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The possible origin of an X-boson having a mass value around 17 MeV
had motivated us to investigate its interaction with leptons of QED. This
new hypothetical particle can possibly be a candidate to describe the so-
called fifth interaction in a new physics scenario beyond the Standard
Model. The simplest X-boson model unified to the Standard Model is
based on an SUc(3) × SUL(2) × UY (1) × U(1)B−L symmetry, where the
group U(1)B−L is attached to the X-boson, with a kinetic mixing with the
gauge field of UY (1). The Higgs sector was revisited to generate the mass
for the new boson. Thus, the mass of 17 MeV fixes a vacuum expected
value scale. Thereby, we could estimate the mass of the hidden Higgs field
through both the VEV-scale and the Higgs’ couplings. A model of QFT was
constructed in a renormalizable Rξ-gauge, and we analyze its perturbative
structure. After that, the radiative correction of the X-boson propagator
has been calculated at one-loop approximation to yield the Yukawa poten-
tial correction. The form factors associated with the QED-vertex correction
were calculated to confirm the electron’s anomalous magnetic moment to-
gether with the computation of the interaction magnitude. The muon case
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was discussed. Furthermore, we have introduced a renormalization group
scheme to explore the running X-boson mass and its coupling constant
with the leptons of the Standard Model.

DOI:10.5506/APhysPolB.51.909

1. Introduction

The anomalies of the excited state of 8-beryllium (8Be∗) relative to its
ground state have revealed the existence of a new neutral X-boson through
the nuclear decay 8Be∗ → 8Be+X [1]. Immediately, the X-boson decays into
the electron–positron pair X → e++e−. It has a vector feature like the pho-
ton, but it must have a mass of approximately mX = 17 MeV. Moreover, it
must mediate a weak force with a range of 12 fm. In principle, its unification
is associated with the introduction of an extra gauge symmetry U(1)B−L,
where B−L means the baryonic number (B) minus the leptonic number (L),
besides the known gauge symmetry of the Standard Model (SM). The model
is also a good candidate due to the absence of chiral anomaly.

The introduction of a light or heavy Z ′ particle via U(1)B−L is an old
idea in theoretical particle physics which includes several scenarios of Z ′
models beyond the SM [2–12]. Besides, many Z ′ models like U(1)B−L also
have motivated the theoretical research in dark matter scenarios [13–22].
Certainly, the existence of a new boson can lead to the emergence of a fifth
fundamental interaction in Nature [23]. In this context, the extended SM
is based on the SUc(3)× SUL(2)×UY (1)×U(1)B−L gauge symmetry. For
a complete review about the anomaly of beryllium decays, see [24]. Re-
cently, a huge number of references show the alternative models to describe
this extended SM [25–30]. The effective Lagrangian that could describe the
Abelian sector of the X-boson model can be written as

Leff = −1

4
F 2
µν −

1

4
X2
µν +

χ

2
XµνF

µν +
1

2
m2
XX

2
µ + JµX

µ , (1)

where Xµν is the field strength tensor of Xµ, Fµν is the corresponding one
for the photon, and Jµ is the fermionic current coupled to the Xµ-field

Jµ =
∑

f=e,u,d,...

eχf f̄γ
µf , (2)

where f represents any fermion of the SM. The X-boson can also interact
chirally with the SM leptons via the axial current [24, 31, 32]. The current
in Eq. (2) defines the so-called protophobic interaction where the nucleons’
coupling constant (n, p) of the X-boson is multiplied by both the χn- and
χp-parameters, whose magnitudes satisfy the inequality χn � χp. This is
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also known as the millicharged interactions [5]. We list some values of χΨ for
the electron, neutron and neutrinos, following the X-boson phenomenology
in the literature [8], namely,

2× 10−4 < |χe| < 1.4× 10−3 , |χn| < 2.5× 10−2

and
√
|χν χe| . 7× 10−5 . (3)

By considering both the u- and d-quarks, the extreme protophobic limit
(χp = 0) parameterizes χu and χd since [8]

χu = −χn
3
' ± 3.7× 10−3 and χd = +

2χn
3
' ∓ 7.4× 10−3 . (4)

In Eq. (1), the χ-parameter, estimated within the range of 10−6 < χ <
10−3, mixes kineticaly the boson Xµ with the usual electromagnetic (EM)
photon Aµ. It is clear that the massive term spoils the UB−L(1) symmetry.
The Lagrangian in Eq. (1) has just the EM gauge symmetry U(1)em. There-
fore, a Spontaneous Symmetry Breaking (SSB) mechanism spoils one of the
Abelian symmetries to generate a mass value of mX = 17 MeV in Eq. (1).
Consequently, the experimental value of 17 MeV defines the scale of a VEV,
consequently, we can estimate a mass range for the hidden Higgs.

In this paper, we will start with the SM extended by a U(1)B−L symme-
try with a kinetic mixing term in the gauge sector. The hidden Higgs sector
will be revisited in the Rξ-gauge to spoil one of the U(1) gauge symmetries
and, therefore, we will carry out the full diagonalization procedure to iden-
tify a massive gauge field from a VEV-scale as the X-boson. The remaining
massless eigenstates will be identified as the EM-photon. Hence, the model
is a candidate to describe the interaction between leptons and the X-boson
as well as the usual QED interaction with photon. This approach is similar
to the U(1)B−L gauge boson together with kinetic mixing discussed in [33].

Thus, we have a QED scenario coupled to the hypothetical fifth in-
teraction associated with the X-boson mediator. Thereby, we can obtain
a renormalizable and unitary model, where the interaction between both
the X-boson and fermions of the SM satisfies the protophobic condition
mentioned previously. We will discuss some aspects of the model from the
point of view of the perturbative QFT with the motivation to confirm some
constraints on the χ-parameters. For example, we can estimate the X-
boson decay time by using the decay width of X → e+ + e−. We obtain
the differential cross section for electron–positron scattering e+e− → µ+µ−

via X-boson at the tree level. Moreover, we will analyze some aspects of
the perturbation theory at one-loop approximation: (i) The contribution of
the X-boson to the electron physical mass; (ii) The X-boson full propaga-
tor, the mX -renormalized mass and the correspondent Uehling potential;
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(iii) The contribution of the X-boson into the QED-vertex calculation.
Thus, the form factors yield a contribution of the χ-parameter to the elec-
tron’s anomalous magnetic moment, which confirms the constraints in Eq. (3);
(iv) Finally, we will obtain all the renormalization factors of the model by
fixing the renormalization conditions. In this way, the renormalization group
scheme will be introduced to investigate both the current X-boson mass and
its respective coupling constant as functions of an arbitrary dimensionless
scale.

