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Properties of different models of fractional Brownian motions are dis-
cussed in detail. We shall collect here several possible ways of introduc-
ing and defining various possible fBms, discuss their properties, find how
they are similar, and how they differ. In particular, we shall try to find
what mechanisms or details in their definitions make these motions anoma-
lous and whether can the various models be distinguished experimentally.
To this aim, the main tool used here will be the autocorrelation function
C(t, s), and related to it characteristics: nonmarkovian behaviour and so-
called weak ergodicity breaking.
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1. Introduction

The prehistory of description of phenomena known today as the Brow-
nian motions (Bms) ranges back 2000 years ago, to Lucretius (ca. 99–55
BC) [1], who used his observations of random motions of multitudes of tiny
glittering particles in reflected lateral light [2] as the proof of atomistic struc-
ture of matter.

Indeed, these tiny motions 2000 years later became the ultimate proof
of the atomistic theory. However, the idea needed to wait for about 2000
years to be commonly accepted.

More detailed observations of processes similar to those described by Lu-
cretius were impossible without the construction of microscope, i.e., until
the 17th century. It is difficult to assess what indeed was then observed.
Sometimes it is claimed that the first observation of a process which could
be interpreted as the Brownian motion was reported in 1784 by Jan Ingen-
housz [3], but this interpretation seems doubtful [4]. The first observation of
a true Brownian motion, easy to verify, is due to Robert Brown (1827) [3, 5].
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Nevertheless, these early observations were treated as unimportant cu-
riosities, strange effects without any rational explanation (Brown himself
did not even publish his — now seminal — results as a separate paper [5]).
Increasing controversy between opponents and adherents of atomistic the-
ory of matter, advances in observational techniques (Zsigmondy’s ultra-
microscope), and some hard to interpret phenomena such as critical opales-
cence and the blue colour of the sky, both easily explained by the presence
of fluctuations of temperature and density [6, 7] — inspired renewed inter-
est in the theoretical description of mechanisms of Brownian motions [7, 8],
and resulted in the common acceptance of atomistic theory. It is worth
emphasizing that better microscopes enabled Perrin to record traces (sam-
ple paths) of individual Brownian particles with time-step 30 s [9]. Earlier,
Zsigmondy noted changing numbers of gold nanosized particles (dissolved
in molten glass, about 1000 atoms together), visible (by reflected lateral
light) in the field of his ultramicroscope (time resolution of a few minutes!).
One ought to mention that this is now considered as first observations of
nanoparticles!

The last important contribution to this early stage of the Brownian mo-
tion (Bm) story was the formalization of Einstein and Smoluchowski stochas-
tic approach to the form of the stochastic differential equation of motion con-
taining both mechanical and stochastic forces [10]. Nowadays, this Langevin
equation is still in use (together with its numerous generalizations), and is
treated as the standard way of description of motions of Brownian particles.

The importance of all these discoveries was confirmed by three Nobel
Prizes: Zsigmondy (chemistry 1925), Svedberg (chemistry 1926), and Perrin
(physics 1926).

Noteworthy is Smoluchowski’s approach to the theory of Brownian mo-
tions, viz. substitution of simple stochastic force in the place of extremely
complicated mechanical forces between a moving Brownian particle and sur-
rounding molecules of gas or liquid gave birth — even though without in-
tention — to recent theory of stochastic processes [11–13].

Later, Bm story seemed to be closed. The Brownian motions were (and
still are) just microscopic mechanisms of macroscopic diffusion, because the
process of diffusion is the superposition of Brownian motions of the molecules
of the substantion under consideration [14]. This mechanism was frequently
used in several diverse processes, in particular in sedimentation and coag-
ulation [15] (induced by Smoluchowski [16]), but Bms as such recessed to
history.

Renewed interest in Bms themselves is the result of recent progress in
experimental methods [17], including the measurements of single-molecule
transport processes in living cells or organelles with time-step of the or-
der of one millisecond [18]. This led to the “discovery” of the so-called
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anomalous transport: in small dense and nonuniform systems, the Brown-
ian motion (diffusion) is not exactly such as it has been predicted by the
Einstein–Smoluchowski theory [19]. Perhaps it is worth noting that anoma-
lous Brownian motion (diffusion, anomalous transport) is typical, especially
in micro- and nanosize systems, and can also be easily generated in macro-
scopic simple systems, by variations of temperature, density, or some other
parameters [20].

In more detail, one discerns two main, different types of anomalous trans-
port: so-called continuous time random walk (CTRW) [19, 21, 22] and frac-
tional Brownian motions (fBms) [19] both frequently used in literature as
models for measured data. Other models or systems, such as diffusion on
fractals [23], Brownian motions on curved surfaces (more generally non-
Euclidean spaces) [24], expanding/contracting spaces or systems [20], etc.,
were considered rarely, usually without applications to experimental data.

The two main models (CTRW and fBm) are easy to recognize visually
by the different shapes of registered 2- or 3-dimensional sample paths. Main
feature of CTRW is the characteristic groupings of the trajectory in a few
regions (“traps”) with random jumps between these regions, and with non-
exponential distribution of waiting times between jumps and non-Gaussian
distribution of lengths of jumps (cf. [22]). fBm trajectories are similar to the
first pictures of Brownian motions drawn by Perrin [9] being just a collection
of lines of random length and random direction connecting the subsequent
observed positions of a Brownian particle. Such characteristic pictures are
shown in Fig. 1.

Fig. 1. CTRW: Normal Bm W (t) inside traps, long jumps between traps from
Pareto distribution. fBm: Fractional Brownian motion, H = 0.15. This picture is
drawn to resemble (roughly) visually the experimental data [26, 27].
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Common of all fBms is the same behaviour of dispersion σ(t) of their
trajectories X(t): the second moment σ2(t) = 〈[X(t) − X(0)]2〉 ∼ t2H ,
where 〈. . .〉 denotes the ensemble average. The main aim of most of the
measurements or simulations is the determination of the value of the Hurst
exponentH (H = 1/2 means that the diffusion/Brownian motion is normal).

We shall collect here several possible ways of introducing and defining
various possible models of fBms, discuss their properties, find how they are
similar and how they differ, mainly from the point of view of experimental
data. The determination of the value of the Hurst exponent says only that
the observed process is sub- (H < 1/2) or super- (H > 1/2) diffusional.
More detailed information is needed.

To quote Saxton [25]: “Much work is being done on anomalous subd-
iffusion in the plasma membrane, cytoplasm, and nucleus of cells, and in
model systems. The main experimental questions: Is diffusion anomalous
or normal, and what are the parameters describing it? The main theoreti-
cal questions: What mechanism makes the diffusion anomalous? The main
question linking these: How can the various mechanisms be distinguished
experimentally?”

Recent answer to the first of these problems is as follows: mainly Hurst
exponent and identification of CTRW vs. fBm. In the case of CTRW, of
interest is also the distribution of lengths and time intervals between subse-
quent jumps (details of “albatross search pattern”). The case of fBms will
be discussed in detail in this paper.

