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We discuss the causes which can limit the accuracy of the predictions
based on the conventional PDFs when including in global parton analyses
the data at moderate scales µ. The first is the existence of power correc-
tions O(Q2

0/µ
2) due to the double counting of contributions arising from

the region below the input scale Q0. The second concerns the possible in-
clusion of the BFKL re-summation of the (αs ln(1/x))n terms. The third
is the treatment of the heavy-quark thresholds. We show how to include
the heavy-quark masses (mh with h = c, b, t) in DGLAP evolution which
provides the correct smooth behaviour through the threshold regions and
how to subtract the low parton virtuality |k2| < Q2

0 contributions from the
DIS and Drell–Yan NLO coefficient functions in order to avoid the double
counting.

DOI:10.5506/APhysPolB.51.1079

1. Introduction

Recall that the framework for parton analysis is based on the factoriza-
tion theorem and DGLAP evolution, both formulated and justified for very
large scales where the QCD coupling is small and perturbation theory is
applicable. Due to the strong kT ordering of the emitted partons during the
evolution, all the contributions from the low kT, confinement region, can be
isolated and factorized into the input parton distribution functions (PDFs)
at some boundary scale Q0 which is not very high, but sufficiently large to
justify the applicability of DGLAP evolution, and is smaller than the factor-
ization scale µF which separates the ‘hard’ matrix elements describing the
subprocess from the partons described by the evolution.
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As far as we include the NLO, NNLO, . . . corrections in the hard matrix
element and in the DGLAP splitting functions, there appear loop integrals
which contain some contribution from the region with kT < Q0. Provided
Q0 � µF, this is not a danger since there are no infrared divergences in
the corresponding loop integrals. The contribution from kT < Q0 may be
treated as a power correction of O(Q2

0/µ
2
F) (or even less depending on the

particular process).
The situation becomes more complicated when we include in a global

parton analysis data with only a moderate scale. In this case, the correc-
tion O(Q2

0/µ
2
F) becomes crucial. In the present note, we will discuss three

topics relevant when a global analysis includes data of processes at scales
comparable to Q0.

The first problem is that we have to avoid double counting of the kT < Q0

contribution, which on the one hand was included in the input PDF, while
on the other hand is sampled in the loop integrals in the coefficient func-
tions determining the hard matrix elements. Next, we consider the BFKL
re-summation and emphasize the fact that at a not too large scale, the lead-
ing order BFKL amplitude is strongly affected by the boundary condition
that we have to put at some kT ' Q0 [1]. Here, we also have to exclude the
possible contributions from the region with kT < Q0. Finally, we discuss
the treatment of the heavy-quark thresholds. Usually, the contribution of a
heavy quark, h, is completely neglected for the scales Q2 < m2

h, while for a
Q above the quark mass, mh, the heavy-quark evolution is described by the
same (massless) expressions as that for the light quarks. This is not a danger
when we are interested in parton distributions at a large scale µF � mh. It
is possible to account for the heavy-quark mass using appropriate ‘match-
ing conditions’ such as ACOT [2] or RT [3]. However, working at a scale
comparable with the quark mass, it is better to use the splitting functions
(at least at LO) which account for the value of mh from the beginning. To
include the mass mh in the corresponding Feynman diagrams explicitly can
be especially important for the running of the QCD coupling αs(µ) (see e.g.
[4] and Fig. 3 below).

We discuss these three topics in turn in the following three sections.

2. Double counting and the Q0 subtraction

Recall that the idea of factorization is to separate the small and large
virtuality contributions. Formally, the coefficient functions correspond to
large virtualities, while all the low virtuality contributions are collected in
some phenomenological input. Simultaneously, we have to exclude the low
virtuality contributions from the hard matrix element. Otherwise, there will
be the double counting.
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The Q0 subtraction should therefore be done for every observable fitted
in a global analysis. Without doing the Q0 subtraction, the precision of
the PDFs cannot be better than O(αsQ

2
0/µ

2
F), since the contribution from

kT < Q0 is not under control.

