J/¢¢€ATP9PI,\€T§;C§, (51)

the four functions px+g (P2, p% 1), px+yp (P2 1, ¢%), pX+/J/¢(t’,p2,q2) and
,OX+/¢(t’ ,p?,¢%) have complex dependence on the transitions between the
ground states and the higher resonances or the continuum states.

In this article, we choose the tensor structure EQB#ApApV — sagl,,\p/\pu to
study the hadronic coupling constant gx+ /44 to avoid the contamination
from the vector tetraquark state X —, as the tetraquark state X~ is associ-
ated with the tensor structure €,,+e, Where the ee denotes some functions
of the p, p’, ¢. Furthermore, the contaminations originate from the scalar
meson xo(3414) and scalar meson f,(980) are also avoided

(01 0)xeo(p)) = FreoPr »
(01T5 ()] fo(0)) = Fros - (52)
where fy, and fy, are the decay constants of x.0(3414) and f,(980), respec-
tively. Thereafter, we will smear the superscript + in the X for simplicity.

The correlation function IT(p2, p?, ¢%) at the phenomenological side can
be written as

J/w “

Ty (2 p2 ¢) / ds/ds/dus_ 83;)“() ot

(myjp+me)?  4m2

(53)
through the dispersion relation, where the pg (s, s,u) is the hadronic spec-
tral density

’ — L i i ImS/ Ims Imu HH (S/ + i63, S+ i62, u + iEl)
PH (s ,s,u) = lim lim lim 3 .
e3—0 e2—0 e¢1—0 e

(54)
We introduce the subscript H to denote the hadron side.
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We carry out the operator product expansion for the correlation function
I8, (p,q) up to the vacuum condensates of dimension 5 and neglect the
tiny contributions of the gluon condensate. We contract the quark fields s
and ¢ in the correlation function 1,4, (p,q) with the Wick theorem, and
obtain the result

ijk ~imn ) )
Hopu(p,q) = % d'zd'y e Teld

1 { T 1 SEF (2357, O ST () Oy C ST () O S (—)|
T[S (2)3,CS T (y) CysCS T (—y) Crs SEe(—a)]| - (55)

where the a, b, 4, j, k, m and n are color indexes, the S%(z) and S™(x) are
the full ¢ and s quark propagators, respectively, see Egs. (16)—(17). Then we
compute the integrals both in the coordinate space and in the momentum
space, and obtain the correlation function at the QCD side, therefore, the
QCD spectral density through dispersion relation

J/u» “ )
P CD , S, U
Hqep (p7,0%,¢%) /dS/ = =+, (56)
2, ufq)
'rn

where the pgop (p'?, s, u) is the QCD spectral density,

Img Im,, 11 (plQ 8—1—7:6 U+'L€ )

2 . . s u L14QCD ) 2,5 1
=1 1

PQCD (p ,s,u) 621mo 61uno 3

we introduce the subscript QCD to denote the QCD side. However, the
QCD spectral density pqep (s, s, u) does not exist

(87

, . . . Img Img Im,, HQCD (S/+i63,8+i62,u+i61)
pqcp(s’,s,u) = lim lim lim 3
e3—0 ea—0 e1—0 T

=0, (58)

because ) 5 o
Imy 11 s' + ie3, p=,
lim s/ 11QCD ( 3P q )
e3—0 T
We match the hadron side with the QCD side of the correlation function,
and carry out the integral over ds’ firstly to obtain the solid duality [37]

~0. (59)

o0

/ds/ pQCDp’ /ds/du /d’pH(S“‘)
(s—p?) (u—q?) s'—p?

A2 A2 A2 A2 A2
(60)
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A2 and A2 are the thresholds 4m? and 0, respectively, A? is the threshold
(m It m¢,)2. Now, we explicitly write the quark—hadron duality

50 uO SO uo
Iy Y ) (o2, 5,u) g g 00 o (55,10
QCD 59y / H 59y
ds/du:/ds/du / ds
/ (s—p?) (u—q?) (s"=p?) (s—p?) (u—q?)
4mg 0 4mg 0 (mJ/w—&-qu))z
fomofrpmapAx9x.1 /00 Cxrypp + Cxrg

_l’_

= (m2 — p?) (m3/¢ —p2> (mi — @) (mg/w —p2> <m§) B q2> ’

and introduce the parameters Cx/y and Cxvj/y to parameterize the net
effects

(61)

’ t
CX’¢:/de¢ p Q)’

T pxrp (60 4%)
Cxrypp = / dt /t—p’Q . (62)
%

No approximation is needed, we do not need the continuum threshold pa-

rameter sg( in the s’ channel. The present approach was introduced in

Ref. [37].