Aim of this paper: an attempt to find some partial answers to the sec-
ond and third problems stated by Saxton, i.e., to examine several other
characteristics, to find what measurable (observable) properties can be used
to discern between different models and find which model best fits the mea-
sured process (transport) in a given environment, etc. We must keep in mind
that experimentally and computationally accessible are only sample paths
{X(t1), X(t2), . . . X(tN )}, tn = n∆t, ∆t being the time step of observation
of continuous processes X(t). Moreover, all experimental data are burdened
by inevitable errors.

In particular, we shall introduce some generalizations of known models
(Kolmogorov, Lévy, scaled) of Bms, analyse the differences introduced in the
extensions of these models, and try to find which observables can be used to
identify a given model. In the last aspect, most promising seems to be the
autocorrelation function C(t, s)

C(t, s) = 〈X(t)X(s)〉 , (1)

(〈· · ·〉 denotes ensemble average, i.e., average over appropriate probability
density or — equivalently — over M → ∞ realizations of process X(t)),
and related to it such more formal properties as nonmarkovianity (NM) and
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the so-called weak ergodicity breaking (WEB). However, let us repeat: the
identification, whose model of fBm fits best the observed data is burdened
by inevitable experimental errors. As we have seen above, discrimination
between CTRW and fBm models is simple. We shall demonstrate below
that this is not the case of discrimination between different fBm models. At
best, we can ascribe a given set of data to a given set (group) of models.
In this respect, all fBms can be divided into subgroups differing both in
their characteristics and in the systems (physical or not) in which they were
observed.

First such division is between sub- (H < 1/2) and superdiffusional
(H > 1/2) processes. Subdiffusional is, among others, passive transport
of molecules within living cells, superdiffusional — active motions in the
same environment [28].

Other natural division is into processes exhibiting a kind of memory
of their past (a.k.a. nonmarkovian processes) and memoryless (markovian)
ones. These differ strongly in several observable properties, but appear in all
known systems. In economical processes, where memory of past behaviour
of participants (e.g., in stock-exchange) plays substantial role, one would
expect that only nonmarkovian description is of any meaning, but in many
cases markovian models are in common use.

2. Definitions of fBms

As we have said, our main interest is how to find which model of possi-
ble fractional Brownian motions describes best the given set of experimental
data. Brownian particles, as described by different fBms, move with dif-
ferent average velocities [29], characterized by their effective diffusion co-
efficients. However, the measured velocities, apart of experimental errors,
are influenced by the properties of environment in which they move (mainly
temperature and viscosity), and depend on properties of effective stochastic
forces acting on the observed particle. This means, among others, that mea-
sured velocities cannot serve as tools for recognition of which kind of (f)Bm
is observed. Absolute values of autocorrelation functions C(t, s) also depend
on respective effective diffusion coefficients. All these effects lead to some
difficulties when of interest is the comparison of and differentiation between
models of fractional Brownian motions.

Therefore, (i) we shall be solely interested in the shapes of C(t, s), i.e., we
shall use only their reduced forms Cr(t, s) = [C(t, s)−Cmin]/[Cmax −Cmin].
Note that Cmin < 0 means anticorrelated process. (ii) All results will be
presented below in figures in the reduced form: φ(X(t)) = φred(X(t)) =
[φraw −min(φ)]/[max(φ) −min(φ)], where φ(X(t)) is the observable under
consideration.
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We shall use here the physical notation, less general than mathematical,
but more clear physically.

Let us consider the stochastic process X(t) and its pdf P (x; t), defined
on the domain {Ωx, t ∈ [0,∞)} (in the most general case, Ωx = Ωx(t)) such
that (i) it scales as XH(at) = aHXH(t), and (ii) at least two of its first
moments are finite〈

[∆X(t)]2
〉

= σ2(t) , σ(t) <∞ , ∆X(t) = X(t)− 〈X(t)〉 ,

〈Xm(t)〉 =

∫
Ωx

xmP (x; t)dx . (2)

When σ2(t) = 2Kαt
α, 0 < α = 2H < 2, the process X(t) is called

“diffusion” (“Brownian motion”) (“normal” for α = 1, anomalous otherwise).
One more comment seems to be in order at the beginning of this section:

all Brownian motions are driven by stochastic forces (cf. remarks on the
Langevin equation, Sect. 1, and Eq. (3) below). At the beginning, such
forces were always modelled by the thermal noise (Gaussian-distributed,
and δ-correlated GWN). This is not necessary, any “proper” stochastic force
can be used (cf. below), though in physical (and some other, biological in
particular) systems thermal noise is (almost) ever-present.

Normal Brownian motion (a.k.a. Wiener process W (t))

First analytic definition is due to Langevin [10]

dW (t) = ξ0(t)dt , W (t) =

t∫
0

duξ0(u) ,

〈ξ0(t)〉 = 0 , 〈ξ0(t)ξ0(s)〉 = σ20δ(t− s) , (3)

with the autocorrelation function

CW (t, s) ∼ τ ≡ min(t, s) . (4)

ξ0(t) is the stochastic force, physically simulating the collisions of Brownian
particle with particles of the medium, with Maxwell distribution of mo-
menta, and approximated by white (uncorrelated) Gaussian noise (GWN).
〈. . .〉 denotes the ensemble average. Mathematically W (t) is known as the
Wiener process. When ξ0(t) represents thermal noise, then its dispersion
σ0(t) depends on temperature, and usually on some other physical parame-
ters.
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Lévy Brownian motion (L-fBm, LH(t), LXH(t))

The oldest fractional Bm is the Lévy one [30]

LH(t) =
1

Γ (H + 1/2)

t∫
0

du (t− u)H−1/2 ξ0(u) , (5)

with the autocorrelation function

CL(t, s) ∼
τ∫

0

du (|t− u||s− u|)H−1/2 , (6)

which can be easily computed numerically.
This process has been for a long time overlooked by physicists, and still

is of little use. According to Mandelbrot and Van Ness [31], the (Holmgren–
Riemann–Liouville) integral (5) “puts too great an importance on the origin
for many applications” (too strong “memory” of the past?).

In fact, the above constatation is true only for H > 1/2, (i.e., for
superdiffusional process); for H < 1/2, (i.e., for subdiffusion) the kernel
(t − u)H−1/2 dampens the influence of the beginning (i.e., memory of the
past behaviour) of the process.

The Lévy fBm correlation function, Eq. (6), visually is very similar to
that defined by Eq. (7) (cf. Figs. 2 and 3 below).