2.1. Physical scheme

Strictly speaking, there are two different types of kT < Q0 contributions.
First, there are the contributions from extremely large distances (kT → 0)
arising from the ε-regularization prescription. The point is that in order to
regularize the ultraviolet (UV) divergence, the loop integrals were calculated
in 4 + 2ε dimensional space (with ε → 0) where the logarithmic divergence
results in 1/ε terms (which are finally cancelled in the minimal subtraction
scheme). However, simultaneously, the 1/ε terms come from unphysically
large distances, that is from the infrared (IR) (kT → 0) region. Together
with the parts proportional to ε in the splitting and the coefficient functions,
these IR 1/ε terms give some finite constant ε/ε contributions.

On the one hand, such an ε/ε contribution is unphysical. It comes from
an infinitely large distances which are forbidden by confinement. However,
it turns out easier not to fight with it, but to retain it via a re-definition of
the factorization scheme. Indeed, since the ε/ε contribution, ∆Ca(z), in the
NLO coefficient function calculated within the MS approach originates from
very small kT → 0, it can be written as the convolution

∆Ca ≡ CNLO
a

(
MS

)
− CNLO

a (phys) =
αs

2π

∑
b

CLO
b ⊗ δPab(z) , (1)

where δPab(z) is the proportional to ε part of the LO MS splitting

PMS
ab (z) = PLO

ab (z) + εδPab(z) , (2)

and a, b = g, q denote the type of partons, while ⊗ denotes the convolu-
tion in z distribution. The difference in coefficient functions, ∆Ca, can be
compensated by a redefinition of the parton distributions

aMS(x) = aphys(x)− αs

2π

∫
dz

z

∑
b

δPab(z)b
phys(x/z)

≡ aphys − αs

2π

∑
b

δPab ⊗ bphys . (3)

Correspondingly, if we re-define the splitting function, then we reproduce at
NLO level the original DGLAP evolution (see [5] for details).
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That is working at NLO, in the MS scheme we do not deal with the
original (physical) quarks and gluons, which are pictured in Feynman dia-
grams but, instead, with a slightly ‘rotated’ partons where a quark/gluon
with momentum fraction x has an O(αs) admixture of other partons which
can be of another type and may carry another momentum fraction. This is
not a danger but one has to clearly understand what was calculated. In this
respect, see the comment at the end of the introduction to Section 4.

2.2. Subtraction of the contribution from finite kT < Q0

Unfortunately, we cannot replace the subtraction of the contribution
from finite kT < Q0 just by the choice of a new factorization scheme1. The
problem is that this contribution depends on the particular ‘hard’ matrix
element (say, on the transverse jet energy, ET, in the case of the coefficient
function for dijet production) and on the factorization scale. Therefore, it is
impossible to re-define the splitting functions in such a way as to ensure the
same DGLAP evolution of universal PDFs which can be used at different
factorization scales and be convoluted with different ‘hard’ matrix elements2.
The corrections are large for µF ∼ Q0, while in the limit of µF � Q0, the
corrections become negligibly small and we come back to the ‘physical’ (or
the MS ) scheme. The only way to avoid double counting is to exclude the
kT < Q0 contribution (analogous to that which occurs in DGLAP evolution)
from the perturbative NLO (and higher αs order) calculations moving it to
some phenomenological input at Q0.

We emphasize that these kT < Q0 contributions are not admixtures of
higher twist terms. Recall that twist is defined as the dimension of the
operator minus its spin. When we calculate the kT < Q0 contribution, we
deal with the same operator (of the same spin and dimension). That is we
are concerned with the same twist. So it is just a power correction to the
contribution of the old leading twist operator (of conventional DGLAP).

Numerically, these power corrections are most important at relatively
low scales. In such a case, we practically have no place for the logarithmic
DGLAP evolution. Thus first of all we have to consider the corrections
(caused by the subtraction of kT < Q0 contributions) to the coefficient

1 Recall that factorization theorems are proven within the logarithmic approximation;
that is assuming a strong ki−1 � ki ordering (where ki ≡ kTi). In this limit, we
can consider the ε/ε contributions coming from very large distances (which satisfy
k � ki) as that corresponding to another factorization scheme. However, the Q2

0/k
2
i

power correction which (a) is not negligibly small and (b) cannot be written in terms
of the (one or a few powers of) ln(Q0/ki) do depend on a particular process and so
cannot be accounted for by choosing an appropriate scheme.

