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This paper is a brief pedagogical review of the ideas that motivate
the concept of Quarkyonic Matter. If Nc is the number of quark colors,
baryonic matter at very high density and low temperature remains confining
to density scales of the order ofN3/2

c Λ3
QCD that is parametrically larger than

that of the QCD scale Λ3
QCD. This implies that a description of nuclear

matter will involve both quark and confined degrees of freedom. I argue
that the equation of state of Quarkyonic Matter should be very hard, and
the sound velocity should rise very rapidly from its small value at nuclear
matter densities to a value of the order of 1 at a few times nuclear matter
density.
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1. Introduction

In Fig. 1, a hypothetical phase diagram of QCD at finite temperature
and density is shown [1]. The only trouble with this figure is that different
speakers at different meetings will present different plots as The Phase Di-
agram of QCD. The reason for this is because we do not really know the
phase diagram except at finite temperature when the quark chemical poten-
tial, µQ, is µQ � T . In this region, there are now excellent experimental
data and high quality lattice Monte Carlo computations which determine
the thermodynamic properties of strongly interacting matter to good pre-
cision. This paper concerns a speculation about Quarkyonic Matter which
may exist at very high density and low temperature [2].

At present, the only knowledge we have of the nature of matter at very
high baryon density comes from information extracted from neutron stars
[3–9], and from the properties of matter near at or below the density of
nuclear matter. In these cases, T � µQ. This information concerns the
equation of state or sound velocity. It comes from parameterizing the equa-
tion of state of strongly interacting matter in the hydrostatic equations that
allow the determination of the masses and radii of observed stars.

(1067)
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Fig. 1. A popular hypothetical diagram showing possible phases of QCD [1].

All the remaining information in Fig. 1 is based at best on educated
conjecture and at worst on wild speculation. The content of this paper is,
therefore, largely based on speculation. It is nevertheless true that, in spite
of the fact that so little is really known, there are various diverse opinions
that are very firmly held. I think the quotation from Mark Twain is very apt:
“It is not what you don’t know that gets you in trouble. It is what you think
you know but you don’t.”

2. Phase structure at large Nc

To understand the phase diagram structure of QCD, it is useful to think
in the limit of a large numbers of colors, Nc. In this limit, quark loops are
suppressed by one power of Nc compared to gluon loops. The coupling is
adjusted so that in the large-Nc limit, g2’t Hooft = g2Nc is held fixed. In this
limit, there is no quark pair production, so that the potential at long range
between a static quark–antiquark pair is linear. Baryons are made of Nc

quarks and are therefore heavy, with masses of the order of MB ∼ NcΛQCD.
Mesons are weakly interacting, with interaction strength of 1/Nc [10, 11].

2.1. Finite temperature

At finite temperature, Debye screening of the quark–antiquark potential
is induced by gluon loops. These loops are of the order of one in powers of
Nc. The Debye screening length is

1

r2Debye

∼ g2’t HooftT
2 . (1)

The Debye screening length becomes of the order of the confinement scale,
when T ∼ ΛQCD. There is a deconfinement temperature at T ∼ ΛQCD.
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One can also understand the deconfinement transition from the proper-
ties of hadronic systems [12]. At low temperatures, there is a gas of weakly
interacting mesons. There are no baryons present because they are so mas-
sive and their density is exponentially suppressed in Nc: ρ ∼ e−E/T ∼
e−NcΛQCD/T . In contrast, the density of mesons is of the order of one in
powers of Nc because mesons are color singlets. On the other hand, at high
temperatures, there is a gas of gluons with a density of the order of N2

c

because gluons are in the adjoint representation of the color group. The
transition is the result of an exponentially growing density of states that
leads to a Hagedorn limiting temperature where the partition function di-
verges. For the finite Nc, this is cut off when the meson density becomes of
the order of N2

c , and although the meson–meson cross section is of the order
of 1/N2

c , the interaction energy becomes of the order of N2
c .

With zero mass quarks present, there is in addition a chiral symmetry
restoration temperature. For two or three flavors, chiral restoration seems
to be at the temperature of the deconfinement transition. For the finite Nc,
the deconfinement transition disappears as does the chiral transition for
realistic quark masses. The phase transitions are replaced by crossovers.
One identifies the transition temperature by extrapolating results to the
limit of very small quark masses where the chiral transition becomes a real
phase transition.

