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In this brief overview, I address some of the fundamental topics related
to the physics of strongly correlated fermions, which have been also the
subject of my research. After addressing the question why the field has
a fundamental meaning, we next turn to the specific problems with their
simple theoretical description. Those topics are: (i) the concept of spin-
dependent masses of heavy particles and its subsequent experimental verifi-
cation; (ii) the correlated metal–insulator transitions of the Mott–Hubbard-
type; (iii) real space pairing and its subsequent experimental verification for
high-temperature superconducting cuprates. I mention also the persistence
of quantum spin and charge excitations in the superconducting phase. All
those phenomena confirm the view that the strongly correlated fermionic
systems represent a new class of quantum liquids, with some properties
quantitatively different than those of the Landau Fermi liquids. Namely,
they can be classified as those that fall in between those of the anomalous
Landau Fermi liquid and localized-magnetic-moment system.
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1. Introduction: Fundamental features of correlated systems

The fundamental theoretical work on correlated fermion systems started
with intuitive considerations by Mott and Anderson, and was formally refor-
mulated by Hubbard (cf. the summaries of an early-stage effort in Refs. [1–3]
respectively). The main overall features of the nonrelativistic correlated sys-
tems can be briefly characterized as follows.

∗ Based on the plenary talk presented at the 45th Congress of Polish Physicists, Kraków,
September 13–18, 2019, on the occasion of receiving the Marian Smoluchowski Medal
in Physics.
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1.1. Definitions

The ground-state energy of a periodic condensed system of fermions can
be described by starting from the system atomic configuration and, subse-
quently, adding other dynamic interactions which appear in the emerging
condensed state. Namely, its energy per atomic state can be expressed in
the form of [4]

EG

N
= εa + 〈T 〉+ 〈V 〉+ 〈V12〉 ≡ E1 + E2 , (1)

where εa is the single particle in an atomic (Wannier) state, 〈T 〉 and 〈V 〉 are
the average kinetic and potential energies in the state, whereas 〈V12〉 is the
expectation value of the two-particle interaction. Thus, the single-particle
part E1 comprises the first three terms and E2 ≡ 〈V12〉. In such a periodic
system near the delocalization–localization transition, we usually assume
that εa = 0, i.e., it acquires a constant (reference) value which is often
disregarded unless stated explicitly. In this manner, the remaining terms
characterize solely the contributions of relevant fermions in condensed state.
Note also that usually E1 < 0. Next, one can define two physically distinct
regimes:

1. |E1| & E2: Fermi-liquid (metallic) regime, ranging to the delocalization–
localization threshold when |E1| ≈ E2;

2. |E1| � E2: Strong-correlation (Mott) regime.

Let us characterize briefly each of them and introduce the states in these
regimes. Connected with this is the start from atomic (Wannier) represen-
tation of the involved states and interactions, although in situation 1. the
starting point is often described by either gas of fermions or the Landau
Fermi liquid and associated with them momentum representation and the
Fermi–Dirac statistics in its canonical form. In discussing the correlated
systems, we start as a rule from the Wannier representation (see below).
This means that we start from two complementary representations of the
quantum-mechanical states, i.e., in the Bloch representation the momen-
tum uncertainty is zero, whereas in the Wannier representation, the proper
quantum number is the fixed lattice position at which the wave function is
centered.