The organization of this paper obeys the following schedule: in Section 2,
we will discuss the model based on the SUc(3)×SUL(2)×UY (1)×U(1)B−L
symmetry with a kinetic mixing between the Abelian gauge fields. The hid-
den Higgs sector will also be analyzed with a detailed full diagonalization to
give a mass for the X-boson, and the gauge sector in the Rξ-gauge fixing. In
Section 3, we will calculate the decay rate of the X-boson into the electron–
positron pair. In Section 4, we will obtain the scattering e+e− → µ+µ−

at tree level. In Section 5, the contribution of the X-boson to the electron
self-energy will be calculated at one loop. In Section 6, the correction of the
X-boson full propagator will be used to obtain the corresponding Uehling
potential. In Section 7, the correction to the QED vertex will be computed
concerning the interaction of the X-boson with the electron–positron pair.
In Section 8, we will construct the model renormalization and discuss the
functions that appear in the Callan–Symanzik equation. Finally, the con-
clusions and last remarks will be depicted in Section 9.

2. The Abelian model and the Higgs sector: New considerations

In this section, we will restate the sector of gauge fields and leptons/quarks
of the model governed by a SUc(3)×SUL(2)×UY (1)×U(1)B−L symmetry,
with the kinetic mixing χ-parameter inside the Abelian gauge sector. This
model is well-known in the literature to describe the hidden photon, or also,
new gauge boson that could appear from the MeV-scale and below [34]. Here,
we will study in detail the diagonalization of the Higgs sector to identify the
corresponding massive and massless eigenstates.

Let us begin with the gauge fields sector composed by the massless vector
fields Aµ, Y µ and Bµ

Lgauge = −1

2
tr
(
F 2
µν

)
− 1

4
Y 2
µν −

1

4
B 2
µν +

χ

2
Yµν B

µν , (5)

where Fµν = ∂µAν − ∂νAµ + i g [Aµ, Aν ], Yµν = ∂µYν − ∂νYµ, and Bµν =
∂µBν − ∂νBµ.
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The fermions sector is defined by the usual Lagrangian

Llept/quarks =
∑
f∈ SM

f̄ i /Df , (6)

where the sum includes all the fermions (f) from Table I, and the covariant
derivative operator is

Dµ = ∂µ + i gL Aaµ
σa
2

+ i Y gY Yµ + iQBL g
f
BLBµ , (7)

where Y is the hypercharge generator, QBL is the generator corresponding to
U(1)B−L, and gL, gY and gfBL are the coupling constants of SUL(2), UY (1)

and U(1)B−L, respectively. The coupling constant gfBL was introduced to
characterize the interaction of the hidden X-boson with the leptons/quarks
of the SM. The particle content of the model is shown in Table I. The B−L
model is an anomaly free one by adding the three right-handed neutrinos
(RHNs) with charge QBL = −1. In other words, the interactions from
Eq. (6) between the fermions and gauge bosons are given by

Lint = − f̄
(
gL I3L /A3 + gY Y /Y +QBL g

f
BL /B

)
f . (8)

In fact, we did not identify the physical EM-photon and the X-boson in the
model yet. The physical fields are identified after a diagonalization procedure
with the help of the SSB mechanism. Thereby, a hidden Higgs sector breaks
one of the Abelian symmetries to give mass to the X-boson. After this SSB,
the EM-symmetry can be written such that SUL(2)×U(1)Y ×U(1)B−L

v,vBL7−→

TABLE I

The anomaly-free particle content for the U(1)B−L model.

Fields SUL(2) U(1)Y U(1)B−L

Li 2 −1/2 −1

`iR 1 −1 −1
NiR 1 0 −1

QiL 2 +1/6 +1/3
QiR 1 +2/3 +1/3
qiR 1 −1/3 +1/3

Φ 2 +1/2 0
φBL 1 0 +2
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Uem(1). To accomplish the task, the simplest scalar Lagrangian for the Higgs
sector is

LHiggs = |DµΦ|2 − µ2 |Φ|2 − λ |Φ|4 + |DµφBL|2 − µ2
BL |φBL|2

−λBL |φBL|4 − λ′ |Φ|2|φBL|2 , (9)

where µ, λ, µBL, λBL and λ′ are real parameters. The complex scalar field Φ
is the doublet one known from the SM, and φBL is a SUL(2) singlet scalar
field associated with the symmetry breaking of U(1)B−L. The covariant
derivative operator in Eq. (7) acts on the scalars fields in accord with their
charges in Table I.

The parametrization for the scalars fields is

Φ(x) =
v +H(x)√

2
exp

[
i

v

(
χ3

√
2χ−√

2χ+ −χ3

)]
and φBL(x) =

vBL + hBL(x)√
2

e
i
η(x)
vBL , (10)

where H and hBL are real functions and η, χ3, χ± are the Goldstone bosons
of the model. The VEV v = 246 GeV is the SSB scale for the SM and vBL
is the VEV scale that breaks U(1)B−L such that the SSB pattern satisfies
the condition vBL � v = 246 GeV to give mass for the light gauge boson X.
Therefore, after the SSB, the Lagrangian of neutral gauge bosons is given by

Lgauge = −1

4

(
A3
µν

)2 − 1

4
Y 2
µν −

1

4
B2
µν +

χ

2
Yµν B

µν +
v2
BL

2

(
4 g2

BLφ

)
B2
µ

+
v2

8

(
gLA

3
µ − gY Yµ

)2
, (11)

where A3
µν = ∂µA

3
ν−∂νA3

µ. The sector in Eq. (11) indicates a diagonalization
procedure to obtain the mass of X-boson and the physical gauge bosons. To
do it, we will write the Lagrangian in a matrix form

Lgauge =
1

2
(V µ)t 2 θµνK V ν +

1

2
(V µ)t ηµνM

2 V ν , (12)

where (V µ)t =
(
Y µ Aµ3 Bµ

)
, K is the kinetic matrix and M̃2 is the mass

matrix, respectively,

K :=

 1 0 −χ
0 1 0
−χ 0 1

 and M̃2 =
v2

4

 g2
Y −gL gY 0

−gL gY g2
L 0

0 0 16 g2
BLφ

v2BL
v2

 .

(13)
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To diagonalize the Lagrangian in Eq. (12), we will carry out the non-
orthogonal transformation Y µ

Aµ3

Bµ

 =

 1 0 χ√
1−χ2

0 1 0
0 0 1√

1−χ2


 Ỹ µ

Ãµ3

B̃µ

 . (14)

Thus, the mass matrix in the field basis
(
Ỹ µ Ãµ3 B̃µ

)
can be written as

M̃2 =
v2

4

 g2
Y −gL gY g2

Y χ
−gL gY g2

L −gL gY χ
g2
Y χ −gL gY χ 16g2

BL
v2BL
v2

(
1 + χ2

)
+ g2

Y χ
2

+O
(
χ3
)
.

