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We consider a generic system operating under non-equilibrium condi-
tions. Explicitly, we consider an inertial classical Brownian particle dwelling
a periodic structure with a spatially broken reflection symmetry. The par-
ticle is coupled to a bath at the temperature T and is driven by an unbiased
time-periodic force. In the asymptotic long-time regime, the particle op-
erates as a Brownian motor exhibiting finite directed transport although
no net biasing force acts on the system. Here, we review and interpret in
further detail our own recent research on the peculiar transport behaviour
for this set-up. The main focus is put on those different emerging Brownian
diffusion anomalies. Particularly, within the transient, time-dependent do-
main, the particle is able to exhibit anomalous diffusive motion which even-
tually crosses over into normal diffusion only in the asymptotic long-time
limit. In the latter limit, this normal diffusion coefficient may even show
a non-monotonic temperature dependence, meaning that it is not mono-
tonically increasing with increasing temperature, but may exhibit instead
an extended, intermediate minimum before growing again with increasing
temperature.
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1. Introduction

The theory for equilibrium systems is far from being complete. For exam-
ple, the stationary state of a system strongly interacting with a surrounding
thermostat is generally not available [1]. Despite this incompleteness for
equilibrium set-ups, there are laws in nature which allow us to predict their
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reaction to an external perturbation. A celebrated example constitutes the
Le Chatelier–Braun principle [2–5] which, loosely speaking, states that if a
system in equilibrium is subjected to a perturbation, a reaction will occur
so that the equilibrium will be shifted towards a new one, counteracting this
change. This principle may be regarded as a precursor of a linear response
theory [6, 7] which nowadays is a common tool for predicting the properties
of a system in equilibrium perturbed by an external stimuli. An archety-
pal example is the Sutherland–Einstein relation [8–10], saying that for such
set-ups, the diffusion coefficient is an increasing function of temperature.

Despite many years of active research, our current understanding of
non-equilibrium physics fundamentals is still incomplete, undoubtedly far
beyond what we known for equilibrium systems. Yet, much progress has
been achieved over the last decades in modelling certain aspects of such
systems such as stochastic resonance [11], noise assisted transport far from
equilibrium [12, 13], absolute negative mobility [14–19], anomalous diffu-
sion [20–22] or various recent fluctuation theorems [23, 24], to name only a
few. Here, we aim to demonstrate that non-equlibrium conditions allow for
a rich complexity which is not present in a system at thermal equilibrium.
The reason behind it is that equilibrium is ruled by various Thermodynamic
Laws and symmetries such as, for example, detailed balance, which gener-
ally loose their validity if taken out of equilibrium. For this purpose, we
survey recent research on peculiar transport behaviour occurring in tempo-
rally driven periodic system with the particular emphasis put on diffusion
anomalies. We rely on the Langevin equation description for the non-linear
Brownian motion which, as we shall demonstrate, can also be successfully
applied to non-equilibrium systems. It can be derived from a correspond-
ing microscopic Hamiltonian description complemented by fundamentals of
equilibrium statistical physics imposed on the thermostat [6]. The system
of interest may look simple at first glance; however, the emerging underly-
ing inertial dynamics is exceptionally rich upon observing that the driven
Brownian motion is governed by several parameters which in turn yield a
complex dynamics.

2. Generic model of an inertial Brownian motor

In this work, we consider a classical Brownian motor [13]. It is typically
modelled as an inertial particle of massM which moves in a spatially periodic
potential U(x) which breaks reflection symmetry and, additionally, is driven
by an unbiased time-periodic force A cos (Ωt) of amplitude A and angular
frequency Ω. The system is coupled to thermostat of temperature T . The
corresponding Langevin equation reads

Mẍ+ Γ ẋ = −U ′(x) +A cos (Ωt) +
√

2ΓkBT ξ(t) , (1)
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where the dot and the prime denote differentiation with respect to time t and
the Brownian particle coordinate x, respectively. The parameter Γ stands
for the kinetic friction coefficient and kB denotes the Boltzmann constant.
The interaction with thermostat is modelled by δ-correlated, Gaussian white
noise ξ(t) of vanishing mean and unit intensity, i.e.

