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THE KLEIN PARADOX IN A MAGNETIC FIELD:
EFFECTS OF ELECTRON SPIN
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Reflection and transmission of electrons scattered by a rectangular po-
tential step in the presence of an external magnetic field parallel to the
electron beam is described with the use of the Dirac equation. It is shown
that in addition to the known effects present in the so-called Klein para-
dox, the presence of magnetic field gives rise to electron components with
reversed spin in the reflected and transmitted beams. The spin-flip scatter-
ing processes are caused by the spin–orbit interaction activated by electric
field of the potential step and transverse momentum components of electron
motion induced by the magnetic field. The contemporary understanding
of the Klein paradox, consisting in the finite transmission even when the
potential height tends to infinity, is generalized to the presence of magnetic
field and spin-reversed electron beams. The spin-reversed beams are shown
to occur also for electrons moving above the step. It is proposed that, ac-
counting for the anomalous value of the electron spin g-factor related to
radiation corrections, the reflection and transmission scattering from the
potential step can be used as an electron spin filter.
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1. Introduction

Exactly ninety years ago, Klein [1] published his famous paper in which
he described the reflection and transmission of relativistic electrons coming
to a rectangular potential step using the relativistic equation which shortly
before had been published by Dirac [2]. This paper is often referred to as
the Klein paradox in which, seemingly, for a sufficiently high potential, more
electrons are reflected from the step than coming to it. However, Klein noted
that Pauli had pointed out to him that if one takes into account the group
velocity of the transmitted electron beam, one obtains |R|2+|T |2 = 1, where
|R|2 and |T |2 are the reflection and transmission probabilities, respectively,
so there is no paradox. According to the contemporary views, the paradox
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still exists and consists in the fact that, as the height of the step tends to
infinity, the transmission coefficient tends to a non-zero limit. The paper
of Klein was followed by important discussions and modified calculations,
as reviewed in Ref. [3]. Dombey and Calogeracos [4] concluded in their
analysis that the theory of the Klein tunneling requires only the relativistic
wave equations.

The standard Klein theory is limited to one dimension, parallel to the
electron propagation (say, z). Our work treats the Klein scattering in the
presence of an external magnetic field H also parallel to z. The presence of
the field induces the transverse motion components px and py, so one has to
do the theory in three dimensions. The magnetic field naturally introduces
to the problem the electron spin. The simultaneous presence of electric field
(resulting from the potential step) and the external magnetic field activates
the spin–orbit interaction inherently contained in the Dirac equation. We
concentrate on the spin effects caused by H and use the approach based
on the Dirac equation. The sufficiency of our approach is confirmed by the
theoretical work of Katsnelson et al. [5] on the Klein tunneling in graphene,
where the Dirac-type equations are sufficient to obtain important results.

The paper is organized as follows. Section 2 describes the theory. Sub-
section 2.1 is concerned with the character of wave functions, Subsection 2.2
discusses a generalization of the Klein paradox, Subsection 2.3 treats the
current conservation. Section 3 contains the discussion of results, the sum-
mary is given in the form of separate points. In Appendix, we enumerate
and shortly discuss for completeness formulas for the standard case H = 0.

2. Theory

We consider relativistic electrons coming from the left along the z direc-
tion to the potential step described by the potential energy V (z) = 0 for
z < 0 and V (z) = V0 for z ≥ 0, in the presence of an external magnetic field
also parallel to the z direction. The investigated system is shown in Fig. 1.
The stationary Dirac equation for the problem reads[

cα̂ · P̂ +mc2β̂
]
Ψ(r) = (E − V )Ψ(r) , (1)

where α̂ = (αx, αy, αz) and β̂ are the standard Dirac 4 × 4 operators, m is
the rest electron mass, E is the energy and P = p − eA/c is the kinetic
momentum. The Dirac equation for electrons in a magnetic field alone has
been solved by various authors. As in the absence of magnetic field, one
deals with two spinors for positive electron energies and two for the negative
ones. If the vector potential of magnetic field is taken in the asymmetric
gaugeA = (−Hy, 0, 0), the eigenfunctions are given in terms of the harmonic
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oscillator functions Φn(ξ), where ξ = (y − y0)/L with y0 = kxL
2 and L =