2 In other words, if we replace the Q0 subtraction by another factorization scheme,
then we are unable to justify the factorization.



Comments on Global Parton Analyses 1083

functions, process by process. As examples we present in Appendix the
results for the NLO coefficient functions in DIS and for the Drell–Yan lepton
pair production.

Note also that the Q2
0/µ

2 power correction in the splitting function de-
stroys the logarithmic structure of the evolution in ln(µ2). The major part
of this correction corresponding to the lower limit of the integral is absorbed
into the phenomenological input PDF while the upper limit of the integral
contains an additional QCD coupling αs without the ln(µ2) and should be
considered as the power correction to the next (now NNLO, since we are
talking about the NLO contribution), i.e. a higher order αs term.

3. BFKL re-summation

To improve the accuracy of the PDF determinations in the low-x region,
the calculations of the splitting and the coefficient functions are often sup-
plemented by the re-summation of the (αs ln(1/x))n terms generated by the
BFKL equation (see, for example, [6, 7] and [8] for a short review). For a
large scales, this is a good procedure. However, there may be a danger using
the BFKL re-summation at scales comparable with Q0.

First, in this region the solution of BFKL equation is strongly affected
by the boundary condition at kT = Q0 [1]. While at very large scales, the
x behaviour is controlled by the position of the vacuum (BFKL) singularity
in complex j-plane, at kT close to the confinement region the x behaviour
is driven by an unknown boundary condition. This fact is usually not ac-
counted for (when implementing in BFKL re-summation) by keeping only
the BFKL results justified for large scales µ � Q0. On the other hand, we
have no such a problem in a pure DGLAP approach where this input x be-
haviour at scale equal to Q0 is considered as the phenomenological function
fitted from the experiment.

Next, we have to recall that the BFKL equation includes not only the
leading twist contributions but also higher twists as well. These higher
twists are hidden in the gluon reggeization terms which cannot be neglected
since without these terms we are unable to eliminate the IR singularity
of the BFKL kernel. Thus after the BFKL re-summation is included, we
cannot claim that the resulting predictions correspond to a leading twist
contribution.

4. Heavy-quark thresholds

The correct treatment of heavy quarks in an analysis of parton distri-
butions is essential for precision measurements at hadron colliders. The up,
down and strange quarks, withm2 � Q2

0, can be treated as massless partons.
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However, for charm, bottom or top quarks, we must allow for the effects of
their mass,mh with h = c, b or t. The problem is that we require a consistent
description of the evolution of parton distribution functions (PDFs) over re-
gions which include both the Q2 ∼ m2

h domain and the region Q2 � m2
h

where the heavy quark, h, can be treated as an additional massless quark.
During the logarithmic DGLAP evolution in lnQ2, the quark mass affects

the splitting function only within a finite interval of lnQ2 (that is at Q2 ∼
m2
h). Thus, the mass correction to the leading order splitting function enters

at the same level as the NLO correction. In other words, it is sufficient to
include the mass corrections to the LO splitting function to provide the NLO
accuracy (and so on — the mass corrections to the NLO functions provide
NNLO accuracy). We give more detail how this arises below.

We have to emphasize that these mass corrections should be implemented
in the physical factorization scheme where the heavy-quark PDF has no
admixture of gluons or light quarks.

4.1. NLO heavy-quark mass effects already included at LO

We have just mentioned that as the heavy-quark mass effects come only
from a finite interval of the lnQ2 evolution to reach the NLO accuracy, it
is sufficient to account for mh only in the LO diagrams. Moreover, if we
keep the mass in the NLO (two-loop) graphs, then it leads to an NNLO
correction. It is informative to describe in more detail how this happens.

