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In this study, we develop a computer code called Numerical Calculation
of the Penetration Factor (NCPF) for calculation of the penetration factor
in nuclear interactions. The code is valid in both low-energy thermonu-
clear reactions for astrophysical applications and high-energy interactions
of heavy nuclei. Our validation results indicate that this code can be suc-
cessfully used to determine the penetrability for calculations of the partial
widths of thermonuclear reactions and the half-lives of heavy isotopes. By
using the code, we evaluate the astrophysical rates of the 22Mg(α, p)25Al
reaction and the α-decay half-lives of super-heavy nuclei with atomic num-
bers up to Z = 118.
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1. Introduction

Quantum tunneling [1–3] of particles through a nuclear interaction bar-
rier is one of the fundamental concepts for understanding the transmission
phenomena of nuclear systems. The barrier penetrability (or penetration
factor) of a charged particle is important for estimation of the cross sec-
tions of thermonuclear reactions and the α-decay half-lives of heavy nuclei.
In studies of the nucleosynthesis of stars, the cross sections of the ther-
monuclear reactions are often calculated by using the Breit–Wigner formula
† Corresponding author: nguyenngocduy9@duytan.edu.vn
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regarding the resonance strength [4] of these reactions due to the challenge
of the small yields and limitations of the radioactive beam intensity in di-
rect measurements. In the synthesis of super-heavy nuclides, the feasibility
of observing new elements can be evaluated through the α-decay half-lives
which are closely associated with the penetration factor [5, 6]. Therefore,
quantification of the penetrability is vital to nuclear research.

It is difficult to calculate the penetration factor due to the complication
of the Coulomb functions. Hence, only a few approaches to solving this
obstacle have been reported such as approximation of either the interacting
potential or the Coulomb functions. In cases of high-energy interactions, the
penetrability is calculated based on the approximation of the potential bar-
rier [5–11]. For instance, in the study by Li et al. [6], the penetration factor
was calculated based on the parabolic potential barrier, which was described
by the Wentzel–Kramers–Brillouin (WKB) approximation [5, 7, 10, 11]. The
potential was divided into two parts at the barrier position, and then the
penetrability was described as an exponential function of two terms related
to the two parts of the potential. However, this approximation is only appli-
cable in high-energy cases such as the α-decay or fusion reactions of heavy
nuclei. The parabolic approximation of the potential [5, 10] is not appro-
priate to energies much smaller than the nuclear barrier that are associated
with low-energy thermonuclear reactions in nucleosynthesis. An alternative
way to approximate the penetration factor, which was based on the approxi-
mation of Coulomb functions proposed by Abramowitz and Stegun [12], was
applied to the study of the 9Be(p, α)6Li reaction cross section in Ref. [13].
This approach is solely reliable in the low-energy regime, which is appropri-
ate for sub-threshold and near the threshold of the thermonuclear reactions.
In general, these existing approximation approaches are mostly appropri-
ate for specific cases to deal with different aspects of the limitations of the
Coulomb functions.

Although the calculation of the penetrability is important in nuclear
physics, computer codes for calculating this factor are still very limited.
There are a few codes reported in the literature, but they either are not pub-
lished or have limited applicability. For instance, there is a code called PENE
programmed byWiescher [14] at the University of Notre Dame for computing
the penetrability, but it is not widely contributed for being used. Another
code for calculating penetrability, ckin, was designed by Wheldon [15, 16]
at the University of Birmingham based on the CERN Libraries WCLBES
code [17]. Both of these codes are applicable to the low-energy reactions,
and their algorithms are not described in detail. Hence, the development of
a computer code for the calculation of the penetration factor in terms of the
Coulomb functions for arbitrary energy is still highly demanded.
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In the present work, we introduce a computer code named NCPF (Numer-
ical Calculation of Penetration Factor) for the numerical calculation of the
penetration factor in a wide range of energy cases from below the threshold
of thermonuclear reactions to arbitrarily high energy. The code is developed
mainly based on the Steed method [18, 19] for evaluation of the Coulomb
functions. There exists a turning point associated with a critical interacting
energy Ecr due to the interaction between two positively-charged particles,
because of which Steed’s method collapses in the range of E < Ecr cor-
responding to the low-energy regime. In this regime, the approximation
proposed by Abramowitz and Stegun [12] is used. In order to validate the
reliability and applicability of the code, it is then applied to evaluate the
penetration factor for determining the partial widths of astrophysical reac-
tions (12C(α, γ)16O and 26Si(α, p)29P) and the α-decay half-lives of heavy
nuclei with Z = 52–118 corresponding to the low- and high-energy ranges,
respectively. The results show that the calculation using this current code is
in good agreement with previous works. Once the code successfully repro-
duced the values of the previous studies, we then applied it to deduce the
penetration factor for the new results in the calculations of the astrophysi-
cal rates of the 22Mg(α, p)25Al reaction which has not been reported in the
literature so far.