(~c/eH)1/2 being the magnetic radius. We use the explicit form of solutions
following Johnson and Lippmann [6]. The spin is quantized on the magnetic
field H ‖ z direction.
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Fig. 1. Rectangular potential step illustrating the Klein scattering. Electrons come
from the left having the energy E and momentum p on the left of the step and
momentum q on the right of the step. Magnetic field is parallel to the z direction.

The spin-up state (+, n) is

Θ(+, n) = A


(
E − V +mc2

)
Φn

0
c pΦn(

2mc2 2µBH(n+ 1)
)1/2

Φn+1

 , (2)

with the energy

E(+, n) =
√
c2p2 + 2mc2~ω(n+ 1/2 + 1/2) +m2c4 + V

=
√
c2p2 + Cn+1 +m2c4 + V . (3)

The spin-down state (−, n) is

Θ(−, n) = A


0(

E − V +mc2
)
Φn(

2mc2 2µBHn
)1/2

Φn−1
−c pΦn

 , (4)

with the energy

E(−, n) =
√
c2p2 + 2mc2~ω(n+ 1/2− 1/2) +m2c4 + V

=
√
c2p2 + Cn +m2c4 + V , (5)

where ω = |e|H/mc is the cyclotron frequency and n = 0, 1, 2, . . . We use
the notation Cn = 2mc2~ωn and pz = p.
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The energies E(+, n − 1) and E(−, n) are doubly degenerate with the
exception of E(−, 0). This lowest energy is single and it does not depend on
magnetic field

E(−, 0) =
√
c2p2 +m2c4 + V . (6)

Here, as in Eqs. (3) and (5), V = 0 for z < 0 and V = V0 for z ≥ 0.
For the other states there is

c2p2 = E2 −
(
m2c4 + Cn

)
. (7)

and
c2q2 = (E − V0)2 −

(
m2c4 + Cn

)
. (8)

Suppose the electrons come to the barrier in the spin-up state (+, n− 1).
Since the reflection and transmission are elastic, there should exist two re-
flected waves (+, n − 1) and (−, n), and two transmitted waves (+, n − 1)
and (−, n) having the same energy. Anticipating a little, we allow for the
waves with the reversed spin. Thus we have, see Eqs. (2) and (4)

Ψ(+, n− 1) =
1

(2E · E)1/2

×

e ipz
~


EΦn−1

0
cpΦn−1

C
1/2
n Φn

+Re
−ipz

~


EΦn−1

0
−cpΦn−1

C
1/2
n Φn

+R′e
−ipz

~


0
EΦn

C
1/2
n Φn−1
cpΦn



z<0

+
1

(2|Ē · Ē|)1/2

T e
iqz
~


ĒΦn−1

0
cqΦn−1

C
1/2
n Φn

+ T ′e
iqz
~


0
ĒΦn

C
1/2
n Φn−1
−cqΦn



z≥0

, (9)

where we introduced the notation E = E + mc2, Ē = E + mc2 − V0, Ē =
E − V0. The coefficients R and R′ are related to the reflected waves with
the same and reversed spins, respectively, while T and T ′ are those of the
transmitted waves with the same and reversed spins, respectively. These
coefficients can be determined by the boundary conditions, i.e. by equalizing
each of the four spinor components in Eq. (9) at z = 0. This gives

E
(2E · E)1/2

(1 +R) =
Ē(

2|Ē · Ē|
)1/2T , (10)

E
(2E · E)1/2

R′ =
Ē(

2|Ē · Ē|
)1/2T ′ , (11)
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cp(1−R) + C