(15)
The matrix M̃2 can be diagonalized by the two rotation angles

R(ξ, θW) =

 1 0 0
0 cos ξ sin ξ
0 − sin ξ cos ξ

 cos θW sin θW 0
− sin θW cos θW 0

0 0 1

 , (16)

where

tan(2ξ) =
−2χ sin θW

1− δ
and δ :=

16g2
BLφ

g2
L + g2

Y

v2
BL

v2
. (17)

The diagonal mass matrix is M2
D = RM̃2RT = diag

(
0 , m2

Z , m
2
X

)
in which

the null eigenvalue is identified as the photon mass, and the others eigenval-
ues are the Z mass and the X-boson mass, respectively,

mZ '
v

2

√
g2
L + g2

Y

(
1 +

χ2

2
sin2 θW

)
,

mX ' 2 gBL vBL

(
1 +

χ2

2
cos2 θW

)
.

The W mass is the same in the SM, i.e., mW = gLv/2. The Weinberg
angle is sin2 θW = 0.23 in which the electric charge is parameterized as
e = gL sin θW = gY cos θW, and determines the constant couplings gL = 0.64
and gY = 0.34. Using these values, the W and Z masses are like in the SM:
mW = 80 GeV and mZ = 91 GeV.

The full diagonalization in the gauge sector yields the Lagrangian for the
X-boson

Lgauge = −1

4
X2
µν +

1

2
m2
XX

2
µ +

1

2
(∂µη)2 +

1

2
mX ∂µη X

µ , (18)
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in which Xµν = ∂µXν − ∂νXµ is the X-boson strength field tensor. To
eliminate the mixed last term η−Xµ, we can add a gauge fixing Lagrangian

Lgf = − 1

2β

(
∂µX

µ − β

2
mX η

)2

, (19)

where β is a real parameter. The surface terms can be eliminated since
the Lagrangian is integrated throughout all the space-time. The inversion
of the X-boson Lagrangian yields the renormalized X-propagator in the
momentum space

〈XµXν 〉 =
−i

k2 −m2
X

[
ηµν + (β − 1)

kµ kν
k2 − β m2

X

]
. (20)

All the propagators are well-defined at the ultraviolet range, i.e., the model
is both renormalizable and unitary.

Therefore, the transformation
(
Y µ , Aµ3 , Bµ

)
7→ (Aµ , Zµ , Xµ) are

given by

Yµ = − sin θWZµ + cos θWAµ + χ cos2 θWXµ ,

A3
µ = cos θWZµ + sin θWAµ + χ sin θW cos θWXµ ,

Bµ = −χ sin θWZµ +Xµ . (21)

Substituting the diagonalizations into Eq. (8), the interaction between
fermions (f) and gauge bosons in the basis of {Aµ , Zµ , Xµ} is given by

−Lint = eQem f̄ /A f + eQZ f̄ /Z f + eQX f̄ /X f , (22)

where the electric charge is Qfem = If3L+Y f , the Z generator is QfZ = (If3L−
sin2 θW Qfem)/(sin θW cos θW), and the charge generator QX is defined by

QfX = χ cos θW Qfem +
gfBL
e

QfBL . (23)

We have that the generator QX depends on the small parameters χ and gfBL
that changes for each SM fermion.

The magnitude of these interactions is extremely small when compared
to the couplings in the SM. Thereby, the generator QX is the origin of the
millicharges in the model. As an example, using the charges from Table I,
the generator QX for leptons (`) is given by Q

(`)
X = −χ cos θW − g`BL/e.

If we fix the mixing parameter at χ = 10−4 and constrain the coupling X
from Eq. (22) with (3), i.e., |χe| = |Q(`)

X |, we obtain an estimative of g`BL for
leptons, which is

2.01× 10−4 < |g`BL| < 1.59× 10−3 . (24)
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Therefore, the constant coupling e χe yields the magnitude of the interaction
of X-boson with left- and right-handed leptons similar to the interaction of
leptons with the photon in quantum electrodynamics.

The couplings of Xµ withW± and Z are obtained by substituting Aµ →
Aµ + χ cos θW Xµ and Zµ → Zµ + χ δ sin θWXµ in the SM vertex of Aµ
with W+W−, and with Z. All these couplings are listed below, namely,

Lint
X−W± = −i e χ cos θW

(
W+
µν W

µ− −W−µν Wµ+
)
Xν

−i e χ cos θW XµνW
µ+W ν− , (25)

Lint
γX−W± = −e

2

2
χ cos θW

×
[
2W+

µ Wµ−AνX
ν −W+

µ W−ν (AµXν +AνXµ)
]
, (26)

Lint
XX−W± = −e

2

2
χ2 cos2 θW

(
W+
µ Wµ−XνXν −W+

µ W−ν XµXν
)
, (27)

LXZ−W± = −1

2
e gL χ δ cos2 θW

×
[
2W+

µ Wµ− Zν X
ν −W+

µ W−ν (ZµXν + ZνXµ)
]
, (28)

where W±µν = ∂µW
±
ν − ∂νW±µ and Zµν = ∂µZν − ∂νZµ are the field strength

tensors of W± and Z, respectively. The interactions of scalar fields H and
hBL are represented by the Lagrangian

LhBL−X =
m2
Z

v
χ δ sin θW H ZµX

µ +
m2
Z

2v
χ2 δ2 sin2 θW HXµX

µ

+g2
BLφ vBL hBLX

2
µ +

1

2
g2
BLφ v

2
BL h

2
BLX

2
µ , (29)

and all the Feynman rules for the vertex ofX-boson are organized in Table II.
Using the value mX = 17 MeV, the Xµ-boson mass fixes the VEV-scale
vBL at

vBL '
8.5

|gBLφ|
MeV . (30)

In this way, the hidden Higgs has a mass of mhBL '
√

2λBL v2
BL, with an

upper bound at < 12 MeV. If we use the value of |gBLφ| in the range of
Eq. (24), the hidden Higgs estimate at few GeV-scale. It must be lighter
than the SM Higgs which has mass equal to mH ' 125 GeV. Therefore, we
have gotten a similar QFT model consistent with both the requirements of
renormalization and unitarity, and also with the X-boson phenomenology.
Besides, the interaction sector of X-boson with the SMs leptons/quarks
satisfies the experimental constraints through the generator QX . In the next
sections of the paper, we will concentrate our attention on the interactions
between leptons and X-boson and its respective phenomenology.
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TABLE II

List of vertices of the X-boson present in the U(1)B−L model.