1.2. Mott–Hubbard localization–delocalization transition

The above division into the asymptotic regimes is illustrated in Fig. 1,
where the complementary nature of the single-particle states is represented
on an example of a solid with metallic (delocalized) states of electrons (a)
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or correlated (atomic, Mott) states (b) for the case with one relevant va-
lence electron per parent atom. Additionally, we have marked the dividing
line (Mott–Hubbard boundary) between the two macrostates. An impor-
tant remark should be provided already here. First, the momentum rep-
resentation is described by the Bloch functions {Ψpσ(r)} of particle with
(quasi)momentum p = ~k and the spin quantum number σ = ±1 ≡↑, ↓,
whereas the position representation is expressed by the corresponding set of
Wannier states {wiσ(r)}, both in the single-band situation for fermions of
spin 1/2. These two representations are equivalent in the sense that they
are related by the lattice Fourier transformation. However, in the situation
depicted in Fig. 1, when we have a sharp boundary (usually the first-order
phase-transition line) between the states shown in (a) and (b), this equiva-
lence is broken and, in effect, the unitary symmetry U(N) does not apply.
The macroscopic state (a) near the transition is represented, strictly speak-
ing, by a modified Landau Fermi liquid (the so-called almost localized Fermi
liquid, ALFL), whereas the Mott-insulating state is well-accounted for as
a localized-spin (Heisenberg) antiferromagnet (in the ground state).
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Fig. 1. Schematic representation of metallic (a) and quasiatomic (Mott-insulating)
states of a planar lattice composed of hydrogen-like atoms, each with one valence
electron (b). The Mott–Hubbard (metal–insulator) boundary is marked in the mid-
dle. The transition between those complementary states is as a rule discontinuous.

From the above qualitative picture, one can infer that with the approach-
ing metal → insulator boundary, i.e., with formation of the localized-spin
state, the kinetic energy of the renormalized-by-interaction particle progres-
sive motion through the system is drastically reduced and, as a result, it
vanishes in the localized (insulating) state. Effectively, one can say that the
Landau quasiparticle effective mass diverges, m∗ → ∞. This feature illus-
trates the situation that strong enough interactions (called in this context
strong correlations) limit the stability of the Landau–Fermi quasiparticle
picture, as is exemplified explicitly by the appearance of the Mott–Hubbard
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phase transition. In addition, a proper quantitative description of the tran-
sition requires a model with a simultaneous generation of the effective ex-
change interactions (kinetic exchange [5] in the one-band case or superex-
change in the multiple-orbital situation [5]). In the subsequent section, we
provide a quantitative analysis of these statements. The starting point of
these considerations is the parametrized microscopic Hamiltonian provided
below.

1.3. High-temperature (high-Tc) superconductivity

Strictly speaking, the Mott–Hubbard transition takes place when we have
one electron per relevant valence orbital (for the filling n = 1), i.e., a half-
filled band configuration when looking at it from the metallic side. The
Mott insulating state appearing in such a situation is thus completely differ-
ent from that of Bloch–Wilson band insulator, where the number of valence
electrons per relevant orbital is n = 2 (even number in many-orbital situa-
tion), i.e., each involved band is full (and separated from other states). This
difference is exhibited explicitly by the circumstance that the Mott insula-
tor has unpaired spins on atoms (localized states) and thus is a magnetic
(usually antiferromagnetic) insulator, whereas the Bloch–Wilson insulator
is diamagnetic (with zero net spin moment and magnetism solely due to
the orbital moment). A fundamental question is what happens if we have
holes in the Mott insulator, produced either by extrinsic doping or by self-
doping. The situation is presented schematically in Fig. 2 on the example of
square lattice, where we mark virtual hopping processes in the second order
in the case of the Mott insulator (a) and the real hopping, in addition to

(a) undoped insulator

virtual hopping

processes

real hopping 

process

(alternate process)

(b) hole-doped system

Fig. 2. Schematic representation of the particle dynamics as intersite hopping pro-
cesses in real space: Virtual hopping (a) in the Mott insulating state and also real
motion when holes are present (b) and, in effect, a strongly-correlated metallic
state appears, for which its single-particle (band) energy is only a fraction of the
corresponding short-range part of Coulomb energy.
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the virtual hopping, in the situation with holes in the Mott insulator (b).
It was shown first by Anderson [6, 7] that the virtual processes depicted
in (a) lead to the antiferromagnetic kinetic exchange and, in consequence,
to the antiferromagnetic ordering in almost all Mott insulators with odd
number of electrons per atom. Those considerations have been subsequently
generalized to the case of the doped insulator (correlated metal) by Spałek
et al. [8–11] and from there the emerging later [12–14] t–J (of t–J–U) model
of high-temperature superconductivity. The latter model plays a prominent
role in the theory of strongly correlated systems and is discussed in the next
section.