As usual, we use the axial gauge, where only the ladder (real emission)
and the self-energy (virtual-loop contribution) diagrams give Leading Loga-
rithms. Actually, for real emission, we need to consider only the ‘gluon-to-
heavy quark’ splitting function. Indeed, the heavy-quark mass effects can
be identified in the following subset of integrations:

· · ·
∫

dk2
i−1

k2
i−1

∫
dk2

i k
2
i(

k2
i +m2

h

)2 ∫ dk2
i+1

k2
i+1

. . . (4)

corresponding to the part of the parton chain containing the g → hh̄ transi-
tion, as shown in Fig. 1. The k2s are the virtualities of the t-channel partons,
and the heavy-quark mass effects enter in the k2

i integration that results
from the g → hh̄ transition. The kinematics responsible for the LO result
are when the virtualities are strongly ordered (. . . k2

i−1 � k2
i � k2

i+1. . . ).
If two of the partons have comparable virtuality, k2

j ∼ k2
j+1, then we lose

a lnQ2 and obtain an NLO contribution of the form of αs(αs lnQ2)n−1 for
n emitted partons.
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Fig. 1. Part of the parton evolution chain which contains the g → hh̄ transition.

At first sight, it appears that m2
h should also have been retained in the

integration over the heavy-quark line with virtuality ki+1. However, the
heavy quark was produced at Q2 ∼ m2

h via the g → h splitting. Due to the
strong ordering k2

i+1 � k2
i in the evolution chain, we have k2

i+1 � m2
h, and

so we may neglect m2
h in the k2

i+1 integration; otherwise, this would be a
NNLO effect.

Note that in our NLO calculations, described below, we use a fixed num-
ber mh(mh) for the heavy-quark mass3. All the effects of the running quark
mass should be regarded as part of the NNLO corrections.

4.2. Smooth evolution of αs across a heavy-quark threshold

Here, we demonstrate the role of the effect of the heavy-quark mass in the
running QCD coupling [4]. At NLO, the Q2 evolution of αs(Q

2) is described
by the equation

d

d lnQ2

(αs

4π

)
= −β0

(αs

4π

)2
− β1

(αs

4π

)3
, (5)

where the β-function coefficients are

β0(nf ) = 11− 2

3
nf , β1(nf ) = 102− 38

3
nf . (6)

The fermion loop insertion is responsible for the −(2/3)nf term in the LO
β-function. Including the massmh we find that, instead of changing nf from
3 to 4 (at Q2 = m2

c), and from 4 to 5 (at Q2 = m2
b), we must include in nf

a term

κ(r) =

[
1− 6r + 12

r2

√
1 + 4r

ln

√
1 + 4r + 1√
1 + 4r − 1

]
(7)

for each heavy quark, where r ≡ m2
h/Q

2. In Fig. 2, we plot κ as a function
of Q2/m2

h.
3 Strictly speaking, we may choose any reasonable fixed value formh, saymc (1.4 GeV),
so that the NNLO correction is not large.
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Fig. 2. The contribution of a heavy quark to the running of αs showing a smooth
behaviour across the heavy-quark threshold. If κ = 1, the heavy quark acts as if it
were massless.

Next, in Fig. 3, we compare the evolution of αs in which the effects of
the heavy-quark masses are included, with an evolution assuming all quarks
are massless. In the latter case, a prescription has been used to ensure that
αs is continuous across the heavy-quark thresholds. Different prescriptions
are possible, but it is not possible to make the derivative also continuous,
as can be seen from Fig. 3 (b). Indeed, with massless evolution, different
reasonable prescriptions can lead to a difference of more than 0.5% in going
fromQ2 ∼ 20 GeV2 up toQ2 = M2

Z . However, when the heavy-quark masses
are properly accounted for, we see that the difference over this interval is
about 4%, and in fact up to 14% starting from Q2 = 1 GeV2. The fact that
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Fig. 3. (a) The running of αs at NLO: the continuous curve is obtained with the
effects of the heavy-quark masses mc, mb included, and the dashed curve is that
used, for example, by the MSTW global parton analysis [9]. Both evolutions are
normalised to αs(M

2
Z) = 0.12. (b) The ratio of the above two evolutions of αs. The

figure is taken from [4].
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the αs curve, obtained with mass effects included, lies consistently above
that for massless evolution in Fig. 3 (a) follows from the behaviour of κ in
Fig. 2 and that we have required both curves to have αs(M

