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the Equation of Motion Phonon Method (EMPM). They are obtained by
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basis improves drastically the convergence of the two-phonon correlation
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1. Introduction

Practically all ab initio studies of nuclear properties require the solution
of the many-body eigenvalue problem in spaces of very large dimensions. It
is, therefore, crucial to search for recipes, which allow an effective truncation
of the many-body space with no detriment to the accuracy of the solution.

A viable route consists in acting at the mean-field level and trying to
find a single-particle basis, which absorbs an appreciable part of the corre-
lations induced by the nuclear interaction. Hartree–Fock (HF) provides a
variational optimization of the basis states below the Fermi surface. The
unoccupied states, however, are just fixed by imposing the orthonormaliza-
tion to the occupied states. Moreover, when applied to modern potentials,
HF underestimates the binding energy.

Recently, it has been proposed [1, 2] to replace the HF with the eigen-
vectors of the one-body density matrix, known as natural (NAT) orbitals,
adopted in quantum chemistry and atomic physics [3]. No-core shell-model
(NCSM) calculations, exploiting the formalism of Ref. [4], were performed
in spaces with increasing dimensions for different harmonic oscillator (HO)
frequencies [2]. It was found that this new basis is much less sensitive to the
dependence of the harmonic oscillator frequency and improves the conver-
gence with the space dimensions.

Here, we intend to investigate if an analogous result is achieved when
natural orbitals are used in calculations performed within the equation of
motion phonon method (EMPM). This approach [6–8] generates a basis of
correlated states composed of tensor products of phonons generated in the
Tamm–Dancoff approximation (TDA) and uses such a basis to diagonalize
a realistic Hamiltonian. It was used to study the bulk properties of closed-
shell nuclei [9] as well as the spectroscopy of even [10, 11] and odd [12–14]
nuclei.

2. Theoretical framework

Following Ref. [2], we generate a HF basis by adopting an intrinsic Hamil-
tonian of the form of

H = T + V NN − Tcm , (1)

where T and Tcm are the nucleon and center-of-mass (c.m.) kinetic energies,
respectively, while V NN is the nucleon–nucleon (NN) two-body potential.
We do not include three-body forces, which, instead, were considered in
Ref. [2].

The HF basis is used to compute in second-order many-body perturba-
tion theory (MBPT) the ground-state one-body density matrix
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ρij =
〈
Ψ
(2)
0

∣∣∣ a†iaj ∣∣∣Ψ (2)
0

〉
(2)

under the constraint
Trρ =

∑
i

ρtotii = A . (3)

In the above equations, A denotes the total number of nucleons, |Ψ (2)
0 〉 is the

ground-state wave function up to second order, and the operators a†p (ap)
and ah (a†h) create (annihilate), respectively, a particle and a hole of energy
εp and εh with respect to the HF vacuum.

The resulting one-body density matrix (2) can be decomposed as fol-
lows [4]:

ρij ' ρ00ij + ρ11ij + ρ20ij + ρ02ij , (4)

where ρ00 is the zero-order HF density and the higher-order terms are
given by

ρ11hihj = −1

2

∑
p1p2h2

Hp1p2hjh2(
ehj + eh2 − ep1 − ep2

) Hp1p2hih2

(ehi + eh2 − ep1 − ep2)
, (5)

ρ11pipj =
1

2

∑
h1h2p2

Hpip2h2h1

(eh1 + eh2 − epi − ep2)
Hpjp2h2h1(

eh1 + eh2 − epj − ep2
) , (6)

ρ20pihj =
1

2

∑
p1h1p2

Hpih1p1p2(
eh1 + ehj − ep1 − ep2

) Hp1p2hjh1(
ehj − epi

)
−1

2

∑
p1h1h2

Hpip1h1h2

(eh1 + eh2 − ep1 − epi)
Hh1h2hjp1(
ehj − epi

) . (7)

The terms ρ10ij vanish because of the Brillouin theorem [5]. The terms ρ12

and ρ22 have been neglected.
The diagonalization of the one-body density matrix (2) yields the basis

of natural orbitals. We define the new creation and annihilation operators
b†i and bj , which are linear combinations of the corresponding HF operators,
as well as the new vacuum

|NAT〉 = Πhb
†
h | 〉 , (8)

where h labels all occupied states. Given the correlated nature of |NAT〉, we
need to redefine the new hole states as the eigenstates of ρ with the largest
occupation number. We are now able to construct NAT particle–hole states
and generate NAT TDA phonons

O†λ =
∑
ph

cλph

(
b†p × bh

)λ
(9)

of energy Eλ. These phonons are the constituents of the EMPM states.
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In fact, the primary goal of the EMPM is to generate a basis of n-phonon
correlated states of the form of

|αn〉 =
∑
λαn−1

Cαn
λαn−1

|(λ× αn−1)αn〉 =
∑
λαn−1

∣∣∣(O†λ × αn−1)αn
〉
, (10)

where the TDA phonon operators O†λ act on the (n−1)-phonon basis states
|αn−1〉 of energy Eαn−1 , assumed to be known.