1.4. Spin-dependent masses

The interaction between correlated particles in the simplest form is taken
in the form of single-band Hubbard model [3, 15]

H̃ =
∑
ijσ

′
tij â

†
iσ âjσ + U

∑
i

n̂i↑ n̂i↓ , (2)

in which tij ≡ 〈wi|H1|wj〉 < 0 represents the single-particle parameter
phrased as the hopping, with the bandwidth of bare statesW ≡ 2z|

∑
j(i) tij |

and U is the magnitude of intra-atomic interactions (the so-called Hubbard
term). For strongly correlated electrons, we can rephrase the conditions 1.
and 2. as W > U , with W ' U for the system at the Mott–Hubbard transi-
tion, whereas W � U represents extreme strongly correlated limit 2. In the
latter case and for n < 1 a specific phenomenon appears, namely the quasi-
particles have spin-direction-dependent effective masses in the spin-polarized
situation, e.g., in a sufficiently strong applied magnetic field. This effect is
large and has been predicted by us first theoretically [16, 17] and later con-
firmed experimentally [18]. The difference between the effective masses (m↑
and m↓) can be quite large and m↑ � m↓, where the spin direction ↑ cor-
responds to the spin-majority quasiparticles. The situation is illustrated in
Fig. 3 and the effective-mass difference can be quite large (even of an order
of magnitude) [19, 20]. In Fig. 4, we display the exemplary results. The
experimental results prove that the quasiparticles can be regarded in many
respects as real particles.

The appearance of spin-dependent masses bears a fundamental conse-
quence for the statistics of the correlated fermions (e.g., electrons). Namely,
the particles in the paramagnetic liquid state (correlated or not) are in-
distinguishable in the quantum mechanical sense. This, however, does not
necessarily imply that the Fermi–Dirac distribution applies to them. On the
other hand, when the masses are different: they then become distinguishable,
particularly when their masses are different and the effective wave equations
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Fig. 3. Emergence of spin-dependent masses out of the paramagnetic state of cor-
related electrons (a), when system is polarized, e.g., by applied magnetic field (b).
The main source of the spin splitting are the interparticle correlations, not the
Zeeman splitting of the corresponding spin subbands. In the saturated magneti-
cally state, the quasiparticles acquire the bare band mass, which still may differ
from free-electron mass m0. W — bare-bandwidth and q0 is the so-called band
narrowing factor (see the next section).

for them are distinct (have different mass in the kinetic-energy term). Fi-
nally, when the system is totally spin-polarized, the minority-spin particles
disappear and the only existing majority-spin (all) particles become indistin-
guishable again. Additionally, those majority-spin particles acquire in that
state the bare (band) mass. This prediction, if tested experimentally, may
serve as a direct test of the question of quantum-mechanical indistinguisha-
bility versus distinguishability. We regard this aspect of correlated states as
one of the fundamental aspects of physics of the correlated quantum matter.
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Almost localized

Fig. 4. Exemplary effective spin-dependent mass difference for fermions in a corre-
lated narrow band with the band filling n close to the half filling n = 1 (with one
valence electron per atom). Inset: the corresponding mass splitting for electron
gas in an astronomically large applied field (cf. [21]).

2. From Landau Fermi liquid to Mott–Hubbard insulator
or strongly correlated liquid

2.1. Landau Fermi-liquid theory: A brief overview

The Landau theory of Fermi liquids represents a standard reference point
in the theory of interacting fermions (for recent references, see [22–24]).
Here, we describe only briefly their characteristics, particularly those which
appear or are included in the theory of correlated systems.

The principal assumption of the theory is that we are interested in the
change of ideal Fermi gas properties induced by the inter-particle interactions
and associated with them thermal excitations at low temperatures. In other
words, we express the change of the total energy of the system due to the
interaction in the form of

δE '
∑
kσ

εkσ δnkσ +
1

2

∑
kk′

fσσ
′

kk′ δnkσ δnk′σ′ ≡
∑
kσ

Ekσδnkσ , (3)

where εkσ is the single-particle energy (with respect to the chemical potential
terms µ) and fσσ

′

kk′
(generally spin-dependent) is the effective interaction

between those particles; it has the form of spin-dependent density–density
interactions. Explicitly, εkσ ≡ εk − gµBHaσ − µ and in the isotopic liquid
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(not generally true for fermions in lattice systems), we have that fσσ′
kk′