The present paper is organized as follows. The theoretical framework
for the numerical calculations and the algorithms of the code are presented
in Section 2. The validation and applications of the code are described
in Section 3. The validation of the code for the thermonuclear reactions
is detailed in Section 3.1. The new results of the astrophysical rates of
the important stellar reaction 22Mg(α, p)25Al in the rp-process are analyzed
and discussed in Section 3.2. The evaluation of the α-decay half-life of the
superheavy nuclei up to Z = 118 is presented in Section 3.3. The paper is
summarized in the final section, Section 4.

2. Theoretical framework

The penetration factor of a projectile in a nuclear reaction can be read
in terms of radial Coulomb wave functions as

Pl(η, ρ) =
1

F 2
l (η, ρ) +G2

l (η, ρ)
, (1)

where Fl(η, ρ) and Gl(η, ρ) are the regular and irregular Coulomb func-
tions [12], respectively, and l is the angular momentum of the projectile.
The functions in Eq. (1) are conventionally characterized by the Sommer-
feld parameter η, and the dimensionless variable ρ, which is associated with
the centrifugal barrier. Notice that, in principle, the Sommerfeld parameter
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can be negative for atomic scattering as well as positive in the case of nuclear
interactions. These parameters can be read as [4]

η =
e2

4πε0~
Z1Z2

( µ

2E

)1/2
, (2)

ρ =

(
2µER2

~

)1/2

, (3)

where Z1, Z2, µ, and E are the atomic numbers, reduced mass, and energy
in the center-of-mass frame of the charged particles, respectively. Here,
R = R0(A

1/3
1 +A

1/3
2 ) is the effective distance between two nuclei and R0 =

1.25 fm. A1 and A2 denote the mass numbers of the projectile and target
of the nuclear interacting system.

The calculation of the penetration factor requires high accuracy of the
Coulomb functions. These functions are usually associated with the Coulomb
scattering problem, earning that the particles have positive relative energy.
In 1964, Curtis [20] first proposed a method for considering this problem for
η < 0 restricted to l = 0, 1, 2, which was numerically certified by Barnett
in 1974 [21]. The general cases for all real η and ρ were comprehensively
considered by Bardin et al. in 1972 [22]. An extension for electron scattering
dealing with negative energies was proposed by Bell and Scott in 1980 [23].
Meanwhile, in 1982, the more general treatment for all cases of energies was
proposed by Seaton [24]. Despite the fact that these approaches are more
or less successful in giving the results of Coulomb functions, they are all
based on some approximation such as series expansion in powers of ρ or ρ−1
asymptotically. Another approach treating negative energy was introduced
in 2010 by Peng and Gong [25] for considering the hydrogenic continuum
wave functions in a wide range of energy and radial distance without any
restriction to the angular momentum number. However, this work deals only
with the regular solution Fl(η, ρ) for η < 0 [25].

In this paper, we adopted the approach proposed by Steed in 1967 [19],
in which two Coulomb functions and their derivatives are calculated in an
interdependent manner. This approach is based on two continued fractions
in terms of the Coulomb functions. For the regular function and its first
derivative, the fraction reads

F ′l (η, ρ)

Fl(η, ρ)
=
l + 1

ρ
+

η

l + 1
−ρ
(
(l + 1)2 + η2

)(l + 2)

(l + 1)

Hl+2Hl+3

Kl+1 +Kl+2 +Kl+3 + . . .
,

(4)
where the functions of Hm(η, ρ) and Kn(η, ρ) can be taken from

Hm = −ρ2
(
m2 + η2

) (
m2 − 1

)
; m = l + 2, l + 3, . . . (5)

Kn = (2n+ 1) [ηρ+ n(n+ 1)] ; n = l + 1, l + 2, . . . (6)
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The second fraction for the complex functions in terms of two regular
Coulomb functions and their first derivatives is then given as

G′l(η, ρ)± iF ′l (η, ρ)
Gl(η, ρ)± iFl(η, ρ)

=
1

ρ

(
(ρ− η)i+ i(iη − l)(iη + l + 1)(iη − l + 1)(iη + l + 2)

2(ρ− η + i) + 2(ρ− η + 2i) + . . .