Kolmogorov Brownian motion (K-fBm, BH(t), KH(t), KXH(t))

The best-known, in fact even treated frequently as THE fractional Brow-
nian motion, is the Kolmogorov fBm BH(t) (we use here traditional name
BH(t) which should, in fact, denote just any Brownian motion) defined [32]
as the Gaussian stochastic process with the correlation function

CB(t, s;H) ∼ t2H + s2H − |t− s|2H . (7)

Note that the definition of K-fBm is given not by the kinetic (Langevin)
equation but by the autocorrelation function. We will return to this fact
later. The K-fBm process BH(t) can be also defined as Brownian motion
driven by fractional (anticorrelated, antipersistent) Gaussian noise (fGn)
ξH(t) [33, 34]

ḂH(t) = ξH(t) , BH(t) =

t∫
0

du ξH(u) , 〈ξH(t)〉 = 0 ,

〈ξH(t)ξH(s)〉 = 2H(2H−1)κH |t−s|2H−2+4HκH |t−s|2H−1δ(t−s) , (8)

with appropriate initial conditions. Note that for H = 1/2, ξH(t) = ξ0.
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Contrary to the Wiener process and Lévy fBm (and scaled Bms — cf.
below), numerical simulations of BH(t)’s are very difficult, because the only
reliable exact method is the Cholesky decomposition, which is very demand-
ing numerically (cf. below). In the literature, several integral formulas en-
abling numerical simulations of sample paths are described, their derivations
based on approximations (mostly poor), or on different mathematical devices
such as equivalence of different stochastic processes, Lamperti transforms,
Volterra representation, etc. Most are also demanding numerically (cf. an
extensive survey by Coutin [35]). The numerical simulations of fGn are still
more demanding.

The K-fBm process (or rather its many approximations) is, among oth-
ers, very popular for creations of fractal landscapes, etc. [36] where approx-
imations are not so important.

Comparison of K- and L-fBms is shown in Figs. 2 and 3. In all these
figures, there are shown three versions of drawings of reduced C(t, s): 3D
(first row), its projection on 2D plane (second row), both with heights coded
by colour, and five cuts through 3D picture at constant values of t (third
row).

Fig. 2. (Colour on-line) Comparison of reduced autocorrelation functions of subd-
iffusional Kolmogorow and Lévy fractional Brownian motions (left) and of scaled
Brownian motion and scaled Wiener process (right). H = 0.25.
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For H = 0.75, reduced autocorrelation functions of K-fBm and L-fBm
are visually almost identical, except that values of Cmin and Cmax are dif-
ferent. Figure 3 shows therefore CK,r(t, s) and difference ∆LK = CL,r(t, s)−
CK,r(t, s). These very small differences are augmented in the nonmarkovian
characteristics R(u) — cf. Sect. 4.

Fig. 3. (Colour on-line) Comparison of reduced autocorrelation functions of subd-
iffusional Kolmogorow and Lévy fractional Brownian motions (left) and of scaled
Brownian motion and scaled Wiener process (right). H = 0.75.

Both L-fBm and K-fBm processes are nonmarkovian (cf. below, Sect. 4).
Comparison with markovian sBm and sW fBms (defined below) is also shown
in Figs. 2 and 3, which enables the direct visual observation of different
behaviour of processes belonging to these two different subclasses of fBms.
These markovian fractional Brownian motions differ significantly from K-
and L-fBms but are similar to each other. Still, similarities are much stronger
for H = 0.75 (superdiffusional processes) than for H = 0.25 (subdiffusional
ones).

Mandelbrot–Van Ness fBm (MVN-fBm, MXH(t))

According to Mandelbrot and Van Ness [31], the (Holmgren–Riemann–
Liouville) integral (5) “puts too great an importance on the origin for many
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applications”, therefore (as the remedy for the fault of L-fBm?), they pro-
posed another, now best-known integral definition of a fractional Brownian
motion via the Weyl integral

MXH(t) = LH(t) + TH(t) ,

TH(t) =
1

Γ (H + 1/2)

0∫
−∞

du
[
(t− u)H−1/2 − (−u)H−1/2

]
ξ0(u) . (9)

It seems that in the opinion of the Authors, this process represents better a
balanced memory of the past behaviour.

Autocorrelation function of MXH(t) is equal to that of BH(t) [38, 39],
i.e., the process MXH(t) fulfils the definition of Kolmogorov’s fBm. There-
fore, Eq. (9) can be treated as an integral representation of K-fBm. This
implies, among others, that Kolmogorov’s diffusion coefficient is equal to
that of Mandelbrot–Van Ness’ one (cf. [29]).

The numerical simulations of MXH(t) are practically impossible with
sufficient accuracy because of the extremely slow convergence of integral
TH(t) at its lower limit u → −∞. Thus, several cut-off MVN-fBms with
finite lower limit were proposed. Note that in fact the L-fBm is also a cut-
off MVN-fBm.

Scaled Brownian motions (sBms, SXH(t))

Several authors considered diffusion-like processes with time-dependent
(more generally, variable) diffusion coefficient, including the applications to
experimental data (cf. e.g. [37]). The corresponding Langevin equation for
this problem could be written in the form of

dX(t) = f(t)ξ(t) (10)

with the autocorrelation correlation function (for any δ-correlated noise ξ(t))

CX(t, s) ∼ f2(τ) . (11)

However, only the processes with algebraic f(t) fulfil our definition of
the fractional Brownian motion. We shall call such processes the scaled
Brownian motions (sBm)

SXH(t) ∼
t∫

0

duuH−1/2 ξ0(u) , (12)

with the autocorrelation function [29]

CS(t, s) ∼ τ2H . (13)
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If the L-fBm “puts too great importance on the origin” (for superdiffu-
sion), or “on the end of the process” (for subdiffusion), then this process
behaves contrariwise, and all above remarks about true behaviour of the
L-fBm hold in inverse: forH < 1/2, (i.e., for subdiffusion) the kernel uH−1/2
increases, whereas for H > 1/2, (i.e., for superdiffusional process) dampens
the influence of the beginning (a kind of “aging”, quasi-“memory” of the past
behaviour) of the process.

We may also define another model of fBm, viz. the scaled Wiener process
(SW)

SWXH(t) = WH(t) ∼ exp(γ log(t))

t∫
0

du ξ0(u) ∼ tγW (t) , (14)

with the autocorrelation function

CSW(t, s) ∼ τ1+2γ , σ2(t) ∼ t1+2γ . (15)

For γ ∈ (−1/2,+1/2), SW fulfils the definition of diffusional processes,
described at the beginning of this section. In particular, its first two mo-
ments, and its correlation function scale properly. Its main observables will
behave identically as those of sBms with H = γ − 1/2, therefore, opera-
tionally SW is indiscernible from sBm. However, whereas physical inter-
pretation of sBms is simple, the same cannot be said of SW — its kinetic
(Langevin) equation reads

SWẊH(t) = γe(γ−1)tW (t) + eγtξ0(t) , (16)

being a kind of scaled Ornstein–Uhlenbeck process driven by scaled white
noise. We might say that this process “puts most strong importance on its
end”.

Comparison of sBm and sW fBms is shown also in Figs. 2 and 3. These
fractional Brownian motions are similar to each other, but differ significantly
from K- and L-fBms. Moreover, similarities are much stronger for H = 0.75
(superdiffusional processes) than for H = 0.25 (subdiffusional ones).