=

fs
kk′

(k ·k′/k2
F)+σσ′fa(k ·k′/k2

F), where kF is the Fermi wave vector and f s,a
express spin-independent and spin-dependent parts, respectively. The next
assumption is that we take into account the interaction-induced scattering
processes for particles at the Fermi surface, i.e., put that k·k′

k2F
= cos θkk′ and

then we can express the interaction parameters in terms of the Legendre
polynomial expansion

f (s,a)(cos θ) =

∞∑
l=0

f
(s,a)
l Pl(cos θ) . (4)

There are three implicit assumptions in this formulation. First, the scatter-
ing is important only very near or, strictly speaking, at the Fermi surface
due to the Pauli principle, i.e., the circumstance that particles can scatter
only from occupied states |kσ〉 into unoccupied ones. Second, a well-defined
Fermi surface exists even if the interaction is included (the Luttinger the-
orem proved later on the grounds of perturbation expansion and assuming
validity of the Dyson theorem there; not always valid for correlated sys-
tems). The third, there is one-to-one correspondence between the initial
(bare energy states, εkσ) and the effective (quasiparticle) states with ener-
gies Ekσ ≡ εkσ + 1

2

∑
kk′σ′ f

σσ′

kk′
δnk′σ′ . Moreover, the Fermi energy EF ≡ µ

at T = 0 can be regarded as the same reference state for both bare and
quasiparticle states. Effectively, this means that the interaction processes,
practically active only at the Fermi surface, do not influence the Fermi sur-
face volume. Finally, from the third assumption, it follows that the sta-
tistical distribution for the quasiparticles can be taken in the form of the
Fermi–Dirac distribution for those states, i.e., f(Ekσ) = [exp (βEkσ) + 1]−1.

The ingenious feature of this theory is, in opinion of the author, that
the principal properties of the Fermi liquid, such as liquid 3He, can be ex-
pressed solely by the first three parameters of expansion (4): fs0 , fs1 , and
fa0 , what makes this theory, phenomenological in its nature, testable in its
original form, at least for liquid 3He. What is more, the assumption about
the Fermi–Dirac distribution applicability has been tested on two systems:
experimentally, for liquid 3He (cf. Fig. 5 (a), (b)) and theoretically by con-
sidering evolution of the statistical distribution function, calculated exactly
for a model nano-chains and nano-rings of hydrogen atoms, as a function of
inter-atomic distance R in units of the Bohr radius a0 (cf. Fig. 5 (c)) [25, 26].

Nevertheless, as shown in Fig. 5 (a), (b), the effective-mass concept (m∗3)
for the atoms breaks down and consequently, of the linear specific heat γ
ceases to exist at the liquid–solid transition (cf. Fig. 5 (b)). Additionally,
with the increasing lattice parameter R (decreasing electron density), the
concept of a sharp Fermi level gradually fades away (cf. Fig. 5 (c)). These
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(a)

(b)

(c)

Fig. 5. Principal characteristics of liquid 3He as of Fermi liquid: (a) the Fermi–
Dirac distribution measured by neutron scattering [27]; (b) the linear-specific-heat
coefficient γ in units of gas constant R and inferred from it effective atom mass
enhancementm∗

3/m3, both as a function of external pressure (cf. [28]); (c) evolution
of the Fermi–Dirac distribution for linear chains composed of H atoms, with inter-
atomic distance R (relative to Bohr radius a0) cf. Refs. [25, 26].

effects cannot be accounted within the Landau Fermi-liquid theory. They are
next discussed within the Hubbard model by introducing the concept of an
almost localized Fermi liquid and a discontinuous delocalization–localization
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(metal–insulator) phase transition. These aspects are regarded as the second
fundamental aspects which arose from the observations in the solid state
physics [4, 17, 29] (for elementary discussion of the transition, see Appendix).