In numerical calculations, we take the unknown functions Cx/4 and
Cxj/y as free parameters, and choose the suitable values to eliminate the
contaminations from the higher resonances (i.e. X’ etc.) and continuum
states to obtain the stable QCD sum rules with the variations of the Borel
parameters. We set p’? = p? and perform the double Borel transform with
respect to the variables P? = —p?and Q? = —¢?, respectively, to obtain the
QCD sum rules

A 3 :
fome LappmmapAx 9x s [eXp (_ J/l/}) _exp( mX)

m% — mi/w T2 T2
2 2
+ (Cxrapi + Cxrg) exp <— - Tf)
1 2

0 0
Sirp 5S¢

1 4m? 2m? S U
— [ ds [ dumyf1— e (14 2 s
48124 / S/ . s < T >exp( 7 T22>

4m2 0
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6m 44 - < )exp <_T%>
)exp (—%) . (63)

ms (3950Gs) / 4m2 (
722m2T2

The hadronic parameters are taken as my = 1.019461 GeV, m;,, =

3.0969 GeV [24], f7/4 = 0.418 GeV [38], f = 0.253 GeV, | /s = 1.5 GeV [10],

\ /sg/w = 3.6 GeV, My = 4273.3 MeV [3, 4], A\x = 1.52x 1072 GeV®. At the

QCD side, we can take the energy scale of the QCD spectral density to be
p =1 GeV, just like in the two-point QCD sum rules. However, at the energy

scale p = 1.0 GeV, 2m.(1 GeV) = 2.8 GeV, sg/w—ch(l GeV) = 0.8 GeV,

the integral interval 4m?2 — s?, /i is too small to obtain stable QCD sum rules;

the interval sg/w — 2m(p) should be larger than 1 GeV to obtain stable
QCD sum rules. At the energy scale p = me(m.) = 1.275 + 0.025 GeV,
\ /8?7/¢ — 2m¢(m¢) = 1.05 £ 0.05 GeV, the lower bound is 1.0 GeV, the un-

certainty is out of control. Thus, in this article, we choose the typical energy
scale p = mc(m.) and neglect the uncertainties of the quark masses. It is the
shortcoming of the present QCD sum rules, we can only obtain qualitative
conclusion, as rigorous uncertainty analysis is missing. For simplicity, we set
the Borel parameters to be T = T = T2. The unknown parameters are
chosen as Cxj/y + Cxrg = —0.00145 GeV' to obtain platform in the Borel
window T2 = (2.8—3.8) GeV?2. In calculations, we observe that the predicted
hadronic coupling constant gx /¢ increases monotonously with the increase
of the energy scale. The energy scale 1 = m.(m.) = 1.275 GeV is an accept-
able energy scale in the QCD sum rules for the J/¢ and ¢(1020), although
it slightly deviates from the optimal energy scale u = 1 GeV in the QCD
sum rules for the X (4274); the deviation leads to unavoidable uncertainty
in the hadronic coupling constant gx j/yg, i-€. we slightly underestimate the
value of the gx j/yp4-

In Fig. 3, we plot the hadronic coupling constant gx j/,s with variation
of the Borel parameter T2. From the figure, we can see that there indeed
appears a platform in the Borel window, where the uncertainty originating
from the Borel parameter 72 is small and can be safely neglected. The
central value of the hadronic coupling constant gy j/y¢ 18
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which corresponds to the central values of all the input parameters. We
obtain the decay width

) = p (mx,mypymg)
a 247Tm§< IXI/ve

2 2
(& —m3)" (mk-mi)
om2 om2 +dm 2
M7/ mg

[(X(4274) = J /o

2 2
y _mj/w—i—m(p

= 47.9MeV ~ 56 + 1178, MeV  (experimental value [3, 4]), (65)

where p(a, b, ¢) = V=CHIEC-IT "y wigen 1(X(4274) = J /1) =
47.9 MeV is in excellent agreement with the experimental data 56i11f?1 MeV
from the LHCb Collaboration [3, 4]. The present work supports assigning
the X (4274) to be the [sc|a[sc]v — [sc]v[S¢|a-type tetraquark state with a

relative P-wave between the diquark and antidiquark constituents.
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Fig.3. The hadronic coupling constant gx j/,¢ With variation of the Borel param-
eter T72.