2.2. Finite density

At finite density and zero temperature, Debye screening is generated only
by quark loops. For a quark chemical potential µQ, the Debye screening
length is

1/r2Debye ∼ g2’t Hooft µ
2
Q/Nc . (2)

In the infinite Nc limit, the quarks never can Debye screen away a linear
potential. The deconfining temperature is independent of Nc. For finite but
large Nc, the chemical potential at which there is deconfinement is very large

µQ ∼
√
Nc ΛQCD � ΛQCD . (3)

This condition follows from setting the Debye screening mass to be the
confinement scale. This is shown in Fig. 2.

This result is absolutely amazing [2]. Confinement remains until quark
energy scales are huge compared to the confinement scale. This is in spite
of the fact that most interactions of the quarks are at energy scales gigantic
compared to the confinement scale and where one would naively believe one
can use weakly coupled perturbation theory.
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Fig. 2. (Color online) The deconfinement temperature in this plot is the long-dashed
red line for infinite Nc and the dashed blue line for finite but large Nc.

High density baryonic matter, with µQ ≥ ΛQCD, is further differentiated
from ordinary hadronic matter. First, we note that the baryon number
chemical potential is µB = Nc µQ, so that for µB > MN , where MN is the
nucleon mass, there must be baryons. On the other hand, we expect that
the density of baryons is

nbaryon ∼ e(µB−EB)/T ∼ eNc(µQ−EQ)/T . (4)

Therefore, hadronic matter will have no baryon number density for µQ <
MN/Nc ∼ ΛQCD.

In addition, when the energy density of hadronic matter is of the order
of one in the number of colors, but about the density at which baryons are
present, the energy density will go like Nc, because of the baryons.

In the large-Nc limit, there is, therefore, a world of confined mesons with
no baryons, or hadronic matter, a world of deconfined matter, or the quark–
gluon plasma, and world where matter is confined into mesons, baryons
and glueballs, even though the baryon density can be huge compared to
the QCD scale. This last phase of matter we call Quarkyonic [2], because
although it is confined, we expect that we can, in many cases, describe its
constituents and their interactions as quarks, since most interactions will be
at very high energy (for a review, see lecture III in Ref. [13]). The resulting
phase diagram is shown in Fig. 3.

The picture of Quarkyonic Matter is that deep inside the baryonic Fermi
sea, interactions are controlled by exchange interactions. These interactions
are not so sensitive to the infrared, and we imagine that the degrees of free-
dom that allow us to compute these interactions are quarks. At the Fermi
surface, interactions become sensitive to the infrared and one must account



A Pedagogical Discussion of Quarkyonic Matter and Its Implication . . . 1071

T

Confined  
mesons and 

very few 
nucleons

Hadronic 
Matter

Confined quarks and 
baryons, mesons and 

glueballs

Quarkyonic Matter

Unconfined quarks and gluons
Quark Gluon Plasma

µquark
µquark ∼

p
NcΛQCDµquark ∼ ΛQCD

T ∼ ΛQCD

T

T ∼ ΛQCD

µquark

Fig. 3. A phase diagram of QCD appropriate for large Nc that includes Quarkyonic
Matter.

for confinement. The degrees of freedom at the Fermi surface are confined,
being therefore glueballs, mesons and nucleons. This is schematically illus-
trated in Fig. 4.

µquark >> ΛQCD

∼ ΛQCD

Fig. 4. (Color online) A Fermi sphere of quarks (inner/blue) surrounded by a shell
of nucleonic matter (outer/red).

We need to understand how chiral symmetry breaking might occur. In
the vacuum, chiral symmetry breaking is generated due to a sigma meson
condensate forms. The sigma meson may be thought of as a bound state
of a quark with positive binding energy with a hole, or antiparticle, in the
negative energy Dirac sea. At finite baryon density, this can occur with the
essential modification that the quark has an energy slightly above the Fermi
energy, or chemical potential of the baryon Fermi sea, and the antiquark is
a hole just below this Fermi energy. Due to this Fermi energy, the particle–
hole pair has a net momentum of 2µQ and the energy of the moving bound
state must be compared to that of the 2µQ. This means that the sigma
meson condensation will have net momentum, and the condensate of sigma
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mesons will break both rotational and translational invariance. This is simi-
lar to the problem of charge density wave in condensed matter physics. The
condensates may end up making structure of crystals and quasi-crystals [14–
16].