2
Z) = 0.12.

4.3. Heavy-quark mass effects in the LO splitting functions

We may summarize the LO evolution equations in the symbolic form

ġ = Pgg ⊗ g +
∑
q

Pgq ⊗ q +
∑
h

Pgh ⊗ h ,

q̇ = Pqg ⊗ g + Pqq ⊗ q ,
ḣ = Phg ⊗ g + Phh ⊗ h , (8)

where q = u, d, s denotes the light-quark density functions and h = c, b, t
are the heavy-quark densities. We have abbreviated PLO by P , and ȧ =
(2π/αs)∂a/∂ lnQ2. The formulae for the individual splitting functions Pij
including the mh effects can be found in [4]. In that paper, the splitting
functions given in Eqs. (12) and (13) are in error. They should be replaced by

P real
hh

(
z,Q2

)
= CF

(
1 + z2

1− z
Q2

(1−z)m2
h +Q2

+ z(z−3)
Q2m2

h(
Q2 + (1−z)m2

h

)2
)
,

Pgh
(
z,Q2

)
= CF

(
1 + (1−z)2

z

Q2

zm2
h +Q2

+
(
z2 + z − 2

) Q2m2
h(

Q2+zm2
h

)2
)
,

respectively4. The z ↔ (1 − z) symmetry between these two equations
enables overall momentum conservation to be satisfied during the evolution.

Note that there are evolution equations, (8), for all type of partons
(including heavy quarks) just starting from Q0. The input heavy-quark
distribution h(x,Q2

0) should be treated as an ‘intrinsic’ PDF introduced
in [10]. Of course, at low Q2 � m2

h, the corresponding splitting functions
are strongly suppressed by the small value of the ratio Q2/m2

h. So, actually
the evolution of the heavy quark will start somewhere in the regionQ2 ' m2

h.

4.4. Quark mass effects in NLO diagrams

It turns out that to include heavy-quark mass effects in NLO evolution,
we do not need to modify the usual NLO splitting functions. In the absence
of an intrinsic heavy quark, we only have to take mh into account in Phg

and then only in the LO part P (0)
hg . (Of course, as a consequence, we must

adjust the virtual corrections to Pgg.) The argument is as follows.
4 We thank Valerio Bertone for drawing our attention to this error.
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The k2
i integral of (4) written with NLO accuracy, has the form of∫

dk2
iA
(
k2
i , k

2
i+1,m

2
h, z
)(

k2
i +m2

h

)2 =

∫
A1(z)

d
(
k2
i +m2

h

)(
k2
i +m2

h

) +

∫
A2(z)

m2
hdk2

i(
k2
i +m2

h

)2
+

∫
A3(z)

dk2
i

k2
i+1

. (9)

The first term gives the leading logarithm contribution. To be specific, we
have

Q2∫
k2i−1

dk2(
k2 +m2

h

) = ln
Q2 +m2

h

m2
h

(10)

for k2
i−1 � m2

h. Both the second term in (9), which is concentrated in the
region k2

i ∼ m2
h, and the third term, which is concentrated near the upper

limit, at k2
i ∼ k2

i+1, give non-logarithmic contributions.
In the axial gauge, the two first terms on the right-hand side of (9) come

only from the pure ladder (and the corresponding self-energy) diagrams,
from the region of k2

i � k2
i+1. That is, these two terms are exactly the

same as those generated by LO⊗LO evolution, in which we have already
accounted for the mh effects. To avoid double counting, we have to subtract
these contributions from (9). Thus, the true NLO contribution is given
by the third term only, in which we can omit the mh dependence since:
(a) k2

i+1 � m2
h, and, (b) these order of O(m2

h/k
2
i+1) terms kill the large

logarithm in the further
∫

dk2
i+1/k

2
i+1 integration. That is, at NLO accuracy,

we can use the old, well-known, NLO splitting functions P (1)
ik (z). If we were

to account for the mass effect in P (1)
ik (z), then we would be calculating an

NNLO correction5.
In summary, to reach NLO accuracy, one may neglect the heavy-quark

mass effects in the NLO splitting functions (where the quark mass results in
a NNLO correction). Moreover, in the absence of an intrinsic heavy quark
only the LO P

(0)
hg needs to be modified.