L-family of fractional Brownian motions (µ-fBm, µLH(t))

Let us define the family of models being the generalization of the Lévy
process, called here µ-fBm [29]

µLH(t) =
1

Γ (H + 1/2)

t∫
0

du |µt− νu|H−1/2 ξ0(u) . (17)
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with obvious generalization of Eq. (6) for the autocorrelation function. Note
that Lévy process (5) is obtained by putting µ = ν = 1. This form enables
easy manipulation of the weights of beginning and the end of the process,
with rather easy way of generation of sample paths of any (finite) length.
Detailed discussion of properties of this L-family fBms can be found in [29].

K-family of fractional Brownian motions

In analogy to the definition of Kolmogorov’s fBm, we can define other
processes by their correlation functions. For these to be fBms, they must be
diffusional, i.e., fulfil the definition in Eq. (2). Moreover, to use the Cholesky
decomposition for generation of sample paths {XH(t)}, the correlation ma-
trix CH(t, s) must be (i) nonsingular, (ii) symmetric, C(t, s) = C(s, t), and
(iii) its diagonal CH(t, t) ∼ t2H .

The simplest change which can be introduced to Kolmogorov’s fBm,
in analogy to L-family’s µ-fBm, is to introduce coefficients being here the
weights of parts of that definition

Cµ(t, s;H) ∼ µ1τ2H + µ2θ
2H − ν|θ − τ |2H , (18)

with τ = min(t, s), θ = max(t, s). It is easy to see that by putting ν = 0, we
get a rather uninteresting process, and by putting ν > µ1, µ2 — a process
which is in part anticorrelated: Cµ < 0 for some values of t, s.

Other simple and obvious possibilities is to use as the first (positive-
definite) parts of the whole C(t, s) the autocorrelation function of other
known fBms, defined above, and add or subtract |t − s|2H . Subtraction of
this from the L-fBm results in shifting the whole to anticorrelations. This
point will be discussed in more detail in Sect. 4 (cf. Eqs. (30), (31), and
Figs. 6 and 7). The same can be done with the combinations (linear or
otherwise) of such C(t, s). Substitution of |t − s|2H by |tq − sq|2H/q results
in changes of widths of peaks at t = s. However, all these variations of K-
L-, S- and SW-fBms lead to similar C(t, s) with main differences between
markovian (K- and L-) and nonmarkovian (S- and W-) processes, therefore,
changes introduced by additional parameters (µ, ν, etc.) seem to be very
hard to identify experimentally. On the other hand, artificial introduction of
additions as in Eqs. (30), (31) to experimentally determined autocorrelation
functions might serve for such identifications.

More interesting seem to be oscillations of the first or second component
of C(t, s), which may simulate the behaviour of Bm in layered systems (envi-
ronments), e.g., in a kind of laminates of thin films with different properties
(parameters), such as density, concentrations of components, temperature,
or the composite system including inside and outside of the cell, or the cell
and organelle, together with separating membranes, and the like.
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Fractional noises

There is yet another possibility of creating new fractional Brownian mo-
tions: define new fractional (coloured) noise ξf (t) either by its Cξ(t, s), by
its Cholesky decomposed “square root” Qξ(t, s), or by any other method,
and next calculate related fBm, either from Eq. (19), using the standard
GWN ξ0(t), or any other white noise (e.g., some α-stable one), or just from
a simple Langevin equation, Eq. (3), with ξf (t) in place of ξ0(t).

However, the physical interpretation of such fBms can be difficult.

2.1. Noises

Computation of sample paths from the definitions of fBms needs the
application of appropriate stochastic force — “noise” — acting on the Brow-
nian particle. Moreover, in several other situations, closer specification of
the properties of these noises is necessary.

The answer to the second Saxton question (physical mechanism) is in
Smoluchowski’s approach (cf. Sect. 1) of interactions with (mainly transfer
of momentum from) neighbour particles of the environment in which the
Brownian particle is immersed, i.e., mechanical process (very complicated),
modelled by appropriate stochastic force. The key phrase is “appropriate”:
how to find what force — “noise” — is “appropriate”. In macroscopic systems
with established local equilibrium (well-defined observationally local temper-
ature), the main role is played by thermal fluctuations, i.e., random distribu-
tion of momenta of all particles (Maxwell distribution), well-approximated
by Gaussian white noise (GWN). In crowded nonuniform environments, in
particular in living cells, where many different processes take place — trans-
port (Bm or other) of other particles, (bio) chemical reactions, changes of
electric potentials (e.g., of biomembranes), etc., all practically not connected
directly with the process in question; all these more or less accidental inter-
actions can be represented by some additional effective — usually nonwhite
— random forces.

Such additional forces, originating from physical processes and treated
as “noises”, can be, and usually are, correlated, i.e. not independent. When
originating from several sources, will be even not identically distributed.
At best, i.i.d. will be (approximately) their increments. Anyway, all these
disturbances from other processes sum up to an effective additional “noise”,
either coloured, or more or less white.

However, we must add here that (i) in many calculations GWN can be
substituted by any white (i.e., δ-correlated) process (“noise”). In particular,
in all calculations of σ2(t), C(t, s), etc. presented in this section, GWN can
be substituted by any white “noise”, leading to identical results, and (ii)
GWN (and all white noises as well?) is unphysical and there are serious
objections against its application to physical processes [40].



1110 A. Fuliński

In nonphysical systems, mainly in economy, this mechanism does not
apply. Still, in practice, in most cases discussed in literature, the stochastic
forces {ξ0} are treated (explicitly or implicitly) as GWN. Closer inspection
shows that in most cases, the only property of {ξ0} which is used is that
they are i.i.d. and δ-correlated (white). The only serious argument for GWN
is that the Gaussian distribution is the easiest for most applications and
computations.

In some physical systems dominated or at least accompanying, there are
well-recognized noises. When the number of particles is small, more proper
than GWN seems to be the Poisson distribution together with several its
“descendants” (realizations): Schottky (shot) noise (dominating in semicon-
ductor currents [41]), telegraphers (dichotomous) noise [42] (among others,
distribution of currents through biomembrane nanochannels is a dichoto-
mous process [43]), etc.

In relation to Brownian motions, processes driven by α-stable noises
are the most discussed in literature. Shot noise was found in neurons [45]
and recently applied to Langevin dynamics of motion of a Brownian par-
ticle moving in a potential field [46], and in anomalous transport of active
particles [47].

Integral definition of K-fBm, Eq. (8) is given through the fractional Gaus-
sian noise. All other fBms can also be defined by appropriate fractional
noises. In general, one can introduce several other stochastic processes as
“noises” simulating mentioned above quasi-random effects of side processes
going in the vicinity — this remark applies not only to physical processes,
but to social, economic, etc. ones as well. Usually, it is required that such
noises should be stationary, but it seems that these conditions are not cru-
cial. For example, infinitesimal increments of other fBms, treated as noises,
do fulfil these requirements, mentioned nonmarkovian versions of shot and
dichotomous noises too, but experimentally accessible finite increments sam-
ple of paths usually will not (for more details, cf. [29]). Ionic nanochannel
processes, which can be treated as noises influencing the cell membrane elec-
tric potentials [48] are dichotomous, but not stationary.