)
. (7)

The original version of the program based on the method of Steed,
RCWFN, was first published by Barnett et al. in 1974 [21]. The improved and
comprehensive version, COULFG, was introduced by Barnett in 1982 [26]. In
that paper, they provided a comprehensive description of the algorithm and
results from comparison of their codes, which used two different methods,
RCWFN and COULFG. To develop our NCPF code in Fortran 90 for the pur-
pose of calculating the penetration factor, we mainly employed the newest
version of this program, COUL90, which was introduced in 1996 by Barnett
[18]. Note that the vital difference of COUL90 from its predecessor is the uti-
lization of the LT algorithm [27] for forward evaluating of the first continued
fraction (refer to Ref. [18] for detailed description).

Since we are dealing with the interaction between two positively charged
particles, there exists a turning point ρcr of the second-order differential
equation governing the Coulomb functions. This parameter is determined
as [18]

ρcr = η +
[
η2 + l(l + 1)

]1/2
. (8)

The version COUL90 is appropriate in providing highly accurate Coulomb
functions Fl(η, ρ) and Gl(ρ, ρcr) provided ρ > ρcr, corresponding to the high-
energy range of E > Ecr. This turning point is associated with the critical
relative energy Ecr considered as the minimum value for COUL90 to work
properly, and straightforwardly determined by substituting Eqs. (2) and (3)
into Eq. (8) as

Ecr =
~2

2

l(l + 1)

µR2
+ α~c

Z1Z2

R
, (9)

where α and c are the fine-structure constant and speed of light in vacuum,
respectively. For the low-energy regime E < Ecr corresponding to ρ < ρcr, an
alternative approach has been considered. We used the asymptotic behavior
of the functions, which are explicitly given in analytical form as presented
by Abramowitz and Stegun (AS approximation) [12]

Fl(η, ρ) ≈
(2l + 1)!Cl(η)

(2η)l+1
(2ηρ)1/2I2l+1

[
2(2ηρ)1/2

]
, (10)

Gl(η, ρ) ≈
2(2η)l

(2l + 1)!Cl(η)
(2ηρ)1/2K2l+1

[
2(2ηρ)1/2

]
, (11)
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in which I2l+1 andK2l+1 are modified Bessel functions of the first and second
kinds [12], which can be straightforwardly calculated using the integration
method proposed by Schwartz in 2012 [27]. The factor C(η) is described in
terms of the Gamma function as [12]

C(η) = 2l exp
(
−πη

2

) |Γ (l + 1 + iη)|
Γ (2l + 2)

. (12)

Note that the Gamma function in Eq. (12) has a complex argument and
it can be simply calculated by Lanczos approximation [28]. We also note
that the use of this approximation for Fl(η, ρ) and Gl(η, ρ) in calculating
the penetration factor for nuclear reactions of astrophysical interest in the
low-energy regime was investigated in the work of Humblet et al. in 1987 [9].
This work also indicated the applicability of the approximation.

The main structure of the NCPF program is in a simple way illustrated
in Fig. 1. Firstly, the program reads the input data including the Z and A
of two nuclei, and the desired range of angular momentum [lmin–lmax] is also

Fig. 1. Diagram of the algorithm used in the NCPF computer code.

included. In calculations for a specific l, one simply sets lmin = lmax. The
program automatically determines the value of Ecr in Eq. (9) for each l; the
normalization factor of AS approximation is also calculated as

N =
Pl(η, ρ)|E=E+

cr

Pl(η, ρ)|E=E−cr

, (13)
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where Pl(η, ρ)|E=E+
cr
and Pl(η, ρ)|E=E−cr

are calculated by Steed’s method for
the case where energy E is infinitesimally higher than Ecr, and by the AS
approximation at Ecr, respectively. Note that this normalization factor N
has been taken into account only for the AS approximation to guarantee the
continuity of penetration factor as a function of energy E for any value of l.

Subsequently, the interacting energy in the center-of-mass frame E is
considered. In the situation where E > Ecr, the program uses Steed’s
method for calculation of the penetration factor, whereas for E ≤ Ecr,
the AS approximation is adopted including the normalization factor N in
Eq. (13).