In Ref. [10], we construct the color octet-octet-type axialvector current
nu(z) to study the mass and width of the X (4274)

[$()insA"c(x) e(@)yuAs(x) — §()yuAc(x) é(@)iys As()] -
(66)

Nu(x) =

Sl
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Now, we perform the Fierz re-arrangement both in the color and Dirac-spinor
spaces and obtain the result

N.+1 ]
Ny = — 3\;— {2\2/5 (STC’%tAcEV#CtAET—}—STC'y#tACE%C’tAET)
C
1
+27\/§ (STC’fya%tAc EUWCtAET — STCathc 375’yaCtAcT)}
Ne—=11( 4 ¢ S _ ST | .T S .- ST
+ N 2\7@ (s Cryst’esy,Ct7c 4+ s~ Cryut e sysCtoe )
C
1
—1—2—\/§ (5T07a75tsc EJWCtSET - sTCcrautSc 5757aCtSET)}
Ne+1 (i, 1,1 Ne—1(i- 1.
= — —J,+ =J =J,+=J 67
N, {2“+2“+NC 9 u T gluy (67)
where
A 1
Ji = E (STC’y5tSc E'YMCtSET + STC’yNtSC§75CtSET) ,
S 1
Jh = — (STC"ya'yg,tchaauCtSET —STCaaMtSCE'yg,'yO‘CtSET) . (68)

V2

The current J}(z) couples potentially to the [sc|s[sc]a + [sc]a[5¢]s-type
axialvector tetraquark state with a mass 3.95 + 0.09 GeV [13], the cur-
rent Jﬁ(:c) couples potentially to the [sc|r[s¢]y — [sc]v[S¢]T-type axialvec-
tor tetraquark state with a mass 4.14 + 0.10 GeV [14], while the currents
jﬁ(w) and jﬁ(a:) couple potentially to the [scl8[5Q + [sc]& [sc]é-type and
[sc]S[5¢)$, — [sc]% [5¢)%-type axialvector tetraquark states, respectively. The
current n,(x) is a special superposition of the currents Jﬁ(a:), Jﬁ(x), jﬁ(az)
and jﬁ(az), and embodies the net effects. The ideal energy scales of the
QCD spectral densities of the correlation functions for the currents Jﬁ(x)
and Jﬁ(aj) are = 1.5 GeV and 2.0 GeV, respectively [13, 14|, while the
ideal energy scale of the QCD spectral density of the correlation func-
tion for the current 7,(z) is p = 1.45 GeV [10]. The energy scale for
the lowest tetraquark state is consistent with that for the color octet—
octet-type tetraquark molecule-like state, although the two energy scales
are determined by very different c-quark mass M. There does not ex-
ist a [sc|a[sc]v — [sc]v[s¢]a-type component in the current n,(z), the cur-
rent Jy, () chosen in the present work differs from the current chosen in
Ref. [10] completely. Furthermore, the [sc]a[sc]y — [sc]v[5¢]a-type and
[sA%|p[eA?s] — [8A\%c|y[eA?s]-type axialvector four-quark states have com-
pletely different widths, which originate from the completely different quark
structures.
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4. Conclusion

In this article, we construct the [sc|a[5¢]y — [sc]v[5¢]a-type tensor cur-
rent to study the X (4274) with the QCD sum rules by carrying out the
operator product expansion up to the vacuum condensates of dimension 10.
The tensor current couples potentially to both the JP¢ = 1t+ and 1-7
tetraquark states. We separate those contributions unambiguously by intro-
ducing suitable projectors. In calculations, we use the energy scale formula
to determine the optimal energy scales of the QCD spectral densities, and
extract the masses of the JP¢ = 17+ and 1= tetraquark states at dif-
ferent energy scales. The predicted mass Mx = (4.27 £ 0.09) GeV for the
JPC = 177 tetraquark state is in excellent agreement with the experimental
value 4273.3 £ 8.311%2 MeV from the LHCb Collaboration. Then we study
the two-body strong decay X (4274) — J/1¢ with the QCD sum rules based
on the solid quark—hadron duality introduced in our previous work. The
central value of the predicted width I'(X (4274) — J/¢¢) = 47.9 MeV is in
excellent agreement with the experimental value 56 + 11f§1 MeV from the
LHCb Collaboration. In summary, the present work supports assigning the
X (4274) to be the JPC¢ = 117+ [sc]a[5¢]v — [sc]v[5¢]a tetraquark state with
a relative P-wave between the diquark and antidiquark constituents. Fur-
thermore, we obtain the mass of the [sc|a[sc]yv — [sc]v[S¢]a-type tetraquark
state with JP¢ = 1= as a byproduct.

This work is supported by the National Natural Science Foundation,
grant number 11775079.
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