Interaction Vertex factor

X f f̄ − i eQfX γµ

XW+W− −i e χ cos θW [(k1 − k2)ρηµν + (k2 − k3)µηνρ + (k1 − k3)νηµρ]

XXW+W− −i e2 χ2 cos2 θW (2ηµνηλρ + ηµληνρ − ηµρηνλ)

X AW+W− −i e2 χ cos θW (2ηµνηλρ + ηµληνρ − ηµρηνλ)

X ZW+W− −i e gL χ δ cos2 θW (2ηµνηλρ + ηµληνρ − ηµρηνλ)

H Z X i
m2

Z

v χ δ sin θW ηµν

HXX i
m2

Z

2v χ
2 δ2 sin2 θW ηµν

hBLXX i gBLφ v
2
BL ηµν

h2BLXX i
2 g

2
BLφ v

2
BL ηµν

3. The decay time of the X-boson

The X-boson phenomenology starts with the description of two decay
processes. One of them is the π0-decay into a massive dark photon with the
coupling with SM particles that are proportional to their electric charge [23].
In an X-boson context, the neutral pion decay is π0 → X γ with the bound
for χp-proton parameter around the |χp| . 0.8–1.2× 10−3. An SU(2)-model
that includes the scalar pions can be the best description of this process. The
second decay can be found in the ATOMKI pair spectrometer experiment
that observes the excited 8-beryllium decay 8Be? → 8Be + X followed by
X → e+e− [1, 39]. Thus, the model proposed here has the framework of
interaction of the X-boson with e±-pair proportional to the fundamental
charge.

Using the usual rules of QFT, the decay rate is given by the expression

Γ =
1

2π2

1

2k0

∫
d3p

2p0

∫
d3p′

2p′0
δ4
(
k − p− p′

) 1

12

∑
λ,s,s′

|M|2 , (31)

where kµ is the X-boson four-momentum, and pµ and p′µ are the external
momenta of the electron and positron, respectively. The electron–positron
elastic scattering amplitude is

iM
(
X → e+e−

)
= εµ(k, λ) ū(p, s) (−ie χe γµ) v

(
p′, s′

)
, (32)
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where εµ(k, λ) is the polarization vector, and u(p, s) and v(p′, s′) represent
the wave plane amplitudes. Using the completeness relation∑

λ

εµ(k, λ) εν(k, λ) = −ηµν +
kµ kν
m2
X

,∑
s

uα(p, s) ūβ(p, s) = (/p+m)αβ ,∑
s′

vα
(
p′, s′

)
v̄β
(
p′, s′

)
=
(
/p ′ −m

)
αβ

, (33)

the Γ -decay factor assumes the form of

Γ =
e2χ2

e

12π2m3
X

∫
d3p

2p0

d3p′

2p′0
δ4
(
k−p−p′

)[
(p · k)

(
p′ · k

)
+

1

4
m2
X

(
m2
X+4m2

)]
,

(34)
where we have used the on-shell condition k2 = m2

X , and m = 0.5 MeV is
the electron mass. Solving the above integral, we arrive at the decay rate

Γ
(
X → e+e−

)
=
αχ2

e

3
mX

√
1− 4

m2

m2
X

(
1 + 2

m2

m2
X

)
, (35)

where α = e2/4π ' 1/137 is the fine structure constant, and the X mass
must satisfy the condition mX > 2m. The decay X → e+ e− can be
approximated by mX � 2m = 1 MeV, so the Γ -factor is given by

Γ
(
X → e+ e−

)
≈ αχ2

e

3
mX . (36)

Using mX = 17 MeV and the constraints from Eq. (3), we obtain the range

1.6× 10−9 MeV < Γ
(
X → e+e−

)
< 8× 10−8 MeV . (37)

Another possible process is the X-decay into light neutrinos, i.e., X → ν̄ ν.
Following this framework, the decay width is

Γ (X → ν̄ ν) ≈ αχ2
ν

3
mX . (38)

Thus, for the constraint in Eq. (3), we can obtain the range

5× 10−13 MeV < Γ (X → ν̄ ν) < 2.3× 10−10 MeV . (39)

Hence, the mode lifetime τ is given by

τ =
1

Γ (X → e+ e−) + Γ (X → ν̄ ν)
, (40)
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namely, it has the range1

8.3× 10−15 s < τ < 4.2× 10−12 s . (41)

However, the better way to investigate this process is through a model
SUL(2) × UY (1) × U(1)B−L which includes the left-handed neutrinos (and
the right-components), where its interaction with the X-boson must depend
on the mixing angles, like the θW — Weinberg angle, for example. This
enlarged framework with the weak interaction sector is an ongoing research.

4. The muon–anti-muon scattering

The measurements of a neutron–nucleus scattering motivated us to ex-
plore the Yukawa potential acting on the X-boson, and the correspond-
ing scattering process [40]. In the context of this model, we can use the
e2-leading order for the electron–positron scattering process e+e− → X →
µ+µ− to obtain its scattering cross section. Using the rules of QFT, the
amplitude for this scattering at the tree level is2

iM
(
e+e− → µ+µ−

)
= v̄ (k, t) (−ie χe γµ)u (p, s)

−iηµν
(p+ k)2 −m2

X

×ū
(
p′, s′

)
(−ie χe γν) v

(
k′, t′

)
, (42)

where the momentum are p and k for the electron–positron pair, and p′ and
k′ for the muon pair µ− and µ+. Let us consider the collision in the center-
of-mass (CM) frame of the e+e− pair. In this case, p+ k = p′+ k′ = 0 and
we denote the electron and muon energy as being s = (p+ k)2 = (p′ + k′)2.
Using the rules of QFT, the differential cross section is given by

dσ

dΩ

(
e+e− → µ+µ−

)
=

α2 χ4
e

4
(
s−m2

X

)2 [s (1 + cos2 β
)

+ 8m2
µ sin2 β

]
, (43)

where β is the scattering angle between the 3-momentum p and p′, or be-
tween k and k′ in the CM frame. We have also considered me ≈ 0 when
compared to the muon mass mµ = 105.7 MeV. The result in Eq. (43) is illus-
trated in Fig. 1 as a function of the β-angle. Using the value of

√
s = 1 MeV

for the CM energy and the previous masses, the total cross section of this
process is

σ
(
e+e− → µ+µ−

)
= πα2 χ4

e

s+ 8m2
µ(

s− 4m2
X

)2 = 6.92× 1010 χ4
e [pb] . (44)

1 Here, we have used the conversion formula 1 MeV = 1.52 × 1021 s−1 in the natural
units ~ = c = 1.

2 We use the X-boson propagator in the Feynman gauge (β = 1).
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Using the bounds in Eq. (3), we obtain the bounds of the cross section of
this process at 0.11 fb < σ (e+ e− → µ+ µ−) < 0.26 pb 3.

Fig. 1. The differential cross section of e+e− → µ+µ− as a function of the β-angle.
We adopt the values of mX = 17 MeV, mµ = 105 MeV and

√
s = 1 MeV for the

CM frame energy.

