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We compute the quark and gluon condensates in QCD with N colors
and Nf flavors based on the renormalization group equations and on the
knowledge of a single-scale Λ which is directly related to ΛQCD. For N = 3
and Nf = 3, our findings are in the good range for 0.2 GeV ≤ Λ ≤ 0.36GeV
and in excellent agreement with the results in the literature from sum rules
for a value ΛQCD = 0.28GeV.
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Quark and gluon condensates are vacuum expectations values of local op-
erators. They are often considered in the context of quark–hadron dualities
and calculated as such. However, the general view is that these condensates
represent characteristic scales of the QCD vacuum that may be regarded as
independent of the hadron degrees of freedom [1].

The quark condensate in QCD always indicates dynamical supersymme-
try of the chiral symmetry SU(3)L × SU(3)R which is associated with the
presence of the Nambu–Goldstone bosons. It is expected that the chiral
group is broken down to SU(3)V such that all quark condensates are, at
least in first order, the same.

For the case when one restricts the chiral group to SU(2)L×SU(2)R, the
relation between the quark condensates and the pions becomes evident in
the context of the Gell-Mann–Oakes–Renner relation [2, 3]

f2πm
2
π = −2(mu +md)〈q̄q〉 . (1)

Here, mπ is the mass of the pion, fπ is the pion decay constant, mu and
md are the current quark masses, and 〈q̄q〉 is the vacuum quark condensate.
Further relations of interest may be obtained from the current algebra [4]
and the axial vector Ward–Takahashi identity.
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Although there is less information regarding the gluon condensate, both
quark and gluon condensates have been computed in the literature in the
lattice QCD approach [5], sum rules [6–11], and chiral models [12].

The purpose of the present work is to compute once again the quark and
gluon condensates from the renormalization group equations of the quantum
field theory of QCD without reference to the hadron structure and proper-
ties. Although usually in the literature the formation of the quark and gluon
condensates are intertwined with confinement, here we will consider them
as unrelated topics. We are less interested in finding the exact point in the
space (N,Nf) where the condensates form and the actual phase transitions
take place. Instead, we will aim to determine the values of these condensates
for a specific value of the coupling constant in terms of the intrinsic scale of
the ΛQCD theory, which is considered known.

We consider QCD with N colors and Nf flavors. We work with the all
order beta function inspired by the supersymmetric NSVZ beta function
proposed in [13]

β(g) =
∂g

∂ ln(µ)
= − g3

16π2

11
3 N −

Nf
3 (2 +∆RγR)

1− g2

8π2
17
11N

, (2)

where

∆R = 1 +
17

11

2N2

N2 − 1
, (3)

and

γR = −d ln(m)

d ln(µ)
= 3

N2 − 1

N

g2

16π2
. (4)

We will also need the anomalous dimension of the fermions wave function
which is given by

γ1 =
g2

12π2
. (5)

We first consider the quark two-point correlator in the Fourier space
which we will denote by Q(p,M) = i

pµγµ
f(

pργρ
M ), where f is an arbitrary

function that we need to determine. We apply the renormalization group
equations [

M
∂

∂M
+ β(g)

∂

∂g
+ 2γ1

]
Q (pργρ,M) = 0 . (6)

Here,M is the renormalization scale. We pick a specific point where β(g)=∞
and, consequently, (1− g21

8π2
17
11N) = 0. Then either

∂

∂g
Q(p,M) = 0 , (7)
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or Q(p,M) has a complicated dependence on g. We assume that the choice
in Eq. (7) is valid. We solve Eq. (6) to find

Q1 = Tr [Q(p,M)] = Tr

[
i

pµγµ
a

[
pργρ
M

]2γ1]
, (8)

where a is a constant determined as a = 1 from the renormalization condition
Q(p,M)|pργρ=M = i

pµγµ
.

The quark condensate can be then calculated as

〈q̄q〉 = v =

∫
d4p

(2π)4
Q1 = i

∫
d4pE
(2π)4

Tr [Q(pE,M)]

≈ − 3

4π2

∫
d
(
p2E
)
p2E

1

M2γ1

(
p2E
)γ1− 1

2

= − 3

4π2
2

2γ1 + 3
M3 . (9)

Here, we integrated up to the scale M which corresponds to the coupling
constant g1 and the integral was performed in the Euclidean space.

The next step is to consider the two-point correlator in the Fourier space
for the gluon field Gµν(p2,M2) = −igµν 1

p2
h( p2

M2 ) (we work in the Feynman
gauge), where again h is an arbitrary function, a solution of the associated
renormalization group equation[

∂

∂M
+ β(g)

∂

∂g
+ 2γA

]
Gµν

(
p2,M2

)
= 0 . (10)

Here, γA is the anomalous dimension of the gluon wave function

γA = − 3g2

16π2
. (11)

We consider the same fixed coupling constant g1 and by the same arguments
as for the quark condensate, we find

G1 = Tr
[
Gµν

(
p2,M2

)]
= b4

(
N2 − 1

) −i
p2

(
p2

M2

)γA
. (12)

The constant b is calculated as before from the renormalization condition
at scale M as b = 1. The gluon condensate can then be computed approxi-
mately from

T =
〈
GaµνG

aµνα
〉

=

∫
d4p

(2π)4
2p2G1

g21
4π

=

∫
d4pE
(2π)4

8
(
N2 − 1

)( p2E
M2

)γA
=

1

2π2
1

γA + 2
M4

(
N2 − 1

) g21
4π

. (13)
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Here, α =
g21
4π . Note that G

a
µνG

aµν = −2Aaν∂
2Aaν+ . . . and G1 is proportional

to the two gluon correlator and, therefore, in the Fourier space an extra
factor of 2p2 corresponding to −2∂2 will appear in the integral in the first
line of Eq. (13).