Presence of the additional — to GWN — noise can be identified by
nonzero imaginary part of the characteristic function φ(t), but only if such
addition introduces asymmetry with respect to time-reversal, i.e., when ef-
fective stochastic force f(t) 6= f(−t), more correctly, when the pdf P (x) is
asymmetric with respect to x = 0.

2.2. Cholesky decomposition

Given a symmetrical nondegenerateN×N autocorrelation matrix C(t, s),
the process X(t) with this correlation function can be recovered exactly as
follows:
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let C(t, s) = Q(t, s)QT (t, s), with Q(t, s > t) = 0; then

X(t) =

N∑
k

Q(t, k)ξk , (19)

where the set {ξk} is the white noise driving the process X(t). Usually,
in literature the thermal noise (GWN) is used, as e.g., in Kolmogorov’s
definition but, in general, any random or chaotic [49] δ-correlated (white)
process will also lead to similar, if not identical, Brownian motion.

The matrix Q, called sometimes square root of matrix C, can be com-
puted from C(t, s) (exactly) by the so-called Cholesky decomposition [50]
(very demanding numerically!). The inverse operation

C(t, s) =

N∑
k

Q(t, k)QT (k, s) (20)

enables recovering the correlation function from Q(t, s).
The above relations suggest another, not used so far method of generation

of various diffusional processes: from prescribed correlation function and its
“square root” Q(t, s), with Q(t, s > t) = 0. It might be useful, among others,
for description of diffusion (Brownian motion) through strongly nonuniform,
laminated, chaotic, or changing environments.

Moreover, instead of C(t, s), we may as well prescribe Q(t, s) to define
some new process X(t). There is the rub, however: C(t, s) is related to —
usually — rather clear (or easy to interpret) physical interpretation, whereas
Q(t, s) — is not, though one can try to interpret the resulting C(t, s). On
the other hand, the Cholesky decomposition is very demanding numerically
(main limitation is the amount of memory needed to store, which increases
as N2 where N is the length of sample paths), so that in practice only short
sample paths {X(t)} can be obtained. Starting from given Q(t, s) has no
such limitations: in fact, one does not need to store the whole matrix — only
needed to compute subsequent elements of the sample path are subsequent
elements Q(t, s) — cf. Eq. (19).

Ballistic motions

The use of autocorrelation function as a tool for defining new fBms en-
ables also introduce a deterministic fBm, viz. anomalous (sub- and super-)
ballistic motion defined by

Cb(t, s) ∼ (ts)H , Xb(t) ∼ tH−1/2 ,
Ẋ(t) ∼ tH−3/2 , Ẍ(t) ∼ tH−5/2 (21)

describing the damped motion with time-dependent deceleration.
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This process can be treated also as the “true” fBm, driven by a coloured
fractional noise leading to the same Xb(t) and the same Cb(t, s) through the
Langevin equation similar to that for K–fBm, Eq. (8).

The possible uses of such processes are discussed in more detail in Sects. 4
and 6.

3. Observables

For more detailed discussion, cf. [51].
By “observable” we shall understand quantity which can be either di-

rectly measured or computed from sample paths (measured or simulated).
Some quantities can be calculated by analytical formulae from definitions:
integrals or C(t, s), which enables determination whether given measured
process can be ascribed to a given theoretical (mathematical or otherwise)
model (within experimental error).

Most used in practice is the dispersion (second moment) σ2X(t), Eq. (2),
and its dependence on time. When autocorrelation function is known a priori
(e.g., as definition of a given X(t)), σ2X(t) = CX(t, t). However, by definition
(Sect. 2), all the diffusional processes are characterized by the same form of
dispersion σ2X(t) = 〈X2(t)〉 ∼ tH , and differ only by the value of the Hurst
exponent H. Therefore, some other measurable characteristics are needed.
In this section, we shall discuss a few possible characteristics.

Second most frequently discussed in literature is the problem whether
the given Brownian motion is nonergodic. This is based on determination
of the behaviour of time and ensemble averages of the σ2X(t) — are these
equal, or disparate? This will be discussed in Sect. 5.

In the present author’s opinion, the most important, and at the same
time rather easy to determine (both experimentally and numerically), is the
autocorrelation function C(t, s), discussed in detail, along the definitions of
various fBms, in Sect. 2.

Directly related to the autocorrelation functions is the nonmarkovian
characteristics of a given fBm. This is discussed in detail in Sect. 4 below.

Other possible observables which can be calculated from a collection of
sample paths are mostly useless for the discerning the types of fBms. Worth
mention are:

Power spectrum S(f)

Power spectrum can be determined directly from measured data (sample
paths)

SX;M ;T,N (f) =
∆t

T

∣∣∣∣∣
N∑
n=1

XM (tn)e−2πifn

∣∣∣∣∣
2

, T = N∆t , (22)
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and
SX(f) = lim

T→∞,M→∞

1

M
SX;M ;T,N (f) , (23)

M being the number of different realizations of the measured or computed
sample paths of the process X(t). The above relations can be treated as the
operational definition of S(f).

It is worth to note that single-trajectory power spectra were recently
discussed and experimentally measured [52].

The power spectra do not give much additional information, comparing
with other observables. For most cases, S(f) ∼ f−2 a.k.a. brown noise, only
for some fBms with very low values of the Hurst exponent, S(f) ∼ f−α,
α < 2 a.k.a. pink noise.

Probability density, characteristic function, first passage time

The probability distribution function P (x) is sometimes determined from
experimental data. Maybe easier for calculation from such data is its Fourier
transform, i.e., the characteristic function φ(t)

φ(t) =

∫
DX

dx eitx P (x) =
〈
eitx
〉
. (24)

The last expression can also be treated as an operational definition, enabling
the computation of φ(t) directly from experimental data or from simulations
of sample paths.

Frequently discussed in literature distribution of first passage times (fpt)
to a prescribed target [53] is directly connected to P (x).

Both P (x) and φ(t) carry information mainly about the stochastic forces
(noise) driving the given fBm, therefore, are not very interesting when the
main noise is the thermal one, maybe with one exception. In a living cell,
alongside with the measured process, there are many other processes, the
presence of which can perturb each other. This additional stochastic force
adds to the thermal noise, and its presence can be detected in these distri-
butions. In particular, GWN (model of thermal noise, resulting from the
Maxwell distribution of momenta of surrounding particles) is symmetric,
therefore = φ(t) = 0. Appearance of nonzero imaginary part gives a direct
signal of the presence of an admixture of some nonthermal noise. Strong
irregularities in determined P (x) (or φ(t)) may signal the presence of some
obstacles in the environment in which Brownian particles move (cf. “re-
pelling boundaries” point below).

The shape of distribution of fpt, as being calculated directly from P (x),
depends additionally on the effective diffusion coefficient. However, the lat-
ter describes not only the trajectory of a Brownian particle (i.e., the model
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of fBm) but also the properties of the medium and of the boundaries within
which this particle moves, therefore, is also of little value for recognition of
the type of measured fBm.