5. The electron self-energy with the X-boson correction

Over the last sections, we have obtained some phenomenological results
for the Abelian model of the X-boson at the leading order in a perturbative
QFT. From now on, we will discuss the radiative corrections at one-loop
approximation. The first one is due to the electron propagator, where we
have investigated the influence of the X-boson mass in the physical electron
mass. Using the previous rules, the electron propagator at one loop can be

Σ1 (/p) = ΣQED
1 (/p)+Σ

(X)
1 (/p) . (45)

The expressions of ΣQED
1 (/p) and Σ(X)

1 (/p) can be given by the integrals

ΣQED
1 (/p) = −i e2

∫
d4k

(2π)4

γµ (/k + /p+m) γµ[
(k + p)2 −m2

] (
k2 −m2

γ

) , (46)

and

Σ
(X)
1 (/p) = −i e2 χ2

e

∫
d4k

(2π)4

γµ (/k + /p+m) γµ[
(k + p)2 −m2

](
k2 −m2

X

) , (47)

wheremγ is the photon mass introduced as a regulator to control the infrared
divergence that emerges from Eq. (46) when mγ = 0. It is clear that after

3 We obtain the cross section in the picobarn units.
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the renormalization, we must withdraw the mγ-parameter since we have
a possible limit such as mγ → 0. Therefore, we have two similar integrals
where the χ-factor is less than one. These integrals have linear divergences in
the ultraviolet region, so we will use the dimensional regularization to control
the divergences, i.e., the integral dimension is altered by a ω-regularization
parameter 4 → 2ω, where the physical dimension is recovered, obviously,
when ω → 2. In this way, the coupling constant is redefined to keep it
dimensionless, i.e., e → e µ2−ω, where µ is an arbitrary energy scale. In
fact, when we withdraw the regularization parameter, the divergent term will
be isolated from the physical term, which makes the expansion ω = 2 − ε,
for ε→ 0. Therefore, the QED-contribution in the Feynman gauge is known
in the literature as the result below

ΣQED
1 (/p, ε) =

α

4π
(−/p+ 4m)

µ2ε

ε
− γ α

4π
(−/p + 4m)

− α

2π

1∫
0

dz [(1− z) /p − 2m] ln

[
4πµ2

m2 z − p2 z (1− z)

]
, (48)

where p2 < 2m2, and γ ' 0.57 is the Euler–Mascheroni constant. The
regularized contribution of the X-boson is given by the integral

−iΣ(X)
1 (/p , ω) = −e2 χ2

e

(
µ2
)2−ω ∫ d2ωk

(2π)2ω

γµ (/k + /p+m) γµ[
(k + p)2 −m2

] (
k2 −m2

X

) .
(49)

Using the technique given in the literature concerning the Feynman integrals,
the result of the one in Eq. (49), for ω = 2− ε, is

Σ
(X)
1 (/p , ε) ' α

4π
(−/p+ 4m)

µ2ε

ε
− γ α

4π
(−/p + 4m)

−αχ
2
e

2π

1∫
0

dz [(1− z) /p − 2m] ln

[
4πµ2

m2
X(1− z) +m2z − p2z(1− z)

]
, (50)

where p2 < 2m2 + 2m2
X . The renormalized full propagator is represented

by the expression

s(/p) =
Z2

/p−m−Σ(/p = m)
, (51)

where the Z2-renormalization factor connects the electron bare field Ψ0 to
the physical field Ψ via Ψ0 =

√
Z2 Ψ . It is given by the on-shell condition

Z2 = 1 +
dΣ(/p)

d/p

∣∣∣∣
/p=m

. (52)
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The electron physical mass is identified as being me = m+Σ(/p = m), and
the leading order contribution to the electron’s mass is

Σ1 (m, ε) ' 3mα

4π

µ2ε

ε
− 3mαγ

4π
+

3mα

4π
ln

(
4πµ2

m2

)
+

5mα

4π

+
7mαχ2

e

8π
− 3mαχ2

e

2π
ln
(mX

m

)
, (53)

where we have assumed m2/m2
X � 1, and 1 + χ2

e ' 1. This result gives
the contribution at the one-loop approximation for the electron’s renormal-
ization mass. Thereby, the electron’s physical mass has the finite correction
given by

me

m
= 1 +

5α

4π
+

7αχ2
e

8π
− 3αχ2

e

2π
ln
(mX

m

)
. (54)

Finally, the Z2-factor is

Z2 =1− α

2π

µ2ε

ε
−αγ

2π
−α
π
− α

4π
ln

(
4πµ2

m2

)
−αχ

2
e

4π
ln

(
4πµ2

m2
X

)
− α

2π
ln
(mγ

m

)
.

(55)
Therefore, we have provided the renormalization result for both the propa-
gator and the electron field with the contribution of the X-boson.

6. The full X-propagator and the Uehling potential

The analysis of the X-boson propagator is important in order to under-
stand the X-boson physical mass. We will see that the mX -physical mass
leads us to the calculation of the on-shell complex renormalization. Further-
more, its radiative correction contributes to the Yukawa potential obtained
in Section 4. Let us start with the renormalized field of the X-boson which
is defined by the relation

Xµ
0 =

√
ZX X

µ , (56)

where the full renormalized propagator of the X-boson depends on the
ZX -factor, and it is given by the expression

∆µν

(
k2
)

=
−i ηµν Z−1

X

(1−Π (k2)) k2 −m2
0X

. (57)

The Π(k2) is a scalar function that multiplies the transverse term in the
vacuum polarization

Πµν

(
k2
)

= Π
(
k2
) (
ηµνk

2 − kµkν
)
. (58)



924 M.J. Neves, E.M.C. Abreu, J.A. Helayël-Neto

The conserved current guarantees that kµJµ = 0. Hence, the terms like
kµkν/k

2 are zero due to the term Jµ∆
µν Jν in the perturbation theory. The

on-shell condition k2 = m2
X fixes the propagator pole by using the ZX -factor

condition
ZX =

1

1−Π
(
m2
X

) , (59)

thus, the X-propagator in Eq. (57) is finite and it is given by

∆µν

(
k2
)

=
−i ηµν

[1−ΠR (k2)] k2 −m2
X

. (60)

The scalar function ΠR(k2) = Π
(
k2
)
− Π

(
m2
X

)
is finite, and it cancels

out the divergence that appears from the vacuum polarization. Notice that
for the physical mass mX which is related to the unphysical mass m0X , in
accordance with the relation m0X =

√
Z−1
X mX , the renormalization factor

for the X-boson mass is ZmX = Z−1
X .