2.2. An almost localized Fermi liquid (ALFL)

One can notice from Fig. 5 (b) that the Fermi-liquid state characterized
there by γ/R and the effective-mass enhancement m∗3/m3 of the 3He atom
in this milieu, both loose their meaning at the liquid–solid transition, which
takes place at the external pressure ' 36 bar. At this point the atoms freeze
into well-defined crystal positions and their individual quantum mechanical
state is characterized from now on by set of Wannier functions {w(r ·Ri)}
centered at well-defined lattice sites {Ri}. It must be underlined that in this
case, there is no single-particle potential trapping the particles, as it is the
case of electrons in solids. Our task in this section is to briefly discuss the de-
localization states on the liquid (metallic for electrons) side close to the tran-
sition to the localized state, and next, its first-order phase-transition nature.
We model the system by starting from the Hubbard Hamiltonian (2) and cal-
culate the system ground-state energy per atomic site 〈H〉/N . As said above,
when approaching the localization–delocalization transition, we expect that
the single-particle and interaction parts become of comparable amplitude.
Due to this circumstance, we assume that the hopping probability 〈â†iσ âjσ〉 is
renormalized by the interaction to the form of 〈â†iσ âjσ〉 ≡ q〈â

†
iσ âjσ〉0, where

〈â†iσ âjσ〉0 is the hopping probability for noninteracting (uncorrelated) par-
ticles and q is the so-called renormalization (band narrowing) factor: q → 1
when U → 0 and q → 0 when U → Uc, where Uc is the critical interaction
value for the transition to the localized state to the take place. Explicitly,
we can write down the system internal energy in the form (for U 6 Uc) of

EG

N
=

1

N

∑
kσ

Ek f(Ek) + Ud2 , (5)

where Ek ≡ qεk, d2 ≡ 〈n̂i↑ n̂i↓〉, and f(Ek) in the Fermi–Dirac function
for renormalized particles still regarded as quasiparticles. In this function,
d2 is regarded as a variational parameter to be calculated self-consistently.
Therefore, the whole problem reduces to determining microscopically q ≡
q(d2). This can be carried out by considering the Gutzwiller variational
approach [30]. It turns out that for the half-filled (n = 1) state (i.e., with
one particle per atomic site) and for systems with electron–hole symmetry,
this factor can be calculated in the elementary manner [31] which yields in
a direct manner a simple result q(d2) = 8d2(1− 2d2). Additionally, we have
that for a constant density of states, the chemical potential can be set µ ≡ 0
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and

ε̄ ≡ 1

N

∑
kσ

(Ek/q) = −W
4
, (6)

where Ek/q ≡ εk represents the single-particle energy of bare particles at
the temperature T = 0 (also, effective mass renormalization is m∗ = mB/q,
where mB is the bare band mass).

By minimizing energy (4) with respect to d2, we obtain both the physi-
cal ground-state energy and the quasiparticle energy spectrum {Ek}. This
in turn, allows us to calculate concrete ground-state and thermodynamic
properties. Explicitly [32–34],

d2 =
1

4

(
1− U

Uc

)
, (7)

EG

N
=

1

4

(
1− U

Uc

)2

ε̄ , (8)

m∗

m0
=

1

1−
(
U
Uc

)2 ≡
1

q0
, (9)

χ

γ
=

1 + U
2Uc(

1 + U
Uc

)2 , (10)

with Uc ≡ 8|ε̄| = 2W (the second value is for a constant density of states).
Additionally, to calculate the magnetic susceptibility χ, a full Gutzwiller
approach must be used [30]. When U → Uc → 0, d2 → 0, EG → 0,
m∗ → ∞, and, χ/γ → 4. We see that at the transition, the interaction
(> 0) and the single-particle (< 0) parts compensate each other, the mass
for a translational motion throughout the system diverges, and the magnetic
susceptibility is proportional to γ. The U = Uc point thus represents a
dividing line between the itinerant and atomic states of the matter and the
freezing of particle into a lattice breaks the system translational invariance
(at least, in the liquid 3He case). A full microscopic approach would require
an explicit determination of the parameters U and ε̄ as a function of pressure.
Low-temperature corrections to above (7)–(10) have been analyzed elsewhere
[24, 32].