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = δ(t− s) . (2)

The spatially periodic potential U(x) is assumed to be reflection non-symme-
tric, i.e. of a ratchet-type [13, 25]. As an example, we choose a double-sine
form of period 2πL and barrier height 2∆U ; explicitly,

U(x) = −∆U

[
sin
(x
L

)
+

1

4
sin
(

2
x

L
+ ϕ− π

2

)]
. (3)

Before we start the analysis of this set-up, we need to transform the
above equation of motion in its dimensionless form. Towards this aim, we
introduce dimensionless distance and time variables for the system under
consideration [26, 27]; i.e. we set

x̂ =
x

L
, t̂ =

t

κ0
, κ0 =

ΓL2

∆U
, (4)

so that the dimensionless form of the Langevin dynamics (1) reads

m¨̂x+ ˙̂x = −Û ′(x̂) + a cos
(
ωt̂
)

+
√

2Qξ̂
(
t̂
)
. (5)

Here, the dimensionless potential Û(x̂) = U(x)/∆U = U(Lx̂)/∆U = Û(x̂+

2π) possesses the period 2π and half of the barrier height is ∆Û = 1.
The remaining parameters are scaled as: m = M/(Γκ0), a = (L/∆U)A,
ω = κ0Ω. The rescaled thermal noise reads ξ̂(t̂ ) = (L/∆U)ξ(t) = (L/∆U)

ξ(κ0t̂ ) and assumes the same statistical properties as ξ(t), namely 〈ξ̂(t̂ )〉 = 0

and 〈ξ̂(t̂ )ξ̂(ŝ)〉 = δ(t̂− ŝ). The dimensionless noise intensity Q = kBT/∆U
is the ratio of thermal and half of the activation energy the particle needs
to overcome the non-rescaled potential barrier. In order to simplify the
notation further, we shall omit the ∧-notation in Eq. (5).

The above proposed scaling procedure is not unique as one is free to
define other characteristic time scales of the system described by Eq. (1);
namely,

κ0 =
ΓL2

∆U
, κ1 =

M

Γ
, κ2

2 =
ML2

∆U
, κ3 =

2π

Ω
. (6)

Note that only three of them are independent because κ0κ1 = κ2
2 . Here, we

use as the unit of time κ0, see in Eq. (4) above. This corresponds to the
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characteristic time scale for an overdamped particle to move from the max-
imum of the potential U(x) to its minimum. It can be extracted from the
equation Γ ẋ = −U ′(x). The scale κ1 denotes a relaxation time of the ve-
locity v = ẋ of the free Brownian particle (i.e. for the choice U(x) = A = 0)
which is obtained from the relation Mẍ + Γ ẋ = 0. Note that here, the di-
mensionless mass emerges as m = κ1/κ0; i.e. it equals the ratio of these two
characteristic time scales. The quantity κ2 is a characteristic time scale for
the conservative system (when Γ = A = 0) and follows from the equation
Mẍ = −U ′(x). It is related to the period of particle linearized oscillations
within one potential well. The remaining third time scale κ3 is the period
of the external time-periodic force. Thermal fluctuations are modelled here
approximately as white noise. In real systems, however, it is never strictly
zero but physically typically much smaller than the other time scales.

The limit Γ →∞, implying that m→ 0, presents an overdamped ther-
mal rocking ratchet dynamics, whose adiabatic and alike its non-adiabatic
driving regimes have been previously thoroughly studied in Refs. [28, 29] in
both, its stochastic dynamics at finite temperatures and as well in its deter-
ministic limit [28, 30]. Remarkably, this overdamped deterministic regime
is already rather complex, exhibiting, for example, locking regimes which
follow a devil’s staircase behaviour [29, 30].