Of course, when Brownian motion of interest models nonphysical situ-
ations, e.g., when the economic processes are considered, the distributions
P (x) and φ(t) may bring over some really valuable information, the more
that such processes, e.g., the behaviour of stock investors is the process
strongly influenced by the memory of the past behaviour of all inventors.

Persistence and restart

The restart method of acceleration of arrival time to prescribed target
is in fact nothing but a simplified albatross search pattern with return to
the same (starting) point, and in this respect is related to CTRW [22].
The restart process contains intervention from the observer, thus — though
recently fashionable — is worthless from the point of view of identification
of the model of fBm being restarted.

Interesting enough is the property called persistence. True noises are
independent (even if not identically distributed), i.e., subsequent values of ξ0
are not influenced by any from previous ones. Markovian process remembers
the previous value, persistent process — two preceding values. Distribution
of persistence times depends mainly on the value of the Hurst exponent.

Again, these results do not seem to be characteristic enough to enable
differentiation between models of fBms. At best, they can narrow the class
of fBms of similar characteristics, and provide additional arguments for or
against assumed classification.

Repelling boundaries

Recent results of investigations of influence of existing boundaries on
properties of fBms [54, 55] seem to open the whole new chapter in the
Brownian motions story.

Most of models of fBms discussed so far in the literature assume that
the motions of Brownian particles are unlimited, “free”: XB(t) ∈ (−∞,+∞).
The investigation of the influence of existing boundaries (walls) on the be-
haviour of fBm began only recently, by considering the motions limited to
semi-infinite axis, XB(t) ∈ [0,+∞), with reflecting wall at x = 0 [54]. These
first results showed that some of properties of so limited fBms change radi-
cally. Most characteristic feature is here strongly nonexponential probabil-
ity density near boundaries, with cumulation of density near the wall for
superdiffusional processes, and depletion for subdiffusional ones.
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These results were confirmed experimentally by measurements of the
motions of Brownian particles inside axons of some specific group of brain
neurons [55]. The results show that the details of motion depend not only on
the nearness of the reflecting walls (i.e., diameter of the axon), but — even
more strongly — on the shape (degree of tortuousity) of the whole channel.

These results suggest, among others, that difficulties with dealing with
boundary value problems (e.g. in discussion of first passage times) for fBms
may be related to the strange behaviour of probability density near bound-
aries (targets) [56].

4. Nonmarkovianity

All stochastic processes are either markovian or nonmarkovian. Marko-
vian ones are popular, because they are much simpler for use in modelling
natural phenomena. On the other hand, most of processes being now of
interest are nonmarkovian, or can be at least suspected of being nonmarko-
vian. In the latter case, the degree of deviation from markovian character
can be also of interest.

The most general condition which all markovian processes must fulfil is
the Bachelier–Smoluchowski equation [14, 16, 57], known also in literature
as the Chapman–Kolmogorov [40] one (cf. e.g. [13] for more details)

P1|1(x2, t|x1, s) =

∫
Dx

dx3P1|1(x2, t|x3, u)P1|1(x3, u|x1, s) , (25)

with s < u < t, where Dx denotes the domain of states x, and P1|1 —
conditional probability distribution. In the following, we shall call Eq. (25)
BSCK. The analogous equation for data in the form of (discrete) sample
paths is obvious.

BSCK condition is most general, but at the same time, most difficult to
use and most impractical when one has to deal not with general analytic for-
mulae, but with series of data in the form of {x(t1), x(t2), . . . , x(tn)} (sample
paths), in many cases nonstationary, either experimental, or obtained from
numerical simulations.

Two-point distributions P2(x, t; y, s) = P1|1(x, t|y, s)P1(y, s) can be de-
termined from experimental data, but the amount of data needed is enor-
mous and practically unavailable, except some rare cases of stationary sys-
tems (P2(x, t; y, s) = P2(x, t−s; y, 0)) with a few distinct well-defined states
(x, y ∈ [a, b, c, . . .]) (as e.g. in transport of ions through nanochannels [43]).

All Bm processes discussed here are nonstationary. This means that
to determine nonmarkovian index directly from BSCK equation, one can-
not determine distributions P1|1(x1, t1|x2, t2), or P2(x1, t1;x2, t2) by moving-
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window averages as in [43]. In other words, one needs to determine four-
dimensional matrices P1|1 from experimental data, for all measured values of
XH(t), and average these over sufficiently many realizations of the process.
This is practically impossible. Therefore, some simpler measures (indices)
of deviations from markovianity are needed.

Sufficiently simple seems to be index based on normalized autocorrelation
functions [44]:

Assume that, by analogy to Eq. (25),

Cn(t, s) = Cn(t, u)Cn(u, s) for s < u < t , (26)

where Cn(t, s) is the normalized autocorrelation function of the processX(t),
defined

Cn(t, s) = C(t, s)/
√
〈X2(t)〉〈X2(s)〉 ,

C(t, s) = 〈X(t)X(s)〉 . (27)

The proof of equivalence of this relation and BSCK equation is given
in [44].

Let us define the following signatures and measures of nonmarkovianity,
resulting directly from Eq. (26):

(i) the function (NM signature) R(u)

R(u) =
Cn(t, u)Cn(u, s)

Cn(t, s)
=
C(t, u)C(u, s)

C(t, s)σ2(u)
, (28)

where t < u < s (σ2(u) = C(u, u)). Note: R(u = t) = R(u = s) = 1.
From these definitions, we get that if R(u) = 1 over the whole interval
u ∈ [t, s], then the process X(t) is markovian.

(ii) In order to compare the deviations from markovianity, define two
proper (i.e., non-negative-definite) measures

∆1 =

∣∣∣∣∣1− 1

t− s

t∫
s

duR(u)

∣∣∣∣∣ , ∆2 =
1

t− s

t∫
s

du|1−R(u)| . (29)

These quantities enable direct comparison of degrees of nonmarkovianity
between various processes. Note that in this parametrization, all unimpor-
tant for our considerations prefactors, diffusion coefficients, etc. cancel.

Signature R(u) gives qualitative visual information quantified by mea-
sures ∆1 and ∆2, taking into account a kind of “global” and “local” non-
markovianity. Usually, when 1− R(u) does not change sign over the whole
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interval u ∈ [t, s], ∆2 ≤ ∆1. ∆2 is useful in cases when parts of 1−R(u) are
positive, other parts — negative (e.g., R(u) is oscillating). Then informa-
tion carried by ∆1 can be misleading. This property can be seen in Fig. 7
where in some range of parameter q, ∆1 of the superdiffusional L-fbM tends
to zero when ∆2 tends only to minimum.

On the other hand, ∆2 can be significantly different than zero when R(u)
is just fluctuating around zero as the effect of experimental (computational)
errors. This implies: in case of doubt, determine not only both ∆1 and ∆2,
but also R(u) — the latter contains more detailed information.