3. Results and discussion

3.1. NCPF for thermonuclear reactions

Since nuclear processes always occur in the universe, nuclear reactions
are thought to be the keys to solve astrophysical problems. For instance,
the 12C + α reaction is deserved to revisit since the 4He(αα, γ)12C and
12C(α, γ)16O reactions are the main processes in helium burning. The
12C(α, γ)16O reaction rates have a strong influence on the associated nu-
cleosynthesis in the evolution of low-mass stars to massive ones. On the
other hand, the 26Si(α, p)29P reaction rates play a crucial role in revealing
the anomalies in astrophysical observations related to the peak separation of
4–7 s in the bolometric luminosity of X-ray bursts of 4U/MXB 1636-53, 4U
1608-52 and GX 17+2; and the ratios of 26Al/27Al and 60Fe/26Al [29–31].
Unfortunately, there have been no direct measurements of these reactions
so far, and their astrophysical rates are very uncertain and require more
accurate studies.

The rates are often theoretically calculated based on the α-width value;
however, due to the lack of experimental constrains on this quantity to
date [32, 33], the width is frequently determined based on the penetration
factor (Pl) as [4]

Γl =
3~2

µR2
Pl(E,R)C

2S , (14)

where ~ = 1.054×10−34 J s; µ, C, and S are the reduced mass, the Clebsch–
Gordan coefficient and the spectroscopic factor, respectively.

To confirm the validity and applicability of NCPF, the computer code
is first applied to evaluate the nuclear interacting barrier penetrability of
the 12C + α and 26Si + α reactions. The center-of-mass energies are in the
range of E = 0.01–3.0 MeV, which correspond to the stellar temperatures of
T9 = 0.01–3.5 GK (GigaKelvin) for the 12C(α,γ)16O and T9 = 0.01–3.0 GK
for the 26Si(α,p)29P reactions. Table I presents the comparison of the results
calculated by the original COUL90 code and by NCPF in this work for the
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12C + α system in the low-energy range of E = 0.1–1.0 MeV. In particular,
the improvement of the NCPF code using the AS approximation overcomes
the inapplicability of the COUL90 code for the energies E < 0.3 MeV, as can
be seen in the left panel of Fig. 2.

TABLE I

The penetration factors with l = 2 for the 12C+α system calculated by the COUL90
and NCPF codes. NCPF overcomes the inapplicability of COUL90 in the low-energy
region of E < 0.3 MeV.

E [MeV] PThis work
l PCOUL90

l E [MeV] PThis work
l PCOUL90

l

0.05 1.41× 10−25 2.04× 10−22 0.30 7.23× 10−12 7.23× 10−12

0.10 9.75× 10−24 1.29× 10−20 0.45 5.55× 10−09 5.55× 10−09

0.15 1.12× 10−18 1.11× 10−15 0.60 2.88× 10−07 2.88× 10−07

0.20 1.59× 10−15 1.24× 10−12 0.80 8.40× 10−06 8.40× 10−06

0.25 2.03× 10−13 1.30× 10−10 1.00 8.02× 10−05 8.02× 10−05

Fig. 2. Penetration factors of the 12C+α system calculated by NCPF and COUL90
codes. Left panel: the inapplicability of the COUL90 in the low-energy region
E < 0.3 MeV. Right panel: the NCPF results (solid curves) are consistent with
those evaluated by Coc et al. [32] (dashed curves).

The penetration factor of the 12C+α channel is computed with all pos-
sible angular momenta of l = 0–8 in the mentioned astrophysical energy
region by using the NCPF code. The right panel of Fig. 2 shows the pene-
tration factors as a function of energy for five representative values of angular
momentum. As shown, the NCPF code effectively reproduces the penetra-
bility obtained by Coc et al. [32]. Notice that the penetration factor defined
by Coc et al. differs from Eq. (1) by a factor ρ. It also indicates that the
Coulomb barrier penetration is mostly populated with the s-wave resonance
(l = 0) of the alpha particle. The nuclear barrier penetration factor increases
with the energy of the reaction as expected and decreases as l grows due to
the emergence of centrifugal potential.
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We continue to reproduce the α-width of the 26Si(α, p)29P reaction by
using the resonance parameters obtained by Almaraz-Calderon et al. [34]
to doubly validate the NCPF code for the low-energy range. The angular
momenta are deduced based on the spin-parity values of the resonant states
of the compound nucleus, 30S [34], as shown in Table II. The α-widths cal-
culated using Eq. (14), in which the penetration factor is determined by
employing our NCPF code, are presented in Fig. 3. The results are again
consistent with those obtained by Almaraz-Calderon et al. [34]. This consis-
tency reflects the capability of NCPF in the penetrability calculation for the
low-energy thermonuclear reactions to which COUL90 could not be applied.