Potential (3) has originally been derived for the asymmetric supercon-
ducting quantum interference device (SQUID) which is composed of a loop
with three capacitively and resistively shunted Josephson junctions [31–35].
The particle coordinate x and velocity v correspond to the Josephson phase
and the voltage drop across the device, respectively. The particle mass
stands for the capacitance of the SQUID, the friction coefficient translates
to the reciprocal of the SQUID resistance. The time-periodic force corre-
sponds to the modulated external current. The asymmetry parameter ϕ of
potential (3) can be controlled by an external magnetic flux which pierces
across the device.

From a mathematical point of view, Eq. (5) is a second order differential
equation additionally complemented by a random force. At first glance, it
seems simple for undertaking a study. However, note that even the phase
space of the noiseless autonomous system modelled by Eq. (5) is already
three-dimensional {x, y = ẋ, z = ωt}; therefore, being minimal for it to
display a chaotic dynamics [36]. Moreover, the underlying parameter space
{m, a, ω,Q, ϕ} is five-dimensional, thus exhibiting a rich and correspond-
ingly highly complex behaviour. The probability density P (x, v, t) for the
particle coordinate x and its velocity v obeys a Fokker–Planck equation
corresponding to the Langevin equation (5) [37]. It is a parabolic partial
differential equation with a time-periodic drift coefficient in phase space of
position and velocity. Combining it with a non-linear periodic potential U(x)
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together with a five-dimensional parameter space implies that corresponding
analytic time-dependent solutions become in practice unattainable and we
are thus forced to use advanced numerical resources. Details of the latter are
elaborated in Ref. [38]. However, for large dimensionless times (t� 1), the
probability density P (x, v, t) approaches the asymptotic periodic probability
distribution Pas(x, v, t) = Pas(x, v, t + T) with the periodicity T = 2π/ω of
the time-periodic driving a cos(ωt) [39–41].

3. Transient regime: anomalous diffusion

The diffusion behaviour of the particle dynamics and the spread of its
trajectories is conventionally characterized by the mean-square deviation
(variance) of the particle position x(t) [20], namely,

σ2x(t) =
〈

[x(t)− 〈x(t)〉]2
〉

=
〈
x2(t)

〉
− 〈x(t)〉2 , (7)

where the averaging 〈·〉 is over all realizations of thermal fluctuations as well
as over the initial conditions for the position x(0) and the velocity ẋ(0). The
latter is necessary because in the deterministic limit of vanishing thermal
noise intensity Q → 0, the dynamics may possess several coexisting attrac-
tors thus being non-ergodic and implying that the corresponding results may
be affected by a specific choice of those selected initial conditions [42]. If the
coordinate variance grows linearly in evolving time; i.e.

σ2x(t) = 2Dt (8)

we refer to diffusion as normal and the parameter D is termed the diffusion
coefficient. Any deviation from this strict linearity qualifies as a process
exhibiting anomalous diffusion [20, 43–45]. For anomalous diffusion, the
variance assumes an increasing function of elapsing time, growing either
according to a sub-diffusive or a superdiffusive power law [20]

σ2x(t) ∼ tα . (9)

Normal diffusion is observed for α = 1. The case of 0 < α < 1 refers to
subdiffusion, while the case of α > 1 is classified as superdiffusion. It be-
comes appropriate for the following discussion to consider a time-dependent
“diffusion coefficient” D(t), defined by the relation [42]

D(t) =
σ2x(t)

2t
. (10)



1136 P. Hänggi, J. Łuczka, J. Spiechowicz

If the behaviour is as in (9), then D(t) ∼ tα−1 and
— D(t) is time-decreasing for subdiffusion,

— D(t) is constant for normal diffusion,

— D(t) is time-increasing for superdiffusion.
We stress that only in the asymptotic long-time regime with the exponent α
approaching unity, we find a properly defined, finite diffusion coefficient D,
i.e.

D = lim
t→∞

D(t) <∞ . (11)

If the diffusion process is anomalous, then D(t) either converges to zero (for
subdiffusion) or diverges to infinity (for superdiffusion) when t→∞.