5. Conclusion

We consider the role of low kT < Q0 contributions which can limit the
accuracy of the parton distributions at moderate scales. We recall that:

5 Before proceeding to NNLO, a phenomenological way to provide very smooth be-
haviour of the NLO contribution would be to multiply the ‘heavy-quark’ NLO terms
(that is, those NLO terms which contains the heavy quark) simply by the factor
Q2/(Q2 +m2

h).
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— In conventional DGLAP evolution, all the low virtuality contributions
are collected in the input PDFs at a scale equal to Q0. Therefore,
to avoid the double counting, we have to exclude the |k2| < Q2

0 loop
integration from the NLO (and the higher αs order) coefficient and
splitting functions. Without doing this, the |k2| < Q2

0 contributions
result in an order of αsQ

2
0/µ

2 power corrections which are not under
control. These corrections limit the accuracy of the pQCD predictions
at moderate scales µ.
In Appendix, we present the formulae which allow the subtraction of
the |k2| < Q2

0 terms from the NLO DIS and the Drell–Yan coefficient
functions.

— An analogous subtraction is needed for the (αs ln(1/x))n terms in the
case of the BFKL re-summation. Moreover, note that at moderate
scales, the behaviour of BFKL amplitude is strongly affected by the
phenomenological boundary condition at Q0 (which is not well-known
at the moment).

— Finally, we consider the role of the heavy-quark mass effects and
present the formulae which provide a smooth transition of the LO
splitting functions over the heavy-quark threshold. We show that us-
ing these formulae, one can reach NLO accuracy while replacing an
explicit mass effect by an appropriate matching of the massless ex-
pressions we already observe about a 4% correction in αs value at
Q2 = 20 GeV2.

We thank Valerio Bertone, Robert Thorne and Stefano Forte for valuable
discussions. M.G.R. thanks the IPPP at Durham University for hospitality.

Appendix
Power corrections to coefficient functions

Here, we describe in detail the power corrections which arise from the
double counting of the kT < Q0 contribution using as examples the NLO
coefficient functions for DIS and for the Drell–Yan production.

A. Deep inelastic scattering

A.1 Coefficient functions in the ‘physical’ renormalization scheme

Recall that to avoid double counting, we need to subtract the terms gen-
erated by the convolution of the LO splitting and the LO coefficient func-
tions, PLO ⊗ CLO. As a result, the NLO coefficient functions do not have
an infrared divergency. Thus, we may perform an explicit calculation of the
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corresponding Feynman diagrams; we have no problem with infrared regu-
larization (and we automatically obtain a result in the ‘physical scheme’).
However, the absence of infrared divergences does not exclude non-divergent
contributions from a quark or gluon of low virtuality |k2|; that is, from the
region of |k2| < Q2

0. Moreover, in many cases (and, in particular, in the case
of the NLO gluon contribution to F2), we deal with exactly the same dia-
grams as those which occur in DGLAP evolution. Thus to be consistent, we
have to exclude the soft, |k2| < Q2

0, contributions to the coefficient functions
as well. This will result in power corrections of the order of Q2

0/Q
2 for DIS

where the value of µ2
F = Q2 is conventionally used.

The new DIS NLO coefficient functions, which account for the Q2 > Q2
0

cutoff are for the longitudinal structure function FL, given by

CLg(z) = 4TRz(1− z)
(

1− zQ
2
0

Q2

)
, (11)

CLq(z) = CF2z

(
1−

(
z
Q2

0

Q2

)2
)
. (12)

The expressions for CLq and CLg (where from the beginning there are no
infrared divergences) are, in the limit of Q0 → 0, scheme-independent.