TABLE II

Resonance parameters were used to deduce the α-partial width of the 30S nu-
cleus [34].

E [MeV] Jπ l C2S E [MeV] Jπ l C2S

0.0484 2+ 2 0.01 1.6724 4+ 4 0.01
0.1430 1− 1 0.01 1.7570 3− 3 0.01
0.3582 2+ 2 0.01 1.8570 3− 3 0.01
0.4421 0+ 0 0.01 1.9570 4+ 4 0.01
0.5312 2+ 2 0.01 2.0567 4+ 4 0.01
0.6658 4+ 4 0.01 2.1474 4+ 4 0.01
0.7275 0+ 0 0.01 2.2032 1− 1 0.01
0.7796 4+ 4 0.01 2.2661 4+ 4 0.01
0.9317 2+ 2 0.01 2.3387 3− 3 0.01
1.1001 3− 3 0.01 2.4270 4+ 4 0.01
1.3070 3− 3 0.01 2.5093 3− 3 0.01
1.4121 3− 3 0.01 2.6962 0+ 0 0.01
1.4719 4+ 4 0.01

Fig. 3. (Color online) The α-partial widths of the 26Si + α scattering reproduced by
using the penetration factor computed by NCPF code (solid red curve) are in good
agreement with the results obtained by Almaraz-Calderon et al. [34] (dotted curve).
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3.2. Evaluation of the 22Mg(α, p)25Al reaction rates

The astrophysical rates of the 22Mg(α, p)25Al reaction under stellar con-
ditions of T9 = 0.01–3.0 GigaKelvin (GK) corresponding to the Gamow
energy range of E = 0.05–4.25 MeV, also play a key role in understand-
ing anomalies in astrophysical observations such as the Ne-E problem, the
1.275-MeV gamma ray and the abundance of 22Na [35–38]. This gamma
ray is predicted to be emitted from the excited 22Ne* nuclide that is pro-
duced by the beta decay of 22Na(β+)22Ne* in the rp-process, as can be
seen in Fig. 4. The production mechanism of the gamma ray with the en-
ergy of 1.275-MeV is similar to that of the 1.809-MeV gamma ray that is
emitted from the excited state of 26Mg. However, although the 1.809-MeV
gamma line was observed in 1983, the 1.275-MeV one has not been detected
to date. This phenomenon is thought to be caused by the dominance of
the 22Mg(α, p)25Al and/or the 22Mg(p, γ)23Al reaction, which may skip the
beta decays of 22Mg(β+)22Na(β+)22Ne, resulting in the variations of the
20Ne/22Ne and the 22Na abundance [35–38]. Therefore, studies of the astro-
physical rates of the concerned reactions are needed.

Fig. 4. The competition of the 22Mg(α, p)25Al, 22Mg(p, γ)23Al reactions and β+-de-
cay at the waiting point 22Mg in the nucleosynthesis impacts the 1.275-MeV
gamma-ray observation and the 22Na abundance.
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In order to determine the astrophysical rates of the stellar reactions pre-
cisely, direct measurements are necessary. However, the direct method faces
a significant challenge due to the low radioactive-isotope beam intensity and
small cross section at the astrophysical energy. Hence, alternative methods
of narrowing the uncertainty of the reaction rates are recommended. One
indirect method is the evaluation of the rates by using the resonance states
of the compound nucleus. In this method, the alpha and proton widths be-
come significant in the calculation. The reaction rates are calculated based
on the width as [4]

NA〈σν〉=1.54× 1011(µT9)
−3/2

∑
i

(ωγ)i exp

(
−11.605Ei

T9

)[
cm3 s−1mol−1

]
,

(15)
where the resonant strengths (ωγ)i (in MeV) of states i at resonant energies
of Ei (in MeV) in center-of-mass system are calculated by

ωγ =
2J + 1

(2J1 + 1)(2J2 + 1)

Γ1Γ2
Γtot

[MeV] . (16)

In the equations above, J , J1, and J2 are the spins of the compound
nucleus, the projectile and the target, respectively; Γ1, Γ2 are the alpha and
proton widths, which are calculated by using Eq. (14), and Γtot = Γ1 + Γ2
denotes the total width.