Using the previous rules, the expression of the vacuum polarization at
one-loop approximation is given by the integral

iΠµν
1 (m, k) = − (i e χe)

2
∫

d4p

(2π)4
tr
(

iγµ

/p−m
iγν

/p− /k −m

)
, (61)

which is the same expression given by the standard QED considering the
factor χ. Consequently, the calculation of the vacuum polarization in this
order is the same as the one considering the usual QED. Using the dimen-
sional regularization, i.e., D = 4 → D = 2ω, the previous integral can be
calculated and the result is

Π1

(
m2, k2, ω

)
= −αχ

2
e

π

(
µ2
)2−ω

ω Γ (2− ω)

×
1∫

0

dxx (1− x)

[
4πµ2

m2 − k2x(1− x)

]2−ω
, (62)

where 4m2 > k2. We isolate the divergent part by writing ω = 2 − ε, with
ε→ 0+ to obtain the result

Π1

(
m2, k2, ε

)
= −αχ

2
e

3π

µ2ε

ε
+
αχ2

e

6π
(2γ + 1)− 2αχ2

e

π

×
1∫

0

dxx (1− x) ln

[
4πµ2

m2 − k2x(1− x)

]
. (63)
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Using this result, the finite part that appears in Eq. (60) is given by the
subtraction

ΠR

(
k2
)

=
2αχ2

e

π

1∫
0

dxx (1− x) ln

[
m2 − k2 x (1− x)

m2 −m2
X x (1− x)

]
. (64)

The integral in Eq. (64) can be calculated for all values of k2. So, we obtain

ΠR

(
k2
)

= −4αχ2
e

3π

(
m2

k2
− m2

m2
X

)
+
αχ2

e

3π

(
1 +

2m2

k2

)
f
(
k2
)

−αχ
2
e

3π

(
1 +

2m2

m2
X

)
f
(
m2
X

)
, (65)

where the function f(k2) is defined by

f
(
k2
)

=


2
√

1− 4m2

k2
sinh−1

(√
−k2
2m

)
if k2 < 0 ,√

4m2

k2
− 1 cot−1

(√
4m2

k2
− 1

)
if 0 < k2 ≤ 4m2,√

1− 4m2

k2

[
2 cosh−1

(√
k2

2m

)
− iπ

]
if k2 > 4m2 .

(66)

In this expression, we can observe the appearance of an imaginary part,
when k2 > 4m2. This is the X-boson case where the on-shell condition
k2 = m2

X fixes the inequality m2
X > 4m2 for the masses mX = 17 MeV and

m = 0.5 MeV. The imaginary part means the instability of the X-boson
and, as a consequence, it decays into the virtual electron–positron pair.

The result of the integral in Eq. (65) under the on-shell condition k2 =
m2
X yields the ZX -factor

ZX ' 1− αχ2
e

3π

µ2ε

ε
+
αχ2

e

6π
(2γ + 1)− αχ2

e

3π
ln

(
4πµ2

m2

)
− i 2αχ2

e

+
4αχ2

e

π
ln
(mX

m

)
. (67)

Hence, the ZmX -factor can be obtained and the physical mass of the
X-boson is

mR
X

m0X
' 1− αχ2

e

6π

µ2ε

ε
+
αχ2

e

12π
(2γ + 1)− αχ2

e

6π
ln

(
4πµ2

m2

)
− i α χ2

e

+
2αχ2

e

π
ln
(mX

m

)
. (68)
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The general expression for the energy potential is given by

U(r) = −4παχ2
e

∫
d3k

(2π)3
eik·r∆00

(
−k2

)
. (69)

Using the propagator in Eq. (57) into the energy potential in Eq. (69), where
we have neglected the order α3 terms, after some algebraic manipulation, by
using the approximation m2/m2

X � 1, the previous integral can be reduced
to one quadrature in the following expression:

U(r) = −αχ2
e

e−mX r

r
− α2 χ4

e

3πr
e−mX r − i

α2 χ4
e

3 r

(
1− mXr

2

)
e−mXr

−2α2χ4
e

3πr

∞∫
1

dξ

(
1 +

1

2ξ2

)(
ξ2 − 1

)1/2
ξ2

(
1− m2

4m2
Xξ

2

)−2

e−2mrξ .

(70)

This ξ-integral can be called as the integral representation of the Uehling
potential with the correction of the X-boson mass. The ξ-integral is difficult
to solve analytically, so we have to analyze it considering the asymptotic
case mr � 1. For mr � 1, only the region 0 ≤ ξ − 1� (mr)−1 contributes
to the integral, so one can approximate ξ ' 1 to obtain the expression

U(r) ' −αχ
2
e

r
e−mX r

(
1 +

αχ2
e

3π

)
− α2 χ4

e

4
√
πr

e−2mr

(mr)3/2

−i α
2 χ4

e

3 r

(
1− mXr

2

)
e−mXr , (71)

wheneverm 6= 0. Obviously, the imaginary part goes to zero whenmX →∞
(or mX � m). In this calculation, we do not take into account the loop
corrections of neutrinos and quarks (or pion and neutron). However, it
would be convenient to do it in the entire model involving the SUL(2)-group,
concerning the unification of X-boson with the weak interaction.

7. The anomalous muon magnetic moment

The vertex is another diagram of the model useful for the renormalization
of the constant coupling. Furthermore, it includes the electron’s anomalous
magnetic moment which is a famous QED calculation with an incredible
agreement with the experimental result. At one loop, the QED vertex of
leptons with the photon has a correction of theX propagator that can yield a
significant contribution to the muon magnetic moment. We have two vertices
in the X-boson model: the usual one of QED, and the interaction of X
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with the SM f -fermions. As a consequence, we have two Z-renormalization
factors for each vertex diagram. Thus, the computation of the anomalous
moment motivates us to obtain a bound on the χ-parameter.

Let us start with the QED photon vertex where two diagrams contribute.
So we will denote it by the sum

Γµ
(
p, p′

)
= Γµ1−QED

(
p, p′

)
+ Γµ1−X

(
p, p′

)
, (72)

where the contribution of theX-boson propagator in this order is represented
by the integral

Γµ1−X
(
p, p′

)
= −e3 χ2

e

∫
d4k

(2π)4

γα (/k + /p′ +m) γµ (/k + /p+m) γα[
(k + p′)2−m2

][
(k + p)2−m2

](
k2−m2

X

) .
(73)

The QED photon vertex has the similar expression exchanging e3 χ2
e → e3

and mX → mγ for the photon mass, introduced to tame the infrared diver-
gence. This integral has a ultraviolet divergence by a simple power counting.
Therefore, we will use the previous technique of dimensional regularization
to isolate the divergent term from the physical terms. The divergent part
has the result

Γµ
(
q2
)

= −i e µ2εγµ
[
1 +

α

2π

µ2ε

ε
+ finite part

]
. (74)

The vertex of X-boson with leptons has the correction at one loop given by

Λµ
(
q2
)

= −i e χe µ2εγµ
[
1 +

χ2
e α

2π

µ2ε

ε
+ finite part

]
. (75)

Thus, we have obtained the necessary terms for the renormalization vertex.
The renormalization procedure will be performed in the next section. Now,
we are interested in the finite part of Eq. (73).