1/2
n R′

]
(2E · E)1/2

=

(
cqT + C

1/2
n T ′

)
(
2|ĒĒ|

)1/2 , (12)[
cpR′ + C

1/2
n (1 +R)

]
(2E · E)1/2

=

(
C

1/2
n T − cqT ′

)
(
2|ĒĒ|

)1/2 . (13)

In order to simplify the subsequent formulas, we introduce the so-called
kinematic factor κ. Employing Eqs. (7) and (8), one has

κ =
qE
pĒ

={[
E − V0 −

(
m2c4 + Cn

)1/2] [
E − V0 +

(
m2c4 + Cn

)1/2]}1/2 (
E +mc2

)
{[
E − (m2c4 + Cn)1/2

] [
E + (m2c4 + Cn)1/2

]}1/2
(E − V0 +mc2)

.

(14)

With the use of κ, we finally have

R(+, n− 1) =
c2p2Ē 2

(1− κ)(1 + κ)− CnV
2
0

c2p2Ē2(1 + κ)2 + CnV 2
0

, (15)

R′(+, n− 1) =
2cpĒC1/2

n V0
c2p2Ē2(1 + κ)2 + CnV 2

0

, (16)

T (+, n− 1) =

(∣∣Ē · Ē∣∣)1/2 E
(E · E)1/2Ē

[1 +R(+, n− 1)]

=

(∣∣Ē · Ē∣∣)1/2
(E · E)1/2

2c2p2EĒ(1 + κ)[
c2p2Ē2(1 + κ)2 + CnV 2

0

] , (17)

T ′(+, n− 1) =

(∣∣Ē · Ē∣∣)1/2
(E · E)1/2

E
Ē
R′(+, n− 1)

=

(
Ē · Ē

)1/2
2cpEC1/2

n V0

(E · E)1/2
[
c2p2Ē2(1 + κ)2 + CnV 2

0

] , (18)

where it is indicated that the coefficients are related to the initial (+, n− 1)
state.
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It can be seen that in addition to the expected reflected and transmitted
components with the same spin, proportional to R and T , there exist the re-
flected and transmitted spin-reversed components proportional to R′ and T ′.
The latter are proportional to C1/2

n , i.e. they vanish when there is no mag-
netic field. We indicate in Discussion that the spin-flip components appear
due to the spin–orbit interaction inherently present in the Dirac equation.

For the coming spin-down electrons in the state (−, n), the wave decom-
position analogous to Eq. (9) is

Ψ(−, n) =
1

(2E · E)1/2

×

e ipz
~


0
EΦn

C
1/2
n Φn−1
−cpΦn

+Re
−ipz

~


0
EΦn

C
1/2
n Φn−1
cpΦn

+R′e
−ipz

~


EΦn−1

0
−cpΦn−1

C
1/2
n Φn



z<0

+
1

(2|Ē · Ē|)1/2

T e
iqz
~


0
ĒΦn

C
1/2
n Φn−1
−cqΦn

+ T ′e
iqz
~


ĒΦn−1

0
cqΦn−1

C
1/2
n Φn



z≥0

. (19)

The coefficients are obtained again from the boundary conditions. The re-
sults are the same as those given by Eqs. (15)–(18) with the reversed signs
for R′ and T ′. Thus, also for the initial spin-down state (−, n), there exist
after scattering the spin reversed components. However, for the lowest state
(−, 0), one obtains from Eqs. (16) and (18): R′(−, 0) = 0 and T ′(−, 0) = 0,
i.e. the spin flips do not occur. This is understandable because for the cor-
responding lowest energy the electron has no transverse motion [see Eq. (6)]
and, in consequence, the spin–orbit interaction is not activated.