Of practical interest can be the fact that the signature R(u) enhances
the differences between different processes, badly visible in C(t, s) alone.
Mentioned in Sect. 2 insignificant differences between superdiffusional auto-
correlation functions of K-fBm and L-fBm (cf. Fig. 3) become distinct when
these functions are presented in the form of signatures R(u). This is shown
in Fig. 4 (left panel) where for comparison are shown also R(u) for subd-
iffusional case, which is more strongly nonmarkovian than superdiffusion.
Figure 4 shows also how signatures of both fBms change with the values of
Hurst parameter H (right panel). Although this information does not help
the identification, it stresses the substantial differences between both fBms,
not always visible in other characteristics.

(1)
(2)

(3)
(4)

Fig. 4. (Colour on-line) Comparison of signatures R(u) of K- and L-fBm. Left
column: R(u) < 1: H = 0.25, R(u) > 1, H = 0.75 (red (2) and magenta (3))
and H = 0.95 (green (1) and cyan (4)). Differences between both fBms are clearly
visible in all cases. Right column: Dependence of R(u) on the Hurst exponent
H. Tails u < t and u > s are added for better visibility of different behaviour of
L- and K-fBms.
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The further arguments in identification of the model of fBm which de-
scribes a given set of sample paths can be obtained by calculating from the
experimental data the signatures R(u) for increasing ranges of R(u) along
the path. This is illustrated in Fig. 5.

K-fBm L-fBm

t = 1, s = 50, 100, . . .

Fig. 5. Local nonmarkovian characteristics R(u) of Kolmogorov (left panels) and
Lévy (right panels) fractional Brownian motions for increasing range of R(u); upper
panel: H = 0.25, lower panel: H = 0.75.

If subdiffusional (H = 0.25) K-fBm and L-fBm differ between themselves
more than the superdiffusional ones, still their “representations” via R(u)
differ much more — cf. Figs. 4 and 5.

The values of both measures may (and usually do) depend on details:
interval [t, s], place of this interval along the whole range of X(t) (in partic-
ular whether it is located near the beginning, middle or end of the measured
data), roughness of R(u) (this is taken in part into account by ∆2), etc.
This is shown in Fig. 5.
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Apart from the visualization of the nonmarkovian character of the pro-
cess under consideration, the signature R(u) enables an easy method of
looking for the role of various factors in the definition of considered fBm, to
find how the changes of some parameters change the picture, etc.

Still other use of the nonmarkovian signatures and measures is that they
enable simple detailed investigation of the results of changes of properties
of different fBms caused by changes of their definitions via autocorrelation
functions. Of obvious interest is what causes the appearance of nonmarko-
vianity in processes which in their “zero-th” form are markovian,

An elementary example is the Wiener process which is obviously marko-
vian: substitution of its autocorrelation function CW (t, s) = min(t, s) into
definition of R(u) above results in RW0 = 1 in the whole interval u ∈ [t, s].
Addition of the factor q|t−s|2H changes this process into nonmarkovian one

CqW (t, s) = (1− q) min(t, s) + qmax(t, s) ,

RqW (u) =
[(1− q)t+ qu][(1− q)u+ qs]

[(1− q)t+ qs]2u
, (30)

which is obviously nonmarkovian, except for q = 0 and q = 1. The last case,
for q = 1, changes the Wiener process to a kind of markovian anti-Wiener
with C(t, s) ∼ max(t, s).

The same procedure can be applied to other fBms. The results, in the
form of measures ∆1 and ∆2 as functions of the strength parameter q is
shown in Figs. 6 and 7. The labels there mean

K :K0 = t2H + s2H , W :C0 = [min(t, s)]2H , B :C0 = (ts)H . (31)

This secondary representation enables further identification of the model
fBm under consideration.

BH(t) measures are not much different than these for W (t) (implies:
BH(t) is weakly nonmarkovian). Besides, all three model fBms shown in
Fig. 6 are rather similar, in particular that for all three ∆1 = ∆2. This is no
longer true for the Lévy fBm, which is much stronger nonmarkovian than
BH [44] (cf. Fig. 7).

The changes of behaviour of the models of fBms shown here can be
also applied to experimental data: add to the measured autocorrelation
functions the factor q|t − s|2H (H — measured Hurst exponent) and look
for the changes.
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Fig. 6. Comparison of measures ∆1 = ∆2 for the three variants (Eq. (30)) of
changes in nonmarkovian versions of Kolmogorow (K), Wiener (W) and ballistic
(B) processes (cf. Eq. (31)). Labels 1, 2, 3: subdiffusion, H = 0.25, 4, 5, 6:
superdiffusion, H = 0.75; labels 1, 4: K, 2, 5: W, 3, 6: B. Inset: details of
nonmarkovian behaviour near q = 0.

Fig. 7. Measures ∆1 and ∆2 of Lévy fBm with weighted addition of the term
q|t − s|2H . Note differences between ∆1 and ∆2. Inset: details of nonmarkovian
behaviour near q = 0.
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5. Weak ergodicity breaking

Another frequently discussed in literature subject, apart from the second
moment (dispersion), is the problem whether the given Brownian motion is
nonergodic (cf. [28, 33, 58, 60]). This problem can be defined as are the time
and ensemble averages disparate?

Boltzmann hypothesis states that the system/process is ergodic when
averages over ensemble and over (long) trajectory (i.e., over time) of ob-
servables on a system or process are equal. In recent literature, commonly
used is the dispersion of position of Brownian particle

δ2X(t, T ) =
〈
X2(t)

〉
, (32)

where 〈· · ·〉 denotes averaging over ensemble (over probability density), · · ·
— over time (along trajectory), with

δ2X(t, T ) =
1

T − t

T−t∫
0

ds[X(s+ t)−X(s)]2 (33)

relating two positions of the process (walker) separated by a time lag t.
In practice, the dispersion of one trajectory is useless in the case of

Brownian motions due to too large jumps along sample paths. Therefore, in
practice, one uses the slightly weaker measure of WEB

∆X(t, T ) =
∣∣∣〈δ2X(t, T )

〉
−
〈
X2(t)

〉∣∣∣ , (34)

which is measurable with good enough accuracy.
Extensive discussion can be found in [34, 58]. Ergodic properties of fBms

discussed in this paper are described in detail in [60].
Here, let us only add a few remarks, to elucidate some misunderstand-

ings:

(i) Fulfilling the Boltzmann equality by one of observables does not prove
anything. In the truly ergodic system (process), all observables on this
process must fulfil Eq. (32).