Since the NCPF computer code emerges as a useful tool to calculate
the penetration factor, it is applied to determine the α-width of the
22Mg(α, p)25Al reaction, which has been neither calculated nor measured re-
cently. Subsequently, the astrophysical rates of the reaction are determined.
According to the conservation rule [39], the angular momenta are assumed to
be l = 0–4. The resonances of the compound nucleus, 26Si, are proposed to
be distributed at the excited states obtained by Matic et al. [40]. It should be
noted that the excitation energies of the 26Si nucleus were deduced from the
transfer reaction 28Si(p, t)26Si. There were no proton- or α-width and spin-
parity of the 26Si states observed in the experiment. To calculate the widths,
the term of C2S containing the Clebsch–Gordan and the spectroscopic fac-
tors are assumed to be 0.01. Once the 22Mg(α, p)25Al reaction proceeds,
the α-width is much smaller than the proton width, Γα � Γp. Hence, the
total width is approximately equal to the proton width, Γtot ≈ Γp. Finally,
the α-widths and resonant strengths corresponding to the assumed resonant
energies of the compound nucleus, 26Si, in the 22Mg(α, p)25Al reaction are
estimated, as listed in Table III.
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TABLE III

The estimated α-widths and resonant strengths in the 22Mg(α, p)25Al reaction.

No. Ex [MeV] Ecm [MeV] Jπ Γα [MeV] ωγ [MeV]

1 9.316 0.146 4+∗ 7.93× 10−42 7.14× 10−41

2 9.373 0.203 0+ 1.20× 10−31 1.20× 10−31

3 9.433 0.263 1− 7.27× 10−27 2.18× 10−26

4 9.606 0.436 2+∗ 2.95× 10−19 1.48× 10−18

5 9.725 0.555 3− 7.83× 10−18 5.48× 10−17

6 9.802 0.632 4+ 2.87× 10−17 2.58× 10−16

7 9.912 0.742 0+∗ 7.62× 10−12 7.62× 10−12

8 10.070 0.900 1− 3.96× 10−10 1.19× 10−09

9 10.297 1.127 2+ 1.26× 10−08 6.30× 10−08

10 10.405 1.235 3− 1.31× 10−08 9.16× 10−08

11 10.688 1.518 4+ 6.40× 10−08 5.76× 10−07

12 10.827 1.657 0+ 5.72× 10−05 5.72× 10−05

*Spin-parities were assigned by Matic et al. [40]. The others are randomly chosen.

Once the resonant strengths are determined, the astrophysical rates of
the 22Mg(α, p)25Al reaction are calculated based on Eq. (15) with tempera-
tures in the range of T9 = 0.1–10. The evaluated rates are shown in Table IV.
The contributions of the 22Mg(α, p)25Al reaction rates from twelve resonant
states of 26Si are separately shown in Fig. 5. At temperatures T9 > 2.0 GK,
the higher excited energies give greater astrophysical reaction rates. The
dominant contribution of the states depends on the temperature ranges.
The 1.657-MeV (0+) state yields the highest contribution in the range of
T9 > 0.9 GK, the 0.900-MeV (1−) state is dominant at temperatures of
0.35–0.7 GK, the 0.742-MeV (0+) state generates the highest rates in the
range of T9 = 0.25–0.35 GK, and the 0.436-MeV state is dominant in the
range of T9 < 0.25 GK.

As can be seen in Fig. 6, the rates calculated based on the Hauser–
Feshbach model by using NON-SMOKER and TALYS codes at stellar tem-
peratures of T9 < 1.5 GK are about 2–4 times lower than the calculated
values in this work, which is based on the observed excited states of 26Si,
whereas this manner inversely changes into 1–3 orders under conditions of
the temperatures T9 > 3.0 GK. While the present calculation is compati-
ble with the estimation of the statistical model, the results in the study of
Matic et al. [40] are much lower than the others in the temperature range
of T9 > 0.7 GK. Those low rates may be mainly caused by the lack of the
resonances in 26Si, which also contribute the reaction rates, considered in
Ref. [40].
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TABLE IV

Calculated astrophysical rates (in cm3 mol−1 s−1) of the 22Mg(α, p)25Al reaction
compared to the results obtained by Matic et al. [40] and the calculations of the
Hauser–Feshbach model using the NON-SMOKER and TALYS codes.