2.1. Character of wave functions

Now we consider the character of wave functions. It is related to relative
values of the height of the potential step V0 and the electron energy E, see
Fig. 1. It is clear that the components on the left of the step, i.e. in the V = 0
region, have the plain wave character. However, the components on the right
of the step in the V = V0 region can have either wave or decaying character.
This depends on the momentum q in the V0 region since q, given by Eq. (8),
can be real or imaginary. In order to make the following discussion simpler
and more transparent, we neglect the magnetic field term Cn in Eq. (8) as it
is much smaller than m2c4. In this approximation, q is given by the relation

c2q2 =
(
E − V0 −mc2

) (
E − V0 +mc2

)
. (20)
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One can define three important cases:

Case I. V0−mc2 > E . Then E+mc2−V0 < 0 and E−mc2−V0 < 0,
so that q is a real number. In consequence, the transmitted amplitudes
in Eqs. (9) and (19) are plain waves. This means that electrons are
partly reflected from the step, while the rest of them propagate from
left to right inside the step.

Case II. V0 +mc2 < E. Then E−mc2−V0 > 0 and E+mc2−V0 > 0,
so that q is a real number. In consequence, the transmitted amplitudes
in Eqs. (9) and (19) are plain waves. This means that electrons are
partly reflected from the step, while in contrast to Case I, the rest of
them propagate from left to right above the step.

Case III. V0 + mc2 > E > V0 − mc2. Then E − V0 − mc2 < 0 and
E − V0 +mc2 > 0, so that q is an imaginary number: q = i|q| and the
transmitted amplitudes are quickly decaying functions. This means
that the electrons are completely reflected from the step, while there
are no electrons propagating inside the step.

The above considerations can be intuitively understood: in the V = V0 re-
gion, the electrons cannot propagate inside the gap V0±mc2. It is clear that
the above three cases can be introduced equally well without neglecting the
magnetic terms in Eq. (8). Finally, we note that the quantity κ being pro-
portional to q, see Eq. (14), has real (Cases I and II) or imaginary (Case III)
value.

2.2. Generalized Klein paradox

As already mentioned, the contemporary understanding of the Klein
paradox for the step potential is that the transmitted wave propagates even
if the step’s height tends to infinity. The probability densities of the trans-
mitted waves are given by |T |2 and |T ′|2. Let us consider the spin-conserved
and spin-reversed transmission of the incoming electrons in the (+, n − 1)
state, as described by Eqs. (17) and (18), respectively. For the very high
potential V0, one can neglect smaller quantities in |T |2 and |T ′|2 and in κ.
The final results are

|T (+, n− 1)|2 =

(
E +mc2

)
4c2p2

(
cp+ E +mc2

)2
E
[
(cp+ E +mc2)2 + Cn

]2 (21)

and ∣∣T ′(+, n− 1)
∣∣2 =

(
E +mc2

)
4c2p2Cn

E
[
(cp+ E +mc2)2 + Cn

]2 . (22)
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For the incoming electrons in (−, n) state, the corresponding results for the
very high V0 limit are the same as those given above.

It is seen that, even in the limit of infinitely high V0, the probabilities
|T (+, n− 1|2 and |T ′(+, n− 1)|2 as well as |T (−, n)|2 and |T ′(−, n)|2 do not
vanish. The results of Eqs. (21) and (22) present generalizations of the Klein
paradox to the presence of magnetic field and spin-reversed electron beams.

2.3. Current conservation

Now we check the conservation of the electron currents. We do this for
the incident electrons in the state (+, n − 1). The sum of reflected and
transmitted currents should be equal to the incident current

jinc = jR + jR′ + jT + jT′ , (23)

where each current is given by the electron charge multiplied by the proba-
bility density and the group velocity vgr = ∂E/∂p = c2p/E for the currents
in the V = 0 region and vgr = ∂Ē/∂q = c2q/(E − V0) in the V = V0 region.
Using Eq. (23), one has

ec2p

E
=
e|R|2c2p

E
+
e|R′|2c2p

E
+
e|T |2c2q
(E − V0)

+
e|T ′|2c2q
(E − V0)

. (24)

With the use of Eqs. (17) and (18) we obtain

1 = |R|2 + |R′|2 +
EĒ|1 +R|2qE
ĒEp(E − V0)