The finite part of the vertex that contains the form factors is consequently
defined by the following difference given by:

ΓµR
(
q2
)

= Γµ
(
q2
)
− Γµ

(
q2 = 0

)
. (76)

The Gordon identity of the Dirac current can be used such that the finite
part of Eq. (73) yields the relation

ΓµR
(
q2
)

= γµF1

(
q2
)

+ i
σµνqν
2m

F2

(
q2
)
, (77)

where F1 and F2 are the form factors, and q is defined as the photon’s
external momentum qµ = p′µ − pµ. We have also used the usual on-shell
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conditions for the fermion external momentum, i.e., p2 = p′ 2 = m2. Thus,
the form factors at one-loop approximation are given by

F1

(
q2
)

=
α

2π

1∫
0

dx dy dz δ(x+y+z−1)
1+(2−z)2+(1−x)(1−y) q2/m2

(1−z)2 + z m2
γ/m

2−x y q2/m2

+
αχ2

e

2π

1∫
0

dx dy dz δ(x+ y + z − 1)
1 + (2− z)2 + (1− x)(1− y) q2/m2

(1− z)2 + z m2
X/m

2 − x y q2/m2

(78)

and

F2

(
q2
)

=
α

2π

1∫
0

dx dy dz δ(x+ y + z − 1)
2z(1− z)

(1− z)2 − x y q2/m2

+
αχ2

e

2π

1∫
0

dx dy dz δ(x+ y + z − 1)
2z(1− z)

(1− z)2 + z m2
X/m

2 − x y q2/m2
. (79)

The first factor F1 is the origin of the infrared divergences in the model.
When q2 = 0, the photon mass mγ is the parameter that regularizes the
infrared divergence in the first integral of Eq. (78). The second factor F2

gives an important contribution to the electron anomalous magnetic mo-
ment. This contribution appears when q2 = 0, where the X-boson vertex
carries the correction

F
(e)
2 (0) =

α

2π
+
αχ2

e

2π

m2
e

m2
X

1∫
0

dz
2 z(1− z)2

z + (1− z)2m2
e/m

2
X

. (80)

Here, the first term is just the contribution of the ordinary QED. The second
integral is the contribution of the mass mX . We have expanded the previous
integral for m2/m2

X � 1. Hence, we have obtained the result at the lower
order

F
(e)
2 (0) ' α

2π

(
1 +

2

3
χ2
e

m2
e

m2
X

)
. (81)

If we use the well-known experimental uncertainty in the electron’s anoma-
lous magnetic moment, it leads us to the upper bound

|χe|
me

mX
. 4.2× 10−5 . (82)
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Using the values me = 0.5 MeV and mX = 17 MeV, the upper bound for the
χe-parameter is |χe| . 1.4 × 10−3, which agrees with Eq. (3). This result
just confirms the one present in the literature [38]. For the muon case, if we
just consider its interaction with X-boson, the F2-form factor when q2 = 0
is given by

F
(µ)
2 (0) =

α

2π
+
αχ2

e

2π

1∫
0

dz
2z(1− z)2

(1− z)2 + z m2
X/m

2
µ

, (83)

and using mµ = 105 MeV, the z-integral has the result

F
(µ)
2 (0) ' α

2π

(
1 +

3

2
χ2
e

)
. (84)

From the value reported by the E821 experiment ∆aµ(E821) ' (116592080±
63)× 10−11 [41], we have the subtraction in relation to SM value

∆aµ(E821− SM) = (295± 81)× 10−11 , (85)

which imposes the upper bound |χe| . 4.43× 10−5.

8. Renormalization

8.1. Renormalized perturbation theory

In this section, we will investigate the renormalized sector of theX-boson
gauge and sector of leptons. To carry out the perturbative renormalization,
both the renormalized fermion (leptons) and the X-boson gauge sectors are
given by the Lagrangian

Llept−X = f̄ (i /∂ −mf ) f + f̄
(
i δ2 /∂ − δmf

)
f − 1

4
F 2
µν −

1

2α
(∂µA

µ)2

−δA
4
F 2
µν −

δA
2α

(∂µA
µ)2 − 1

4
X2
µν +

1

2
m2
X X

2
µ −

1

2β
(∂µX

µ)2 − δX
4
X2
µν

−δX
2β

(∂µX
µ)2+

1

2
δmX X

2
µ − e f̄ /AΨ− δe f̄ /A f− χe e f̄ /X f− δ3 f̄ /X f , (86)

where the relations between the bare and renormalized quantities are

A(0)
µ =

√
ZAAµ , (87)

and the counter-terms are

ZA = 1+ δA , ZX = 1+ δX , m+ δm = m0 Z2 , m2
0X ZX = m2

X+ δmX ,

e0 Z2 Z
1/2
A = e+ δe , e0 χe Z2 Z

1/2
X = χe e+ δ3 . (88)
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We have introduced six counter-terms {δA, δX , δm, δmX , δe, δ3} to cancel out
all the divergences that emerge from the Lagrangian in Eq. (86). Here, all
the parameters in the renormalized Lagrangian are finite, and we need six
conditions to fix all these counter-terms. They are

Σ(/p)
∣∣
/p=m

= 0 ,
d

d/p
Σ(/p)

∣∣∣∣
/p=m

= 0 ,

Π
(
k2
)∣∣
k2=0

= 0 , ΠX

(
k2
)∣∣
k2=m2

X
= 0 ,

Γµ
(
q2
)∣∣
q2=0

= −i e γµ , Λµ
(
q2
)∣∣
q2=m2

X
= −i χe e γµ . (89)

The first constraint fixes the physical electron mass and the second one fixes
the renormalization of the fermion field. The third one fixes the ZA-factor
and the fourth one fixes the ZX -factor. The last two constraints fix both
the vertex-photon, and X-boson vertex, respectively. In Sections 5 and 6,
we have obtained the Z2- , ZX - and ZmX -factors. Using the conditions in
Eq. (89), the counter-terms δe and δ3 can be determined such that we can
obtain the relations e0 Z2 Z

1/2
A = eZ1 and e0 Z2 Z

1/2
X = eZ3. The Ward

identity guarantees that Z1 = Z2, and the ZA- and Z3-factors are given by

ZA = 1− α

3π

µ2ε

ε
+ finite part and Z3 = 1− χ2

e α

2π

µ2ε

ε
+ finite part . (90)

Hence, we have determined all the Z-renormalization factors at one loop.
This renormalization scheme allows us to investigate the physical parameters
as a function of an arbitrary scale. In the next subsection, we will intro-
duce the renormalization group through the Callan–Symanzik equation. Its
solution yields the running physical mass and the constant coupling.