One may say that the picture formed by expressions (7)–(10) represents,
as in any Fermi-liquid theory, a basic quasiparticle picture, with an addi-
tional boundary for its applicability for U < Uc. In fact, this picture can be
mapped into the Landau Fermi-liquid parametrization of the physical prop-
erties at T = 0 [35]. Such a parametrization via the renormalization factor q
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in the case of ALFL is summarized in Table I. The question remains what
is the collective spin- and charge-excitation spectrum in the present case.
This subject is a matter of our present studies and will not be detailed here
[36, 37].

TABLE I

Scaling laws of single-particle excitations in principal quantities of an almost local-
ized Fermi liquid. The quantities are: T ∗ = T/q, H∗ = Ha/q, β∗ = β/q and those
with the subscript zero represent noninteracting particles, Ha is applied magnetic
field, and β is the effective exchange field [40].

Property Formula for Scaling property
noninteracting particles for ALFL

Linear specific heat CV = γ0T γ = γ0/q

Pauli paramagnetism M = χ0Ha χ = χ0(T ∗)/qS

Fermi temperature TF0 = µ0/kB TF = TF0/q

Density of states ρ(ε) = 1
N

∑
k δ(ε− εk) ρ(E) = (1/q)ρ0(ε)

Free energy F0 = E0 − TS0 F (T,Ha) = q[F0(T ∗, H∗, β∗)
functional +β∗m] + Ud2

Particle–particle τ(ε, T )
scattering time = h/[(ε− µ)2 + (kBT )2] τ(ε, T ) = τ0(q, T ∗)

Quasiparticle energy ε− σHa E = q[ε− σ(H∗ − β∗)]

Wilson ratio RW = χ0/γ0 RW = R0/S̃ , 1 < RW < 4

2.3. Delocalization–localization (Mott–Hubbard) transition

As has been mentioned in the preceding section, the delocalization–
localization transition at T = 0 takes place at U = Uc. The question is
when this transition will appear at arbitrary T > 0. This question is a non-
trivial one, since near the transition, the renormalized single-particle and
interaction energy not only almost compensate each other, but also each of
the two terms vanish separately. In such a situation, small perturbations
such as thermal or atomic disorder, or even applied magnetic field may bal-
ance the energies towards either insulating (localized) or itinerant (ALFL,
metallic) state. We discuss next the effect of nonzero temperature.
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Starting from the internal energy (4), we define now the free energy of
the itinerant correlated system as [32, 38]

F

N
=

1

N

∑
kσ

Ek fkσ + Uη +
kBT

N

∑
kσ

[fkσ ln fkσ + (1− fkσ) ln (1− fkσ)] ,

(11)
where fkσ is the Fermi–Dirac function for quasiparticles with energies Ekσ

and the last term is the entropy in the given state (not necessarily the equi-
librium state, which we determine by minimizing F). This expression allows
for low-temperature (Sommerfeld-type) expansion defined as the regime with
kBT/qW � 1. In effect, the first nontrivial terms in paramagnetic state have
the form of

F

N
= −ΦW

4
+ Uη − γ0T

2

Φ
+O

(
T 4
)
. (12)

A detailed analysis of the low-T expansion is provided in [32], where the
Gutzwiller–Brinkman–Rice approach is generalized to the T > 0 case in the
simplest form. Note that the expressions describe the free energy functional
for an almost localized Fermi liquid to be minimized with respect to d2. As
before, we assume that µ ≡ 0, which means that the electron–hole symmetry
holds. The next step is the introduction of discontinuous phase transition
in the context of the itinerant state instability. We regard the ALFL as a
well-defined phase in the thermodynamic sense and the lattice of localized
electrons (spins) at the other. Then, the discontinuous phase boundary
between them is determined from the coexistence condition F = FI, where
FI is the free energy of the insulating state and has a very simple form if the
spins are disordered

FI

N
= −kBT ln 2 , (13)

where kB ln 2 is the entropy of S = 1/2 spins. From the coexistence condi-
tion, we obtain two transition temperatures

kBT± =
3q0

2π2
W

ln 2±

[
(ln 2)2 − π2

3

(
1− U

Uc

)2
/
q0

]1/2
 . (14)

The two solutions coalesce (T+ = T− = Tc) for U = Ulc, i.e., for the lowest
critical value of the interaction for the transition to take place which is
determined from the condition

Ulc

Uc
= 1−

√
3 ln 2

π
. (15)
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The corresponding critical transition temperature at U = Ulc is

kB Tc =
3 ln 2

2π2
W

[
1−

(
Ulc

Uc

)2
]
. (16)

For U ≤ Ulc, the metallic (Fermi liquid) state is stable at all T . In ef-
fect, the regime of the transition appearance is determined by conditions
Ulc < U < Uc.