+
EĒ|R′|2qE
ĒEp(E − V0)

(25)

which can be transformed into

1 = |R|2 + |R′|2 + κ
[
|1 +R|2 + |R′|2

]
, (26)

where κ is given by Eq. (14). For Cases I and II, see Subsection 2.1, the
quantity κ is real and the first part of Eq. (26) is

|R|2 + |R′|2 =

[
c4p4Ē4

(
1− κ2

)2
+ C2

nV
4
0 + 2c2p2Ē2CnV

2
0

(
1 + κ2

)]
[
c2p2Ē2(1 + κ)2 + CnV 2

0

]2 . (27)

The second part is

κ
[
|1 +R|2 + |R′|2

]
=

4κc2p2Ē2CnV
2
0 + 4κc4p4Ē4 (1 + κ)2[

c2p2Ē2(1 + κ)2 + CnV 2
0

]2 . (28)



The Klein Paradox in a Magnetic Field: Effects of Electron Spin 1003

Adding the right-hand sides of Eqs. (27) and (28) and doing some algebra,
one obtains unity. The same result is obtained for the incoming current of
electrons in the (−, n) state.

For Case III, κ is imaginary: κ = i|κ|, the transmitted currents disappear
and Eq. (26) takes the form of

1 = |R|2 + |R′|2 . (29)

We check the above equality

|R|2 + |R′|2 =

[
c2p2Ē2

(
1 + |κ|2

)
− CnV

2
0

]2
+ 4c2p2CnV

2
0

|
[
c2p2Ē2

(
1− |κ|2) + CnV 2

0

]
+ i
[
2c2p2Ē2|κ

∣∣] |2 = 1 . (30)

This demonstrates the conservation of the currents in all three cases.

3. Discussion

As shown in Eqs. (9) and (19), the reflected and transmitted waves con-
tain in addition to the standard spin-conserved contributions also the spin-
reversed components. The reason for the appearance of spin flips is the
spin–orbit interaction. It is well-known that the relativistic Dirac equation
contains inherently the spin–orbit interaction. This property is made ex-
plicit by the Foldy–Wouthuysen expansion of the Dirac Hamiltonian up to
the terms v2/c2, where v is the electron velocity [7]. One than obtains the
expression Hso ∼ (P̂ × σ̂) · ∇̂zV in the standard notation, see Ref. [8]. In
our case, the electric field ∂V/∂z is that of the potential step at z = 0, while
the transverse momentum components are provided by the magnetic field
H ‖ z. This is easily seen since the trajectories of electrons coming to the
step for all the states higher than the lowest one (−, 0) are spirals around
the z direction. Equations (16) and (18) show that the amplitudes of spin-
flip components are directly related to the magnetic field via Cn and they
disappear for vanishing H. For the lowest state (−, 0), the electron trajec-
tory is not a spiral but a straight line, the transverse momenta vanish and
the spin-flip wave components disappear, see the formulas after Eqs. (16)
and (18).

There exists an interesting possibility allowing one to use the reflection
from the potential step as an electron spin filter. It is known that the
spin g-factor of an electron is not exactly 2 but 2.002319 due to radiation
corrections Refs. [9–11]. This means that in formulas (3) and (5) the spin
terms are somewhat larger than the orbital ones, so that the (+, n−1) state
is not degenerate with the (−, n) state but occurs somewhat higher. This
difference in energy must be compensated by the lower pz value in the pz
part of the energy [see Eq. (3)] since the total energy E of the reflected
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electron must be the same as that of the incoming one. The different pz
values are equivalent to different velocities vz = pz/m(E), where m(E) is
the relativistic electron mass. In consequence, the reflected electrons with
the reversed spins arrive to a given point at the left-hand side of the step
later than those with the conserved spins, so the two beams can be separated
by an appropriate shut-down screens. The difference of arrival times for the
two beams will depend on the distance between the step and the screen.
The same reasoning can be made for the transmitted spin-conserved and
spin-reversed electron waves.