In panels (a) and (b) of Fig. 1, we depict time evolution of the diffusion
coefficientD(t) and the coordinate mean square deviation σ2x(t), respectively,
for two values of the noise intensity Q ∝ T . At first glance, it is difficult to
identify whether in fact anomalous diffusion takes place by just inspecting
the behaviour for σ2x(t). In distinct contrast, from inspecting instead the
behaviour for D(t), it becomes more facile to differentiate between the two
anomalous types of diffusion: superdiffusion occurs in the interval where
D(t) increases, while the case of decreasing D(t) corresponds to subdiffu-
sion. For an invariant D(t), normal diffusion takes place. In panel (a), the
evolution of D(t) can be divided into the three following time-intervals: an
early behaviour of superdiffusion (0, τ1), an intermediate temporal interval
(τ1, τ2) where subdiffusion emerges over several decades and an asymptotic
long-time regime t > τ2 where normal diffusion occurs. The crossover times
τ1 and τ2 separating these domains can be controlled by the temperature or
noise intensity. For a lower temperature (i.e. Q = 0.00016, see the grey/red
curve in panel (a)), the lifetime of superdiffusion is extremely long. In fact,
it tends to infinity when Q → 0 (the deterministic case). For Q = 0.00016,
the superdiffusion regime extends to τ1 ≈ 3.2× 106. It is difficult to numer-
ically determine τ2 due to limited stability of the utilized algorithm, leading
to uncontrolled propagation of roundoff- and truncation-errors. However,
if we adopt an extrapolation from other cases, then the time τ2 is at least
of the order of 1011 ∼ 1013. For higher temperature (Q = 0.0007, the
black/blue curve in panel (a)), the lifetime τ1 is shorter and it tends to zero
when the temperature tends to infinity. For Q = 0.0007, the superdiffusion
lifetime is at τ1 ≈ 3.2 × 103 and for subdiffusion it is at τ2 ≈ 108. For
higher temperatures, the dynamics is initially superdiffusive and approaches
a normal diffusion behaviour without exhibiting an intermediate subdiffu-
sion time-interval. It is important to note that generally the anomalous
diffusion behaviour is only of a transient nature and eventually it always
tends to normal diffusion in the asymptotic long-time limit.
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Fig. 1. (Colour on-line) Transient anomalous diffusion of an inertial Brownian par-
ticle moving in a periodic potential and driven by a unbiased time-periodic force. In
panel (a), we present the diffusion coefficient D(t) as defined in Eq. (10). Panel (b)
depicts time evolution of the coordinate variance σ2

x(t). In panel (c), the period av-
eraged velocity variance σ2

v(t) is shown. Two cases of thermal noise intensity Q pro-
portional to temperature are presented (grey/red and black/blue line). The region
corresponding to the subdiffusive behaviour is for the intensity set at Q = 0.0007

(region in light grey/cyan colour). The remaining parameters are chosen as: m = 6,
a = 1.899, ω = 0.403. The rescaled potential is U(x) = − sin(x) − (1/4) sin(2x),
which corresponds to ϕ = π/2. These panels are reproduced from Ref. [51].

4. Asymptotic normal long-time diffusion:
Non-monotonic temperature dependence

In the standard Sutherland–Einstein relation [8, 9] valid for systems at
thermal equilibrium, the diffusion coefficient D is a monotonically increasing
linear function of temperature T , i.e.

D = µkBT , (12)