In Fig. 5, a summary of the structure we might expect for a phase dia-
gram of QCD is shown.
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Fig. 5. A hypothetical phase diagram of QCD in the large-Nc limit.

3. Why quarkyonic matter can give hard equations of state

First, consider the properties of hadronic matter near and above the den-
sity of nuclear matter. In QCD for three colors, Fermi momentum of nuclear
matter is of the order of ΛQCD and Fermi momentum kF ∼ 200–300 MeV.
This means that the binding energy and kinetic energies of such a gas are
small, k2F/2MN ∼ ΛQCD/Nc. By some miracle, nuclear matter arranges it-
self so that the typical energy scales are quite small, ∼ 1/Nc, even though
the typical nuclear interactions are of the order of Nc. This can happen
if the nuclear matter is a somewhat dilute gas. Then, as matter becomes
squeezed, interactions become important, and the typical interaction energy
becomes of the order of Nc. This suggests that hadronic matter can change
its properties very rapidly, when it is squeezed to the density where nucleon
hard cores overlap. This density is parametrically close to that of nuclear
matter.

This seems to be what really occurs, based on an analysis of the masses
and radii of neutron stars [3–9]. In Fig. 6, an analysis of neutron star
masses and radii produces a sound velocity curve that rises very rapidly as
a function of density. The sound velocity squared exceeds 1/3 at a density
of 3–4 times that of nuclear matter. This is a rapid increase by a factor of
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Fig. 6. The sound velocity as a function of density from the analysis of Fujimoto
et al. [9].

1–2 orders of magnitude. On the other hand, the sound velocity must have
a maximum, since at asymptotically high baryon number density, the sound
velocity squared must approach 1/3 from below.

There are some generic conclusions one can draw from this phenomeno-
logical observation. The sound velocity of a zero temperature Fermi gas is

v2s =
nB

µB dnB/dµB
. (5)

In this equation, nB denotes the baryon number density, and the fully rela-
tivistic Fermi energy or chemical potential for baryon number that includes
the nucleon mass is denoted as µB. Equation (5) implies parametrically that

δµB
µB

∼ v2s
δnB
nB

. (6)

This relation implies that when the sound velocity becomes of the order of
one, and when the baryon number density changes by the order of one, then
the baryon chemical potential also changes by the order of one. The baryon
chemical potential very near to nuclear matter density is very close to the
nucleon mass. Therefore, the baryon number chemical potential minus the
nucleon mass is of the order of the nucleon mass itself. The energy scales
have become relativistic, even though the baryon number density has barely
changed! If nuclear matter is described by nucleons as quasi-particles, then
their phase space will increase like k3F, and the rapid increase in phase space
available without a corresponding increase in the baryon density suggests
that the nucleons are only partially filling their available phase space. This
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observation suggests that the nucleons are occupying a shell of phase space
at high momenta. This is precisely what happens in Quarkyonic Matter.
In Quarkyonic Matter, the nucleons do not fill the Fermi sphere but a shell
near the Fermi surface

To understand a little better what might occur, we need to remember
that µQ ∼ µB/Nc. Therefore, if the typical baryon momentum is of order
the nucleon mass, then the quark chemical potential would be very low, and
there would be very few quarks present. Only when the baryon chemical
potential becomes large, can quarks be important. However, if the nucleons
are in a Fermi sphere, the baryon density would be enormous. A viable
possibility is that the nucleons sit in a shell at the Fermi surface of decreasing
thickness as the density increases. The decreasing thickness of the shell
compensates for the increasing Fermi momentum. The quarks sit under
this shell, but they contribute very little to the overall density until the
nucleon Fermi energy is of the order of NcMN that is, the nucleons become
relativistic.