The situation is more complicated for the structure function F2. Here,
taking into account the cutoff Q0, we find the NLO coefficient functions are

C2g(z) = TR

{[
(1− z)2 + z2

]
ln

1

z
+ [6z(1− z)− 1]

(
1− zQ

2
0

Q2

)}
, (13)

and accounting for the Adler sum rule

C2q(z) = CF

{(
1 + z2

1− z

)
ln

1

z
+ 3z

(
1−

(
z
Q2

0

Q2

)2
)

+

−δ(1− z)
[

5

2
− π2

3
− 3

Q2
0

Q2
− 3

4

Q4
0

Q4

]
+

+

[
2− 2

(
1

1− z

)
+

](
1− zQ

2
0

Q2

)
+

(
1/2

1− z

)
+

}
. (14)

Here, the notation and normalization of [11] are used.
As emphasized above, since there are no infrared divergences, the calcu-

lation of the contribution caused by the production of a new real parton can
be performed in the normal D = 4 space. Thus the F2 coefficient functions
of (13) and (14) coincide, in the limit Q0 � Q, with those calculated in
the ‘physical scheme’ [12]; but, as described in the next section, differ from
those in the MS scheme.
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A.2 Scheme dependence of F2 coefficient functions

As mentioned in Section 5, after the PLO ⊗ CLO contribution was sub-
tracted, there are no infrared divergences in the NLO coefficient functions.
Thus, the F2 coefficient functions of (13) and (14) coincide, in the limit
Q0 � Q, with those calculated in the ‘physical scheme’ [5, 12], but differ
from those in the MS scheme. The differences are the ε/ε and ε2/ε2 terms
arising from infinitely large distances in the MS scheme. To be more pre-
cise, these terms are of the form of (ε/ε)Pqa(z) ln(1− z) (with a = q, g) and
(ε/ε)2z(1−z) or (ε/ε)(1−z) entering the C2g and C2q functions, respectively;
and a term (ε2/ε2)(π2/3)δ(1− z) in the C2q function.

To calculate the power corrections, we must trace the origin of each
term. We demonstrate this based on the formulae of the well-known paper
Ref. [13], which works in the MS scheme. As an example, we consider the
C2q NLO coefficient function. Its ‘real’ contribution is due to the emission
of an additional s-channel real gluon. It is given by Eq. (50) of [13], which
is written in the γ∗q → qg centre-of-mass frame. We reproduce the relevant
factor of this equation

F real
2 = . . .

3z + zε(1− z)−ε
1∫

0

dy(y(1− y))−ε
[(

1− z
1− y

+
1− y
1− z

)
(1− ε)

+
2zy

(1− z)(1− y)

]}
, (15)

where the variable of angular integration had been changed to y = 1
2(1 +

cosθ). The integral
∫ 1

0 dy is actually an integration over the t-channel quark
virtuality

k2 = t = −Q
2

z
(1− y) (16)

from 0 to −ŝ = −Q2/z. Note that y = 0 corresponds to t = −ŝ = −Q2/z.
Now, however, from this integral, we have to keep only the part from Q2

0
up to ŝ. In other words, the upper limit y = 1 should be replaced by
y0 = 1− zQ2

0/Q
2.

After the subtraction of the PLO
qa ⊗ CLO contribution (to avoid double

counting), the logarithmic, 1/(1 − y), terms are cancelled exactly for all
|k2| < µ2

F = Q2 and Q2
0 < Q2. Therefore, there are no power corrections

to the logarithmic part. The non-logarithmic terms result either from an
integral of the form of

1−y=1∫
1−y=1−y0

2(1− y)d(1− y) = 1−
(
z
Q2

0

Q2

)2

(17)
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as in the second term in [...] on the r.h.s. of (15), or from

1∫
1−y0

dy = 1− zQ
2
0

Q2
(18)

as in the third term of (15), or, finally, from

1∫
0

(1− y)dy = 1/2 (19)

as in the last term in (15).
The final contribution arises from the (1 − y)/(1 − z) term in (15). In

terms of the cross section, it comes from the quark–gluon cut of quark self-
energy diagram where the virtuality of each off-mass-shell quark is large
(k2 = (1/z−1)Q2) and the value of t = (pq−pg)2 reflects just the kinematics
of the q+ γ → q∗ → g+ q subprocess (with a heavy virtual s-channel quark
q∗), rather than the parton virtuality. Here, pq and pg denote the momenta
of the incoming quark and the final gluon, respectively.

Besides this, in the case of C2q function, the cutoff |k2| > Q2
0 should be

included into the calculation of virtual loop contribution. This results in the
Q2

0/Q
2 correction to the δ(1− z) term.