where µ is a mobility coefficient. This is in accordance with our intuition be-
cause when temperature grows, then thermal fluctuations become larger and,
in consequence, fluctuations of the particle position also increase. However,
for some parameter regimes of our non-equilibrium set-up, we observe an
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atypical, non-monotonic temperature dependence for the emerging asymp-
totic normal diffusion constant D [46]. An example is presented with Fig. 2.
At low temperatures Q, the diffusion coefficient increases with increasing Q
until it reaches a local maximum at Q ≈ 2× 10−5 (cf. dark grey/red line).
Then it decreases towards a minimum at Q ≈ 5× 10−3 before turning over
into a monotonically growing function of Q; finally, at sufficiently large val-
ues of Q, the diffusion coefficient D becomes precisely proportional to Q; i.e.
to the temperature T of the ambient thermal bath. This high-temperature
behaviour, however, is not depicted in Fig. 1. The decrease of the diffusion
constant with increasing temperature Q ∝ T is truly counter-intuitive, be-
ing in clear contrast with the Sutherland–Einstein relation (12) as well as
with other known relations such as for example Vogel–Fulcher-like laws [47]
or an Arrhenius-type behaviour for the diffusion of a Brownian particle in
periodic potentials [48–50].
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Fig. 2. (Colour on-line) The dependence of the asymptotic diffusion coefficient D
(left-hand side ordinate) and the directed velocity 〈v〉 (right-hand side ordinate,
see Eq. (16)) versus the noise intensity Q, the latter being proportional to the
temperature T of the bath. The chosen parameters are: m = 6, a = 1.899,
ω = 0.403, ϕ = π/2. The panel is reproduced from Ref. [46].

5. Averaged velocity of the Brownian motor

In order to explain the above two anomalous transport phenomena, one
needs first to carefully examine the deterministic structure of the phase
space {x, v} of all coordinates and velocities of the Brownian motor. For
the presented parameter regime, cf. Figs. 1 and 2, the noiseless system with
Q = 0 is non-chaotic with three coexisting attractors {v+, v0, v−} in the
velocity subspace {v}. These attractors correspond to running solutions
with v+ ≈ 0.4 and v− ≈ −0.4, and the locked solution v0 ≈ 0. There are
three classes of trajectories corresponding to these three states: x+(t) ∼ 0.4t,
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x−(t) ∼ −0.4t and x0(t) ∼ 0. The basins of attraction for these attractors is
shown in Fig. 3. The grey/red and dark grey/blue sets consist of all initial
conditions {x(0), v(0)} evolving into the running states with either positive
v+ ≈ 0.4 and negative v− ≈ −0.4 velocity, respectively. The light grey/green
colour regimes mark the locked states with v0 ≈ 0.

Fig. 3. (Colour on-line) Basins of attraction for the asymptotic long-time particle
velocity v(t). The grey/red and dark grey/blue coloured sets consist of all initial
conditions {x(0), ẋ(0)} eventually evolving to the running states with the positive
v+ ≈ 0.4 and negative v− ≈ −0.4 velocity, respectively. The light grey/green
colour marks the set of locked states v0 ≈ 0. Parameters are: m = 6, a = 1.899,
ω = 0.403, ϕ = π/2. For this particular regime the deterministic system (5) with
Q = 0 is non-chaotic. Panel reproduced from [42].

When the noise intensity is non-vanishing, then thermal fluctuations in-
duce a stochastic dynamics which destabilizes those attractors and leads
to random transitions between its coexisting basins of attraction. This sit-
uation is analogous to an escape dynamics from metastable wells in mul-
tistable equilibrium systems [50]. Such transitions between the running
and/or locked states may generate the transient anomalous diffusion doc-
umented with the previous sections. Since we are interested not only in the
asymptotic state but also in the full time dynamics, it is useful to consider
the averaged velocity over the realizations and here additionally also over
the temporal driving period of the Brownian motor, in presence of thermal
noise; i.e.

〈v(t)〉 =
ω

2π

t+2π/ω∫
t

ds 〈ẋ(s)〉 (13)
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and its variance
σ2v(t) =

〈
v2(t)

〉
− 〈v(t)〉2 . (14)

In the asymptotic long-time limit, these so double-averaged quantities be-
come time-independent, while the solely noise-averaged quantities alone as-
sume a time-periodic function of the asymptotic time-periodic (with period T)
phase-space probability Pas(x, v, t) = Pas(x, v, t + T). Put differently, in
the asymptotic long-time limit, the mean velocity 〈ẋ(t)〉 takes the form
of a Fourier series over all possible higher harmonics of the driving force
[11, 39, 41]

lim
t�1
〈ẋ(t)〉 = 〈v〉+ vω(t) + v2ω(t) + . . . , (15)

where 〈v〉 is the time-independent (dc) component, while vnω(t) denote time-
periodic higher harmonic functions of zero average over the fundamental
period T = 2π/ω of the driving. The averaged directed velocity 〈v〉 can also
be obtained from Eq. (13), namely,