T9 This work NON-SMOKER TALYS Matic et al. [40]

0.1 1.08× 10−27 8.07× 10−30 0.00× 1000 5.57× 10−31

0.2 4.80× 10−18 1.66× 10−19 7.80× 10−24 2.90× 10−20

0.3 5.45× 10−13 1.05× 10−14 9.95× 10−17 3.05× 10−15

0.4 9.07× 10−10 1.08× 10−11 3.21× 10−13 2.46× 10−12

0.5 1.10× 10−07 1.50× 10−09 4.87× 10−11 1.28× 10−10

0.6 3.37× 10−06 6.48× 10−08 2.38× 10−09 1.70× 10−09

0.7 4.66× 10−05 1.30× 10−06 5.88× 10−08 1.04× 10−08

0.8 3.96× 10−04 1.54× 10−05 8.09× 10−07 3.93× 10−08

0.9 2.47× 10−03 1.23× 10−04 7.21× 10−06 1.08× 10−07

1.0 1.21× 10−02 7.35× 10−04 4.70× 10−05 2.40× 10−07

1.5 2.39× 1000 3.64× 10−01 3.29× 10−02 2.28× 10−06

2.0 3.56× 1001 1.61× 1001 1.88× 1000 6.17× 10−06

3.0 4.63× 1002 1.48× 1003 2.44× 1002 1.40× 10−05

4.0 1.48× 1003 2.16× 1004 4.22× 1003 1.86× 10−05

5.0 2.76× 1003 1.32× 1005 2.74× 1004 2.05× 10−05

6.0 3.98× 1003 4.90× 1005 1.03× 1005 2.07× 10−05

7.0 4.99× 1003 1.32× 1006 2.72× 1005 2.02× 10−05

8.0 5.75× 1003 2.82× 1006 5.73× 1005 1.92× 10−05

9.0 6.29× 1003 5.08× 1006 1.03× 1006 1.82× 10−05

10.0 6.65× 1003 7.93× 1006 1.63× 1006 1.71× 10−05

Fig. 5. The astrophysical rates (in cm3 mol−1 s−1) of the 22Mg(α, p)25Al reaction
as a function of stellar temperature T9 (in GK) contributed by individual states
presented together with the total rates.
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Fig. 6. The astrophysical rates of the 22Mg(α, p)25Al reaction.

By comparing the astrophysical rates of the 22Mg(α, p)25Al reaction cal-
culated in the present work with the 22Mg(p, γ)23Al reaction rates, which
were based on measurements of proton scattering of 22Mg+p by He [41], one
can see that the 22Mg(α, p)25Al rates are about 6.0 times higher than the
other ones under the stellar temperature of T9 = 1.0–3.0 GK, which are rel-
evant for the conditions of type II-supernovae or X-ray bursts. However, the
(p, γ) reaction rates are about 6.0 and 2.0 times higher than the (α, p) ones
in the temperature ranges of T9 = 0.1–0.5 GK and T9 = 0.5–1.0 GK, respec-
tively. In other words, under conditions of novae with stellar temperatures
in the range of 0.1–1.0 GK, the (p, γ) reaction is dominant; subsequently, the
competition at the waiting point 22Mg mainly occurs between this reaction
and the β+-decay. The (α, p) reaction becomes stronger in the supernovae
or X-ray bursts; hence, the competition between the (α, p) reaction and the
decay becomes more significant at the waiting point 22Mg.

3.3. NCPF for estimation of the α-decay half-life of heavy nuclei

After extensive testing of the NCPF code on astrophysical problems in
the low-energy regime, we proceed to reproduce the half-lives of a series of
even–even α-decay nuclei of which daughters have a spherical shape in the
atomic number range of Z = 52–118, by using the expression in terms of the
penetrability as [6]

T1/2 =
ln2

ξP (Q)
, (17)
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where P (Q) and ξ are, respectively, the penetration factor with Q-value of
the α-decay and the deformation-independent parameter of nuclei, which
can be determined by

ξ =
(
6.1814 + 0.2988A−1/6

)
× 1019 × exp (−13.116β) s−1 . (18)

Here, A denotes the mass number of the parent nuclei and β is the
deformed parameter of daughter nuclei, both of which are obtained from the
database of Möller et al. (1995) [42]. It should be noted that the Q-values
are almost out of the energy range for the AS approximation.