A.3 Coefficient functions in the MS scheme

As discussed above, we note that the coefficient functions in the MS
scheme are different to those in the physical scheme due to ε/ε and ε2/ε2

terms coming from the integration over infinitely large distances. Strictly
speaking, these terms are not physical. Confinement will kill such contribu-
tions. On the other hand, these terms are not power corrections. Neverthe-
less, when working with MS PDFs (and MS evolution), we must keep such
terms. These terms must be retained to compensate for the analogous ε/ε
contributions in the definition of NLO PDFs used in the MS scheme.

Therefore, we calculate the expressions for the F2 coefficient functions
C2g and C2q with power corrections in the MS scheme6. Indeed, if we keep
in (15) (and in the corresponding virtual contributions) all the ε/ε and ε2/ε2
terms, then we find the following NLO coefficient functions for F2 in the MS

6 The expressions for the longitudinal coefficient functions, CLg and CLq, are the same
as before: namely (11) and (12).
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scheme

CMS
2g (z) = TR

{[
(1− z)2 + z2

]
ln

1− z
z

+ 2z(1− z)

+[6z(1− z)− 1]

(
1− zQ

2
0

Q2

)}
, (20)

CMS
2q (z) = CF

{
2

(
ln(1− z)

1− z

)
+

− (1 + z) ln(1− z)− 1 + z2

1− z
ln z

+3z

(
1−

(
z
Q2

0

Q2

)2
)

+ δ(1− z)3

4

Q4
0

Q4

−δ(1−z)
[
π2

3
+

9

2
− 3

Q2
0

Q2

]
+

[
2− 2

(
1

1−z

)
+

](
1− zQ

2
0

Q2

)
+(1− z) +

(
1/2

1− z

)
+

}
. (21)

Finally, for NLO correction to F3 structure function, we get

CMS
3q (z) = CF

{
2

(
ln(1− z)

1− z

)
+

− (1 + z) ln(1− z)− 1 + z2

1− z
ln z

+(2z − 1)

(
1−

(
z
Q2

0

Q2

)2
)

+ δ(1− z)3

4

Q4
0

Q4

−δ(1− z)
[
π2

3
+

9

2
− 3

Q2
0

Q2

]
+

[
2− 2

(
1

1−z

)
+

](
1− zQ

2
0

Q2

)
+(1− z) +

(
1/2

1− z

)
+

}
. (22)

These expressions reduce to the usual MS coefficient functions (given,
for example, by Eq. (4.85) in [11]) in the absence of power corrections, that
is, in limit Q0 → 0.

B. Q0-cut correction for the NLO Drell–Yan cross section

Here, we have used the normalization of the [13] paper where the LO
cross section for Drell–Yan qq̄ → γ∗ subprocess is written as

dσqq̄
(
z,Q2

)
dQ2

= δ(1− z) . (23)

Recall also that the incoming parton–parton energy square s = Q2(1−z)/z.
Accounting only for the contributions with the virtualities |t|, |u| > Q2

0, we
get the following corrections:
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I. All the ‘real’ NLO contributions caused by the qq̄ → g + γ∗ or the
qg → g + γ∗ (q̄g → g + γ∗) subprocesses, that is all the dependent
on z terms except of the terms proportional to δ(1 − z), should be
multiplied by the Θ(Q2(1 − z)/z − Q2

0) function. This provides the
possibility to satisfy the condition |t|, |u| > Q2

0.

II. The Q0-cut correction to cross section is denoted as ∆dσ(Q0, z,Q
2);

that is the final result reads

dσ
(
Q0, z,Q

2
)

dQ2
=

dσ
(
Q0 = 0, z,Q2

)
dQ2

+
∆dσ

(
Q0, z,Q

2
)

dQ2
, (24)

where the first term is the usual dσ(z,Q2)/dQ2 cross section given
in [13] while the corrections are:

∆dσqq̄
(
z,Q2

)
dQ2

=
αs

2π

8

3

zQ2
0

Q2
, (25)

∆dσqg
(
z,Q2

)
dQ2

= −αs

2π

1

4

[(
zQ2

0

)2
Q4

+ 4
z2Q2

0

Q2

]
. (26)
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