〈v〉 = lim
t�1
〈v(t)〉 . (16)

Due to the presence of the external driving, the Brownian motor is taken far
away from thermal equilibrium and a time-dependent non-equilibrium state
is reached in the asymptotic long-time regime. Since all forces in the right-
hand side of Eq. (5) are non-biased, a necessary condition for the occurrence
of directed transport 〈v〉 6= 0 is the breaking of the reflection symmetry of
the potential U(x) [13, 25], cf. the left panel of Fig. 4.
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Fig. 4. (Colour on-line) Left panel: The potential given by Eq. (3) depicted in
the symmetric case ϕ = 0 and its ratchet form for the asymmetry parameter
ϕ = π/2. Right panel: The asymptotic long-time averaged directed velocity 〈v〉
versus the noise intensity Q, being proportional to temperature T of the ambient
bath. Parameters are: m = 6, a = 1.899, ω = 0.403, ϕ = π/2. Right panel is
reproduced from [52].
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In the right panel of Fig. 4, we plot the directed velocity 〈v〉 as a func-
tion of temperature Q ∝ T . For vanishing intensity Q → 0 of thermal
fluctuations, the directed velocity 〈v〉 → 0, which is in agreement with the
probability distribution P (v(t)) of the individual asymptotic long-time pe-
riod averaged motor velocity for the deterministic variant of system (5) with
Q = 0. It is so because of the weighted average over the two running at-
tractors v− = 0.4 and v+ = 0.4 as well as the locked state v0 = 0 yields a
vanishing 〈v〉 = 0. For slightly higher temperature, we observe small fluc-
tuations around the deterministic value 〈v〉 = 0. A further growth of tem-
perature causes a notable enhancement of the particle velocity 〈v〉 ≈ 0.4.
We marked this region with the grey/cyan colour. In this regime, for the
deterministic counterpart of the system, there is no directed transport of
the motor, however thermal fluctuations induce it. The reason for this be-
haviour is concealed in thermally activated jumps in the phase space of the
non-equilibrium dynamics.

6. Mechanism responsible for anomalous transport

Let us now explain the mechanisms which are at the origin for the above
presented transport anomalies:

(i) Superdiffusion [42]. In the deterministic case of Q = 0, there are three
attractors in the velocity subspace and there are three classes of trajec-
tories associate with them: x+(t) ∼ 0.4t, x−(t) ∼ −0.4t and x0(t) ∼ 0.
The overall mean value of the particle position is negligibly small
〈x(t)〉 ≈ 0, meaning that also 〈v〉 ≈ 0. Moreover, this fact implies that
the mean-square deviation 〈∆x2(t)〉 = 〈x2(t)〉−〈x(t)〉2 ≈ 〈x2(t)〉 ∼ t2.
As a consequence, superdifusive transport takes place which in fact is
ballistic diffusion in this deterministic case. This superdiffusive regime
is persistent only if Q→ 0. For Q > 0, thermal noise induces repeated
stochastic transitions among the deterministic solutions x+(t), x−(t)
and x0(t) which in turn allow for the occurrence of finite directed
Brownian motor transport 〈v〉 6= 0 if the reflection symmetry of the
system is broken, cf. Fig. 4. In particular, as temperature grows pro-
gressively, more transitions from the trajectories x−(t) and x0(t) to
the solution x+(t) ∼ 0.4t are observed. There occurs even an intensity
interval where almost all particles travel according to x+(t) ∼ 0.4t as
then 〈v〉 ≈ 0.4, cf. grey/cyan colour regime in Fig. 4. The relaxation
time of the velocity 〈v(t)〉 to its asymptotic long-time value 〈v〉 is the
same as the lifetime τ1 for superdiffusion. If the intensity of thermal
fluctuations increases, the frequency of thermally activated transitions
between the deterministic solutions grows greater and, therefore, the
lifetime for superdiffusion decreases.
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(ii) Subdiffusion [51, 52]. For the noisy system Q 6= 0, the directed trans-
port velocity 〈v〉 6= 0 and the probability for the particle to be in
the positive running state v+ ≈ 0.4 grow, whereas the corresponding
quantity to stay in the negative running state v+ ≈ −0.4 as well as in
the locked state v0 ≈ 0 decreases. Consequently, the spread of trajec-
tories is smaller and the subdiffusion is developed. It means that once
the particles enter the state v+, they move almost coherently. This
argument is supported by the panel (c) of Fig. 1, where the veloc-
ity fluctuations are significantly reduced within the time-interval for
subdiffusion. These small, but still finite fluctuations are responsible
for the ultraslow subdiffusion where the observed scaling index α in
Eq. (9) is tiny but nonzero α� 1 [51]. In the time-interval τ1 < t < τ2
the probability for the particle to be in the state v+ is extremely close
to unity, meaning that almost all particle trajectories are localized in
this regime. Finally, for sufficiently long times t > τ2, random dynam-
ics induced by thermal fluctuations again activate jumps between the
coexisting trajectories, thus eventually leading to normal diffusion.