In order to determine | αn〉, we start [8] with the equations of motion

〈β||
[
H,O†λ

]λ
||α〉 = (Eβ − Eα)〈β||O†λ ||α〉 , (11)

where we have put β = αn and α = αn−1 for simplicity. After expand-
ing the commutator and performing several manipulations, we obtain the
generalized eigenvalue equation∑

λ′α′λ′′α′′

[
(Eλ + Eα − Eβ)δλλ′δαα′ + Vβλαλ′α′

]
Dβλ′α′λ′′α′′C

β
λ′′α′′ = 0 , (12)

where Vβλαλ′α′ is a phonon–phonon potential [8], and Dβλαλ′α = 〈(λ×α)β|(λ′×
α′)β〉 is the overlap matrix, which re-introduces the exchange terms among
different phonons, re-establishing thereby the Pauli principle.

Equation (12) is ill-defined. In fact, the overlap matrix D is singular,
since the set of states |(λ × α)β〉 is overcomplete. We adopt the Cholesky
decomposition method to extract a basis of linearly-independent states span-
ning the subspace of the correct dimensions [6, 7]. Thus, the generalized
eigenvalue equation can be solved and yields the eigenstates |αn〉 of the
form of (10).

By iterating the above procedure, we can generate a set of orthonormal
multiphonon states {|α0 = 0〉, |α1〉(= |λ〉), . . . |αn〉 . . .}. This basis is used to
diagonalize the residual Hamiltonian, yielding correlated eigenstates

|ψν〉 =
∑
αn

Cναn
|αn〉 (13)

with eigenvalues Eν .

3. Calculations and results

We applied the EMPM, so reformulated, to 16O. To this purpose, we
employed a Hamiltonian composed of an intrinsic kinetic operator and the
NN -optimized chiral potential N2LOopt [15].
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Figure 1 shows that the convergence properties of the unperturbed ground-
state energy do not change when going from the HF to the NAT basis. On
the other hand, Fig. 2 shows that, when the NAT basis is used, the point
proton radii converge faster with Nmax and are insensitive to the HO fre-
quency over a large interval, consistently with Ref. [2]. Large differences
emerge once the EMPM is adopted. In fact, we have computed the ground-
state energy of 16O in a configuration space including up to 2 phonons. Both
HF and NAT bases were generated in the HO space with the maximum os-
cillator shell Nmax = 12. The TDA phonons (9) were generated in spaces
with NTDA

max ≤ Nmax.
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Fig. 1. The HF (full lines) and the NAT (dotted lines) ground-state energies,
E = 〈HF|Ĥ|HF〉 and E = 〈NAT|Ĥ|NAT〉, calculated for various Nmax, plotted
versus the HO frequency.

Figure 3 shows that, when natural orbits are used, the total energy Etot

converges much faster with NTDA
max and is practically independent of the HO

frequency.
It is also worth noticing that the unperturbed HF ground-state energy

is ∼ 100 keV lower than the corresponding NAT energy. We have, in fact,
for ~ω = 16.3 MeV, EHF = −51.59 MeV and ENAT = −50.97 MeV, and for
~ω = 26 MeV, EHF = −51.48 MeV and ENAT = −50.91 MeV. This is not
surprising, since HF has a variational character and provides the extremal
value in the subspace of Slater determinants.
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Fig. 2. The proton point-like radii rp =
√
〈HF|r2|HF〉 (full lines) and rp =√

〈NAT|r2|NAT〉 (dotted lines), calculated for different Nmax, plotted versus the
HO frequency.

The opposite holds for the correlation energies, as shown in Table I. Thus,
the resulting total energies are very close in both bases, with a slight energy
gain in favor of the NAT basis. We have, in fact, E(HF)

tot = −108.01 MeV and
E

(NAT)
tot = −108.30 MeV for HO frequency ~ω = 16.3 MeV, and E

(HF)
tot =

−108.32 MeV and E(NAT)
tot = −108.62 MeV for HO frequency ~ω = 26 MeV.

In both cases, the calculation underestimates the binding energy per nu-
cleon by ∼ 1 MeV. This large deviation should be ascribed to the truncation
of the space. We expect, in fact, that the inclusion of three and, espe-
cially, four phonons will push through their coupling the two-phonon states
downward in energy, thereby strengthening the two-phonon coupling to the
unperturbed ground state.
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Fig. 3. The total energy Etot of 16O for different values ofNTDA
max . Etot = EHF+Ecorr

for the HF basis (HF) and Etot = ENAT+Ecorr for the natural orbital basis (NAT).
The energies are shown for two values of the HO frequency, ~ω = 16.3 MeV and
~ω = 26 MeV.

TABLE I

The correlation energies, Ecorr [MeV], calculated in the HF basis (HF) and the
basis of natural orbitals (NAT) for two values of the HO frequency, ~ω = 16.3 MeV
and ~ω = 26 MeV.

NTDA
max 4 6 8 10 12

(HF) ~ω = 16.3 MeV −8.09 −17.91 −30.76 −40.91 −56.41
(NAT) ~ω = 16.3 MeV −46.62 −56.27 −57.12 −57.18 −57.33

(HF) ~ω = 26 MeV −14.25 −29.60 −42.93 −52.05 −56.84
(NAT) ~ω = 26 MeV −46.72 −56.50 −57.49 −57.57 −57.71
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4. Conclusions and outlook

Our analysis has shown that the convergence of the ground-state correla-
tion energy with the space dimensions is much faster if the basis of natural
orbitals replaces the HF basis. We will explore in the future if an analo-
gous improvement is achieved for other observables such as the radii and,
more general, for all spectroscopic properties like excitation energies and
transition strengths.
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