4. Conclusions

We summarize our work in the form of conclusions.

1. Scattering of relativistic electrons from a rectangular potential step in
the presence of an external magnetic field is described with the use of
the Dirac equation. The reflection and transmission amplitudes are
calculated.

2. The electric field resulting from the presence of the step combined
with the transverse components of electron motion caused by the mag-
netic field activate the spin–orbit interaction implicitly present in the
Dirac equation. This interaction gives rise to the spin-flip reflection
and transmission processes.

3. The spin-flip amplitudes in reflection and transmission appear also for
electron energies higher than the potential step.

4. The transmitted spin-conserved and spin-reversed electron beams have
non-zero probability even for the step potential tending to infinity.
This generalizes the Klein paradox to the presence of magnetic field
and the spin-reversed currents.

5. It is shown that in the general case, the sum of all reflected and trans-
mitted electron currents is equal to the initial incoming current.

6. It is proposed that the anomalous electron spin g-value resulting from
the radiation corrections can be used to employ the electron scattering
from the step as a spin filter.

Appendix

Here, we shortly enumerate and discuss the corresponding formulas for
H = 0. It is done for completeness and also because some of the formulas
are difficult to find in the literature. We put in all above formulas Cn = 0.
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As already mentioned, for H = 0, the spin reversed currents do not appear
since the spin–orbit interaction in the Dirac equation is not activated. In
consequence, there is R′ = 0, T ′ = 0. Now, one has exactly the relation

c2q2 =
(
E − V0 −mc2

) (
E − V0 +mc2

)
, (A.1)

i.e. identical with the approximate relation (20). The reasoning given in
Subsection 2.1 applies without changes, so that in Cases I and II the quan-
tities q and κ are real. This gives, see Eqs. (15) and (16),

R =
(1− κ)

(1 + κ)
, T =

(∣∣Ē · Ē∣∣)1/2
(E · E)1/2

2E
Ē(1 + κ)

. (A.2)

In Case III, q and κ are imaginary, so that

R =
(1− i|κ|)
(1 + i|κ|)

, T =

(∣∣Ē · Ē∣∣)1/2
(E · E)1/2

2E
Ē(1 + i|κ|)

. (A.3)

As to the current conservation, since for H = 0 the spin-flip currents do not
exist, we have

jinc = jR + jT (A.4)

which gives
ec2p

E
=
e|R|2c2p

E
+
e|T |2c2q
(E − V0)

. (A.5)

Dividing both sides by ec2p/E, we get

1 = |R|2 + κ|1 +R|2 . (A.6)

In Cases I and II, we have

|R|2 + κ|1 +R|2 =
(1− κ)2

(1 + κ)2
+
κ(1 + κ+ 1− κ)2

(1 + κ)2
= 1 , (A.7)

while in Case III, Eq. (A.6) takes the form 1 = |R|2, and we check, see
Eq. (A.3),

|R|2 =

∣∣∣∣(1− i|κ|)(1 + i|κ|)

∣∣∣∣2 = 1 . (A.8)

Thus, for all the three cases, the current conservation is fulfilled, see Ref. [12].
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Now, we consider the limit of V0 → ∞, for which q = −V0/c and κ =
(−V0)(E+mc2)/[cp(−V0)] = (E+mc2)/cp. This gives according to Eqs. (15)
and (17)

R =

(
E −mc2

)1/2 − (E +mc2
)1/2

(E −mc2)1/2 + (E +mc2)1/2
, (A.9)

T =
2cp

E1/2[(E +mc2)1/2 + (E −mc2)1/2]
, (A.10)

i.e. the transmitted probability is

|T |2 =
2c2p2

E(E + cp)
(A.11)

which shows that for V0 →∞, the transmitted probability does not vanish.
In contemporary understanding this is considered to be the Klein paradox.
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