It is useful to see this more explicitly. Recall that an ideal gas of nucle-
ons has

nnB =
2

3π2
(knF)3 (7)

and quarks have

nqB =
2

3π2
(
kqF
)3
. (8)

In this equation, the Fermi momenta of nucleons and quarks are represented
as kqF and knF. The baryon number density of quarks and that of nucleon is
identical when expressed in terms of their Fermi momenta. The problem is
that of course the quark Fermi momentum is 1/Nc smaller than that of the
nucleons. So if we take relativistic gas of nucleons and compress it into a
shell so that the density does not increase, until the typical momentum of
the nucleons is very large, the quarks make little contribution to the density.
One can construct a parallel argument to this for the energy density.

The argument is different for the pressure. The pressure for the nucleon
for a non-relativistic gas is of the order of

P ∼
(
kBF
M

)2

εN , (9)

where εN is the energy density. This gives a sound velocity that is of the
order of 1/N2

c when the nucleons are relativistic but becomes of the order of
one when the nucleons form a relativistic shell. The change in sound velocity
occurs with an the order of one change in baryon number density. Note also
that the quarks only begin to make a contribution to the pressure once the
nucleon shell has formed.
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The baryon chemical potential minus the nucleon mass also changes from
the order of ΛQCD/Nc to the order ofNcΛQCD in this narrow range of density.

It is important to note that the transition to Quarkyonic Matter is not a
phase transition. In a phase transition, the pressure and chemical potential
remain fixed, and in a first order phase transition, the number density and
energy density vary. For the Quarkyonic Matter transition, completely the
opposite occurs: The chemical potential and pressure vary rapidly, while the
energy density and baryon number density do not. This is precisely what is
needed to generate hard equations of state.

It is possible to generate a simple parametrization of the shell width
that has sound velocities that correspond to what is phenomenologically
observed. One has to match on to acceptable low-density equations of state
at baryon densities of the order of twice that of nuclear matter. Generically,
there is a maximum in the sound velocity. It is not surprising that this is
the baryon density where nuclear matter is transforming into Quarkyonic
Matter.

4. Dynamics of the formation of the nucleon shell

Perhaps the simplest way of getting a description of Quarkyonic Matter
is to assume a quasi-particle description [17, 18]. We treat the quarks as
existing in a Fermi sphere up to a quark Fermi energy. We treat the quarks
as massive with a constituent mass

Mq = MN/Nc . (10)

The top of the quark Fermi sea is an energy equal to µq. We will consider
here isosinglet quark matter where there are equal numbers of up and down
quarks. For the nucleons, we have equal numbers of protons and neutrons
and, therefore, equal numbers of up and down quarks. Using the constituent
quark model, the nucleon energy of quarks inside a nucleon is 1/3 of the
nucleon energy. This means the energy at the bottom of the nucleon Fermi
sea is Ebottom

nucleon = Nc µq. Therefore, we take the nucleons to be in a shell
between this lower energy and that of the top of the Fermi sea.

A simple way to describe the interactions of nucleons is to treat them as
free particles in a volume that is reduced by a volume equal to that of their
hard-core interactions [19–21]. If we let n0 = 1/(4/3πr30) be the density
scale associate with the hard core, then the baryon density is

n

1 − n/n0
= 2

kF∫
d3k

(2π)3
. (11)

We see that the density of baryon in such a theory is limited by the hard-core
density n0. As this density is approached, the nucleon contributions must



1076 L. McLerran

saturate. This occurs because the typical nucleon momentum grows. This
means that the Fermi momentum at the top of the quark Fermi sea grows.
The Fermi sea of quarks can accommodate more baryon density, while the
momentum space thickness of the shell decreases, so that the total baryon
density in the shell stops growing. This can be seen in an explicit model
where the thickness of the sheet is determined by energy minimization.

We can understand what happens qualitatively: As the hard-core density
is approached, the sound velocity rapidly rises. This is due to the rapid
increase in the typical nucleon momenta, as argued above. At some point,
either the sound velocity must saturate or must have a maximum, as the
quarks begin to dominate the dynamics. Asymptotically, the sound velocity
squared must approach 1/3, because this it the limit for a free quark gas.

This is shown to happen explicitly in Ref. [18]. Such a maximum or
saturation is that occurs in determinations of equations of state for neutron
start properties.
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