The scale M where the coupling constant is g1 = (88π
2

51 )
1
2 is calculated

by integrating Eq. (2) from Λ to M . The integral is done in first order as
follows. One writes

dg

d ln(µ)
≈ − g3

16π2

11
3 N −

2
3Nf

1− g2

8π2
17
11N

,

dg

− g3

16π2

[
1− g2

8π2
17

11
N

]
≈
[

11

3
N − 2

3
Nf

]
d ln(µ) ,

d

(
8π2

g2

)[
1− g2

8π2
17

11
N

]
≈
[

11

3
N − 2

3
Nf

]
d ln(µ) , (14)

and integrates from Λ which is the scale for which the contribution of the
coupling constant to the left hand side of Eq. (14) (there is a small difference
between Λ and what is called ΛQCD which in the first approximation may
be ignored) is zero to M where the coupling constant is g1. This leads to

1

g21
− ln

[
g21
] 1

8π2
17

11
N ≈

11
3 N −

2
3Nf

8π2
ln

(
M

Λ

)
, (15)

from which one can determine

M ≈ Λ exp

[[
1

g21
− ln

[
g21
] 1

8π2
17

11
N

]
8π2

11
3 N −

2
3Nf

]
. (16)

By specifying N and Nf , one can plot M as a function of Λ but instead, we
shall use the expression in Eq. (16) directly.

In this paper, we determined the quark and gluon condensate based
on first principle and on the knowledge of a single parameter Λ which we
associate with what is usually called ΛQCD. In order to do that, we needed
a particular value of the coupling constant at some scale compatible with
the beta function. Instead of the standard QCD beta function computed at
five loops in [14], we used the all beta function inspired by the NSVZ beta
function proposed by Pica and Sannino in [13]. Our choice had a double
purpose: first, it simplified the calculations in a great measure, second,
it made it easier to extrapolate our findings to the supersymmetric QCD
similar calculations of the condensates. The latter analysis will be reserved
for future work.
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We considered standard QCD with N = 3 and Nf = 3.
In Fig. 1, we plotted the quark condensate in terms of the intrinsic scale

of the theory Λ. For the range of 0.2 ≤ Λ ≤ 0.36GeV, we obtained −0.005 ≤
v ≤ −0.03GeV3. In Fig. 2, we plotted the gluon condensate in terms of the
intrinsic scale of the theory Λ. For the range of 0.2 ≤ Λ ≤ 0.36GeV, we got
0.017 ≤ T ≤ 0.18GeV4.
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Fig. 1. Plot of the quark condensate 〈q̄q〉 = v (in (GeV)3) in terms of Λ (in GeV), the
intrinsic scale of the theory. The intersection of the thick line with the dot-dashed
line indicates the value of the condensate for Λ = 0.2 GeV, whereas the intersection
with the dashed line indicates the value of the condensate for Λ = 0.36 GeV.
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Fig. 2. Plot of the gluon condensate 〈GaµνGaµνα〉 = T (in (GeV)4) in terms of
Λ (in GeV), the intrinsic scale of the theory. The intersection of the thick line
with the dot-dashed line indicates the value of the condensate for Λ = 0.2 GeV,
whereas the intersection with the dashed line indicates the value of the condensate
for Λ = 0.36 GeV.
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The gluon condensate was extracted for non-perturbative QCD from
charmonium sum rules in [7]〈

αsG
2
〉
≈ 0.04 GeV4 . (17)

In the subsequent years, many other calculations were performed, some of
them close to the value in Eq. (17), others like in lattice QCD, for exam-
ple [5], with a larger range of values.

The light quark condensate has also been estimated in sum rules as [11]

〈q̄q〉 = −(267± 16 MeV)3 , (18)

or lattice QCD [5]
〈q̄q〉 = −(283± 2 MeV)3 . (19)

It might be more useful to find specific values of the condensates based
on our knowledge of low-energy QCD. For that, we use the estimate for
the gluon condensate in the sum rules approach as taken from [9] 〈 g

2

4πG
2〉 ≈

0.07 GeV4 to determine ΛQCD = 0.28 GeV and with this value, we computed
the quark condensate 〈q̄q〉 ≈ −0.015 GeV3 = −(0.244 GeV)3. This compares
very well with other results in the literature computed using other different
methods [5–12].

The method can be used for determining the quark and gluon condensate
for an arbitrary number of flavors and colors pending on the knowledge of
the characteristic scale of the theory Λ.
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