Disregarding the magnetic phases, one then has the following phase se-
quence. For T < T− — the system is a paramagnetic metallic (PM). For
Ulc < U < Uc and T− < T < T+, the system is a paramagnetic insula-
tor (the lattice of fluctuating spins S = 1/2). For T > T+, the re-entrant
metallic behavior is observed (a crossover transition). Such a sequence is
indeed observed for V2O3 doped with Cr [41] and for liquid 3He. The most
important factor is the sequence of transformations between localized and
itinerant (liquid) states of the valence electrons as a function of temperature
and interaction, as shown schematically in Fig. 6 (a).

Fermi liquid

Critical point

Localized fermions
(spins)

0.8 0.9

0.12

0.11

0.10

0.09

0.08

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Quantum 
critical pointFermi liquid

(a) (b)

Fig. 6. (a) Phase diagram at T 6= 0 for almost localized fermions on the plane
temperature T versus relative interaction magnitude U/Uc. Note the presence of
two critical points: classical at T = Tc and quantum at T = 0. This phase diagram
does not include the magnetic phases (see below [38]); (b) an analogical phase
diagram for the nuclear matter [39]. The dashed lines represent extrapolations to
high-temperature regime.

The physical reason for switching between the states M and I is provided
in Fig. 7. Namely, at temperature close to T = 0, the entropy of disordered
localized moments is large (+kB ln 2 per carrier), whereas for the Fermi liq-
uid, it increases linearly with T from zero. Hence, at T = T−, the entropy
part of the free energy for localized particles outweighs that of the Fermi
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liquid, even though at T = 0, the opposite is true. However, as the temper-
ature rises, the Fermi-liquid entropy grows and asymptotically approaches
the value 2kB ln 2 per carrier in the high-temperature limit. The detailed
shape of the phase boundary is determined by the interplay between the
competing energy and entropy contributions. In summary, the continuous
evolution of the system at T = 0 in approaching Uc from below should be
contrasted with the discontinuous nature of the transformation for T > 0.
Thus, the point U = Uc for T = 0 is indeed a quantum critical point, at
least within this analysis in which d2 = 〈ni↑ni↓〉 plays the role of the order
parameter in the expression for the Ginzburg–Landau functional for almost
localized fermions.

-0.1 -

0.10.10

Fig. 7. Temperature dependence of the free energy per particle (F/WN) in Fermi-
liquid states (parabolas a–d), and in the Mott–Hubbard localized state (straight
line e). The crossing points LM and JK represent, respectively, M → I and I →
M’ transitions.

At the end, we would like to quote our results on metal–insulator transi-
tion including simultaneous presence of antiferromagnetism which with the
increasing interaction magnitude evolves from band (Slater-type AFS) to lo-
calized spin (Mott, AFI) antiferromagnetism. The part of the phase diagram
depicted in Fig. 6 (a) appears only above the Néel temperature, where the
antiferromagnetic states (AFS, AFI) cease to exist, here, in a discontinuous
manner. The situation is shown in Fig. 8. In the inset, we quote the ex-
perimental results obtained for (V1−xCrx)2O3, with the x as the horizontal
x-axis. The agreement is qualitatively good.

The presence of the proposed classical critical point (CP) in
Figs. 6 (a) and 8 have been also beautifully confirmed much later [42]. It
has a mean-field character, exactly the type predicted by our mean-field-like
approach [32, 38, 43], which represented the first realistic attempt to extend
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theory of metal–insulator transition of the Mott–Hubbard type at T > 0.
Our results were confirmed much later [44] within the dynamic mean-field
approach.