8.2. Renormalization group

The Callan–Symanzik equation concerning the renormalization group for
the parameters of Eq. (86) is given by[

µ
∂

∂µ
+ β(e)

∂

∂e
+ βχ(eχ)

∂

∂eχ
+mγm(e)

∂

∂m
+mX γmX (e)

∂

∂mX

−nγA(e)− nγX(e)

]
Γ (n)(e, eχ,m,mX) = 0 , (91)

where Γ (n) is the one-particle irreducible Green function of n-points, and
µ is an arbitrary energy scale. We will use in this work the notation eχ =
χe e, where the beta function βχ is associated with the X-boson vertex
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renormalization. The functions β, βχ, γm, γmX , γA and γX are related to
the Z-renormalization factors by

β(e) = µ
∂e

∂µ
, βχ(eχ) = µ

∂eχ
∂µ

, γm(e) = −µ
2

∂

∂µ
lnZm ,

γmX (e) =−µ
2

∂

∂µ
lnZmX , γA(e) =

µ

2

∂

∂µ
lnZA , γX(e) =

µ

2

∂

∂µ
lnZX .

(92)

The function β is kept constant in this X-boson framework. This occurs
because, at high momenta, the mass mX = 17 MeV is negligible, where β
is given explicitly by β(e) = e3/12π2, and the model is not asymptotically
free. Combining the functions in Eq. (92) and the relations in Eq. (88), it is
easy to see that β(e) = e γA(e) and, consequently, that γA(e) = α/3π. The
new functions βχ, γmX and γX are

βχ(e) =
e3

4π2

(
1− 2χ2

e

3

)
and γmX (e) = γX(e) = −e

2 χ2
e

12π2
. (93)

The invariance of the Green function Γ (n) under scale transformation
Γ (n) (e, eχ, m, mX , µ) = Γ (n)

(
ē(t), ēχ(t), m̄(t), m̄X(t), µ̄(t) = µ et

)
leads

us to the effective coupling constants ē(t), ēχ(t) and effective masses m̄(t)
and m̄X(t) as a function of the dimensionless scale t, all of them satisfy the
equations

∂ē

∂t
= β(ē) ,

∂ēχ
∂t

= β(ēχ) ,

∂m̄

∂t
= m̄(t) γm(ē(t)) ,

∂m̄X

∂t
= m̄X(t) γmX (ē(t)) , (94)

where ē(t = 0) = e, ēχ(t = 0) = χe e, m̄(t = 0) = m and m̄X(t = 0) =
mX = 17 MeV. The solution of Eqs. (94) provides the known results of
QED for both running coupling constant and running electron mass. The
solutions yield the running X-boson vertex with fermions

ēχ(t) = χe e

(
1− χ2

e e
2 t

2π2

)−1/2

. (95)

The previous function imposes the vertical asymptote at t = 2π2/
(
χ2
e e

2
)

and it corresponds to the so-called Landau singularity. The ēχ-running func-
tion is shown in Fig. 2.

Solving Eq. (94), we obtain that

m̄X(t) = 17MeV
(

1− χ2
e e

2 t

2π2

)
, (96)

which yields the X-boson running mass as a function of arbitrary t-scale.
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Fig. 2. (Color online) The running ēχ/(χe e)-coupling constant as a function of an
arbitrary dimensionless t-scale, for χ = 6 × 10−3 (left/red line), χ = 3.5 × 10−3

(middle/blue line) and χ = 2× 10−3 (right/black line), respectively.

9. Conclusions and final remarks

Recently, we were aware of the introduction of a concept that declares
that a new neutral boson explains the experimental anomalies that emerge
from the 8-beryllium nuclear decay 8Be∗ → 8Be + X. The solution of this
puzzle implies that the invariant mass of the X-boson must be aroundmX =
17 MeV. This conjecture plays a fundamental role in a possible new physics
at the MeV-scale, so that it could be the announcement of a fifth fundamental
interaction. Besides, the X-boson couples kinetically through the χ-mixing
kinetic with the usual massless photon. Other important property is the
protophobic interaction of X-boson with the nucleons of the SM. Thereby,
the X-boson introduces an extra Abelian group U(1) in the unification of
the fundamental interactions. In this paper, we propose the SM with the
extra U(1)B−L.

With these ideas in mind, in this work we have investigated the SUL(2)×
UY (1)×U(1)B−L model with kinetic mixing in the gauge sector, which can
describe the interaction between the new X-boson and the leptons of the
SM. The Higgs model was introduced to give the mass mX = 17 MeV,
that consequently fixes the lower bound of vBL = 8.5 MeV, by the recent
experimental constraints. Thus, the hidden Higgs is estimated to have a
mass within the range of GeV-scale, with a lightest mass relative to the
usual Higgs of 125 GeV of the SM. After the spontaneous symmetry breaking
mechanism, we have a renormalizable and unitary model in the Rξ-gauge,
with a finishing electromagnetic U(1)em symmetry.
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After that, we have discussed the interaction between the X-boson and
the leptons through the elements of QFT, like the decay rate, where we have
calculated a X-lifetime within the range of 8.3×10−15 s < τ < 4.2×10−12 s,
just taking into account the decays: X → e+ e−, and in neutrino’s case,
X → ν̄ ν. As a second application, the simplest case is the electron–positron
scattering into muon–anti-muon pair, i.e., e+ e− → X → µ+ µ−.

Following the usual QFT, we have computed the contributions of the
X-boson mass to the electron physical mass. The perturbation theory for
the X-boson full propagator was obtained. We have seen that the vacuum
polarization at one loop gave a contribution to the Yukawa potential. The
on-shell renormalization indicates the appearance of a complex contribu-
tion, as for example, in the case of the X-boson physical mass in Eq. (68),
and in the Uehling potential calculation. In fact, this complex renormaliza-
tion scenario is a consequence of the X-boson instability that decays into
the e+ e−-pair. The correction to the QED vertex was calculated, and the
electron’s anomalous magnetic moment (g− 2)e estimates the χe-parameter
around |χe| . 1.4 × 10−3, which is in agreement with the literature re-
sults. The muon anomalous magnetic moment was also obtained with the
X-boson correction, where the result reported from E821 experiment bounds
the χe-parameter at |χe| . 4.43× 10−5.

We have introduced the renormalized model and the renormalization
conditions to fix the physical parameters. Thereby, all the renormaliza-
tion factors were obtained: for the physical fields, masses and the coupling
constants. After that, we have applied these results into a renormalization
group scheme to obtain the behavior of both, the current X-mass and the
X-boson coupling constant with leptons.

It is clear that we have just considered a part of a bigger model in order
to include neutrinos and quarks. The extended model SUL(2) × UY (1) ×
U(1)B−L is the candidate to include the corrections to neutrinos/quarks to
the X-propagator, together with the contribution of the X-propagator to
the (g − 2)µ muon factor. Moreover, there is also a perspective to include a
hidden fermion sector that could have a dark matter feature which interacts
with the X-boson.

Other phenomenological approach would be to investigate the SUL(2)×
UY (1)×U(1)B−L symmetry group with a dark photon A′ of mass bounded
by mA′ . 8 GeV, and to analyze its interactions with the fermion part of
the SM and a possible content of a dark matter fermion. It is an ongoing
research that will be published elsewhere.
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