To validate the code and evaluate the semi-empirical formulae proposed
by Viola and Seaborg [43] and by Poenaru and Ghergescu [44], we calculated
the α-decay half-lives of nuclei with atomic numbers in the range of Z = 52–
118 by using Eq. (17) and compared the results with the predictions of the
formulae, the estimation by Li et al. [6], and experimental data [45, 46].
The penetration factor was calculated by the NCPF code, with the angu-
lar momenta carried by the α-particle of the α-core system at ground states
assumed to be zero, l = 0. Despite using the same model of Eq. (17) with dif-
ferent methods to deduce the penetration factors, the half-lives determined
based on the penetration factor calculated by the NCPF code are quite sim-
ilar to those obtained by Li et al. [6], as can be seen in Table V. This good
agreement indicates that the numerical calculation of the penetration factor
in the present study is consistent with previous work. Moreover, the code

TABLE V

The decimal logarithmic half-lives (in seconds) of the α-decay nuclei with Z=52–92
estimated by using different models were compared to the experimental data taken
from Ref. [45].

ID A Qα [MeV] This work Ref. [43] Ref. [44] Ref. [6] Exp. [45]

52Te 106 4.30 −4.32 −6.86 −4.42 − 3.83 −4.22
60Nd 144 1.91 22.57 19.94 21.21 23.17 22.86
64Gd 148 3.27 8.94 7.24 8.36 9.46 9.36

150 2.81 13.52 11.53 12.59 13.91 13.75
72Hf 156 6.03 −1.57 −3.21 −1.95 −1.66 −1.60

158 5.40 0.58 −0.67 0.49 0.89 0.81
84Po 205 5.33 6.31 6.97 6.19 6.72 7.18

206 5.33 5.28 5.89 6.16 6.64 7.15
86Rn 204 6.55 2.21 1.22 1.73 1.94 2.00

206 6.38 1.84 1.89 2.33 2.56 2.74
90Th 218 9.85 −6.86 −7.17 −6.59 −6.65 −6.96

220 8.95 −5.12 −4.98 −4.49 −4.51 −5.01
92U 222 9.43 −5.47 −5.51 −4.93 −5.20 −6.00
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can be applied reliably to deduce the penetrability associated with the high-
energy range (E > Ecr), out of the AS approximation which is available for
the low-energy range (E < Ecr), for α-decay half-life estimations.

The estimated half-lives of transfermium and super-heavy nuclei with
Z=94–118 compared with the experimental data taken from Refs. [45, 46]
are presented in Table VI. It is found that the half-lives calculated by the
models depend on the odd–even numbers of protons and neutrons. In partic-
ular, all the models reproduce well the experimental data for the even–even
nuclei, but not for the other cases (even–odd, odd–even, and odd–odd nu-
clei). In the case of even–odd nuclei, the half-lives estimated by Eq. (17)
in this work and the Poenaru formula are closer to the experimental data
than those obtained by the Viola and Seaborg relation and vice versa for
the odd–even nuclei. Moreover, we found a large discrepancy between the
calculations and measured data, highlighting a need for improvements in the
theoretical models to improve predictions of the half-lives of the odd–odd
isotopes.

4. Conclusion

In the present work, we successfully developed the NCPF computer code
for numerically calculating the penetration factor for a wide range of en-
ergy cases. The NCPF is mainly based on Steed’s method combined with
a correction for the low-energy regime using the Abramowitz and Stegun
approximation to evaluate the Coulomb functions. The code was validated
by reproducing the penetration factor for astrophysical applications and es-
timation of the α-decay half-life of actinides. The validation results indicate
that the NCPF code can be used reliably in penetrability calculations. We
used the developed code to estimate the 22Mg(α, p)25Al reaction rate, which
is one of the most mysterious astrophysical problems. It was found that
the 22Mg(α, p)25Al reaction is dominant over proton capture of the 22Mg in
novae, and vice versa in supernovae or X-ray bursts. On the other hand,
the evaluation indicates that the α-decay half-life predictions have large
uncertainty in odd–odd isotopes compared with experimental data. This
highlights the need for more development of α-decay theories.
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