(iii) Non-monotonic temperature dependence of the diffusion coefficient [46].
Let us focus on two exemplary temperatures Q1 < Q2, e.g. Q1 = 10−2

and Q2 = 1 in Fig. 2, in order to explain the mechanism responsible
for non-monotonic temperature dependence of the diffusion coefficient.
Here, we observe that D(Q1) > D(Q2). For the lower temperature
Q1 = 10−2, the averaged directed velocity is 〈v〉 ≈ 0.25 > 0, whereas
for larger Q2 = 1, the velocity 〈v〉 ≈ 0, i.e. 〈v〉(Q1) > 〈v〉(Q2) ≈ 0.
The latter observation means that for the lower temperature, the de-
terministic structure of the three attractors {v+, v0, v−} is still present
and plays an important role in controlling the diffusive properties of
the system. In particular, because then 〈v〉 > 0, the majority of tra-
jectories is travelling with the positive velocity v+, nevertheless, a still
significant fraction of them follows the locked solution v0 and alike also
the negative running solution v−. The probability distribution for the
particle velocity can approximately be represented by a sum of three
Gaussians of different mean values, representing the corresponding de-
terministic solution {v+, v0, v−}. This causes a large overall spread
among the particles and, as a consequence, also for the corresponding
diffusion coefficient. For larger temperature 〈v〉 ≈ 0, the deterministic
structure of attractors ceases to be of relevance. In such a case, the
probability distribution of the particle velocity can be approximated
by a single Gaussian with zero mean. Now, the spread between the
trajectories is only due to variance of the latter probability distribution
which is significantly smaller as compared to the case with lower tem-
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peratures. Consequently, the diffusion coefficient is reduced. For even
larger growing temperature Q > Q2, the diffusion coefficient behaves
in a standard way and increases with increasing temperature. This
corroborates the finding that for higher temperature, the variance of
the Gaussian probability distribution for the particle velocity becomes
larger.

7. Summary

We have shown that for an inertial non-linear Brownian motor dynam-
ics modelled by an equation which at first glance may appear simple, i.e.
for a one-dimensional Newton equation driven by random forces and ex-
ternal driving, the resulting diffusive dynamics manifests an exceptionally
rich spectrum of physical phenomena, including counter-intuitive anomalous
transport behaviours. The main reason responsible for these features is that
the system operates far away from thermal equilibrium. Even the asymp-
totic long-time state is manifest non-equilibrium and its analytical form is
far from being accessible analytically. Therefore, the only applicable scheme
for the analysis of this archetype set-up is via numerical simulations. The
latter can explain the physics of the occurring phenomena, but only on a
qualitative level. A remaining open question then is to what extent this
simple, stylized set-up with its already complex behaviour can still serve as
a trustworthy paradigm for describing those anomalous transport features
occurring in more realistic complex systems possessing many more degrees
of freedom.
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