(ii) The Khinchin theorem states that if the autocorrelation function
CX(t, s) of the process X(t) is (i) stationary (i.e., CX(t, s) = f(|t−s|)
only), and (ii) tends to zero for |t − s| → ∞ (process becomes un-
correlated), then the process X(t) is ergodic. This does not mean (as
sometimes is suggested) that if CX(t, s) is nonstationary, then X(t) is
of necessity nonergodic. In the present author’s opinion, nonstation-
arity of C(t, s) gives only the strong suggestion (suspicion) that X(t)
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is indeed nonergodic. Let us note that autocorrelation functions of all
discussed here processes (Brownian motions, and more generally dif-
fusive ones) are nonstationary, and most of them do not vanish in the
limit |t−s| → ∞ (cf. Sect. 2). Let us also add that (almost) all chaotic
processes, with probability 1, are ergodic. In literature, the processes
for which the Boltzmann equality holds for dispersion, Eq. (32), are
frequently called “weakly ergodic”. This property, so-called weak er-
godicity vs. its counterpart, weak ergodicity breaking — WEB, gives
indeed good characteristics of Brownian motions.

(iii) Even the averaged (weaker) version of weak ergodicity, Eq. (34), is fully
fulfilled by the Wiener process and Kolmogorov fBm. In both these
cases, both quantities are indeed proportional to t, and do not depend
on the trajectories lengths, T . For other Bms, even simple ones, en-
semble average is always ∼ t2H , whereas averaged time-average is a
function of both t and T . Besides, in practice, because experimentally
measured (also simulated) sample paths are of finite length (T in above
formulae), the time-averaged dispersions will — in some cases — de-
pend not only on proper running time t, but also on the length T of
the measured trajectory. Therefore, at present, one speaks of (weak)
ergodicity or WEB not when ∆X(t, T ) = 0, but when both averages
scale in t identically [28, 58].

(iv) The average dispersion along trajectory can be written with the help
of the autocorrelation function of the process [59]

〈
δ2X(t, T )

〉
=

1

T−t

T−t∫
0

ds
〈

[X(s+t)−X(s)]2
〉

=
1

T−t

T−t∫
0

ds
[
σ2X(s+t)−2CX(s+t, s)+σ2X(s)

]
, (35)

which is easy to compute for all fBms discussed here.

This result needs the additional commentary: note that dispersions
are second moments of (averages over) one-point probability density
P1(x, t), whereas the autocorrelation function is an average over two-
point one, P2(x, t; y, s). These two quantities seem to be slightly dis-
parate. This suggests that the so-defined average over trajectory is
related also to the nonmarkovian characteristics of the process X(t),
whereas 〈X2(t)〉 is insensitive to such properties.
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6. Final remarks and conclusions
The main aim of this paper is, as we have stated in the introduction, to

verify to what extent various fractional Brownian motions are different. In
particular, we tried to find what mechanisms or details in their definitions
make these motions anomalous, and whether the models can be distinguished
experimentally. In other words, we tried to answer three questions–problems
proposed by Saxton [25]. Although Saxton wrote about “anomalous subdif-
fusion in the plasma membrane, cytoplasm, and nucleus of cells”, all these
problems are common for all investigations related to Brownian motions.

First problem: The main experimental questions: “Is diffusion anomalous
or normal, and what are the parameters describing it” is mainly answered
in Sect. 1: (i) we know now (both by experimental data and from theoret-
ical models) that there are two main types, CTRW and fBm (plus several
practically not exploited — cf. Introduction); these can be divided further
into several subtypes. (ii) their main characteristics, easy to determined, is
the Hurst exponent H — for all fBms and for local enclosed traps with Bm
inside.

Second problem: The main theoretical questions: “What mechanism
makes the diffusion anomalous?” (i) it seems that for CTR the main factor
is their second characteristics: long jumps between “traps” [22]. (ii) For
fBms, the situation is more complicated: to answer this question, we need
to know the structure of as many models of fBms as possible. Inspection
of results presented in Sect. 2.2 shows that the most obvious in this respect
is the diagonal of C(t, s): as σ2(t) = C(t, t), and anomalous Bm is defined
by σ2(t) ∼ t2H with H 6= 1/2, we may say that the diagonal of C(t, s) ∼ t
defines the normal Bm. The answer to the second problem can therefore be
formulated: “any mechanism which changes that diagonal”.

The change of the behaviour of diagonal is, however, not simple. First,
the whole autocorrelation function must fulfil conditions defining the process
as diffusion (Brownian motion), Eq. (2); second — the physical interpreta-
tion of such a change must be clear (third Saxton’s problem!). E.g., a simple
change of the type of CX(t, s) → [CX(t, s)]γ 6=1 (e.g., change min(t, s) →
minγ(t, s) in CW (t, s), resulting in the change of the Wiener process into a
one of sBms) will be sufficient. However, such a change seems to be rather
difficult for physical interpretation.

One of the possibilities is offered by changes in the environment. There
is a kind of precedent: the motion of a potassium channel in a live cell
membrane was found to be nonergodic, but after application of some drugs
influencing, the properties of membrane became (weakly) ergodic, though
remained anomalous of CTRW type [61]. Such changes — addition of some
substance, changes of some parameters (temperature, in particular) are pos-
sible for experimental realization.
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Another quite obvious possibility: presence (influence) of another stochas-
tic force. Again, this is not so simple as looks at first sight: addition of second
process associated with H 6= 1/2 will result in a nondiffusional process, ad-
dition of another normal process, H = 1/2, does not change the resulting
diagonal. The only other possibility seems to be the coupling with some
side process with appropriate characteristics, i.e., in models, multiplication
of the original C(t, s) by other one with proper characteristics.

Third, main problem: “How can various mechanisms be distinguished
experimentally?” In the present author’s opinion, it is worth to estimate
as many other observables besides the most popular: the Hurst exponent
and (weak) ergodic properties as possible. As we said in Sect. 3, most
of observables listed there are not characteristic enough to serve as sole
quantity enabling to decide whether given measured Bm is described by a
given model, at most they can exclude some of them. Several such exclusions
or indications can, at least, narrow the class of models.

There is, however, one observable so far underestimated, or even al-
most totally neglected in the present literature: the autocorrelation func-
tion C(t, s) (Sect. 2), and related to it the nonmarkovian signatures and
measures (Sect. 4). The use of this method, Eqs. (28) and (29), cf. [44]
enables the relatively simple calculations and estimations, sufficient to clas-
sification whether a given process is markovian or nonmarkovian. This, in
turn, supplies more detailed information about memory characteristics of a
given Bm.

The results presented in Sect. 4 suggest also that the good tool for iden-
tification of model in question is the subtraction of another term, even the
whole model autocorrelation function. Maybe the even better will be the
use of addition of the term q|t − s|2H to measured C(t, s), with variable
weight q, as in Figs. 6 and 7.

Correlation functions can also be used, together with the dispersions, to
evaluate the scaling of weak ergodicity measures (Sect. 5).

Therefore, the partial answer to the third question is, in the present
author’s opinion: one ought to look for correlations and for nonmarkovian
characteristics, particularly to the secondary ones (Figs. 5, 6, and 7), and
additionally for as many other observables as is possible to determine from
a given set of measured sample paths.

Still, all these attempts will result in classification of a given experimen-
tally investigated Bm into one of subclasses. Moreover, more detailed esti-
mation of the values of parameters within a given subclass, i.e., indication
of specific model of this Bm, seems to be at present rather questionable, due
to experimental errors.
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