PM

PM’

PI

AF

TC

Fig. 8. Phase diagram of the type presented in Fig. 5, with inclusion of antifer-
romagnetic Slater (AFS) and Mott (AFI) phases. Note that W = u/2. Inset:
experimentally observed [41] phase diagram on T–x plane for (V1−xCrx)2O3. Af-
ter Ref. [38].

3. Universal superconductivity:
Real-space pairing and selected physical properties

3.1. High-temperature superconductivity: A brief overview

The appearance of high-temperature (high-Tc) superconductivity [45]
opened up a completely new area of research for strongly correlated sys-
tems. The first of them is that the paired state evolves by doping from the
antiferromagnetic Mott-insulating state. The exemplary simplest phase dia-
gram for La2−xSrxCuO4 is shown in Fig. 9. It is commonly accepted that by
the Sr substitution for La one creates a hole (missing electron). This hole is
created in the Cu2+O2− planar configuration of this compound, as schemat-
ically illustrated in Fig. 10, which is sandwiched by the insulating La(Sr)O
planes. The system can be modeled to a good degree by a periodic arrange-
ment of the CuO2 planes well-separated by the insulating La(Sr)O planes.
In effect, the system at optimal doping x = xopt ' 0.2 can be regarded
as a two-dimensional metal, i.e., metallic state with linear in T in plane
resistivity ρ‖ in the normal state and quasi-exponentional (semiconducting-
like) behavior of ρ⊥ when measured across the planes. The resistivity ratio
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ρ⊥/ρ‖ can reach the value of 105, so the system can indeed be regarded as
a two-dimensional metal. The surprise comes when the system is cooled
to the superconducting transition temperature Tc ' 36 K, where the truly
three-dimensional paired state sets in. Thus, at Tc we have a dimensional
crossover, a rather exceptional than typical critical behavior in a system with
a continuous phase transition. Nonetheless, one can also observe that this
transition can take place in strictly two-dimensional layers with the value
of Tc ' 100K, so assuming a strict two-dimensionality for modeling purpose
looks realistic and is practically universally accepted (see below).
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Fig. 9. (a) Schematic phase diagram on the temperature doping (x) plane for
La2−xSrxCuO4. (b) The same as (a) but on the superconducting gap-doping plane
calculated within SGA [46] in t–J model. For explanation, see the main text. The
different curves in (b) correspond to a different model parametrization.

tij hole

Fig. 10. Illustration of single-band dynamics of correlated electrons in two dimen-
sions with the parameters defined in the main text. On the right: the Brillouin
zone with the high-symmetry points marked. The line Γ–M is called the nodal line
for the case of d-wave superconductivity, whereas the Γ–X and Γ–Y directions are
antinodal ones.
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The third surprising feature is the appearance of a well-defined pseudogap
temperature Tpg, which appears at temperature well above Tc, particularly
in the underdoped region x < xopt. In Fig. 11, we exhibit a comparison
between the values of Tc and Tpg versus x (taken from Ref. [47]). In reality,
the phase diagram is more complicated than that presented in either Fig. 9
or Fig. 11, as is discussed below.

Fig. 11. The hole-doping dependence of the transition temperature Tc (lower set
of points on the left) and pseudogap characteristic energy (upper set of points on
the right). The appearance of the pseudogap is a characteristic novel property for
unconventional superconductors (adopted on the basis of Ref. [47]).

3.2. Theoretical modeling of high-Tc superconductors as correlated
two-dimensional systems: t–J model

3.2.1. The pairing Hamiltonian with real-space pairing

We turn next to the theoretical modeling of strongly correlated metallic
state, in which I have been involved personally. The theoretical modeling
of the so-called correlated narrow-band systems started with the works of
Anderson [6, 7] on antiferromagnetic kinetic exchange in which the Hubbard
model was intuitively introduced for the first time.

This Hamiltonian in the strongly correlated limit, U � |tij |, and in
the half-filled band configuration leads to the antiferromagnetic Heisenberg
spin–spin interaction with the exchange integral Jij = 4t2ij/U . The non-half
filling case (n 6= 1), the Hubbard Hamiltonian has been analyzed for the
first time by the author and the results were published in cooperation with
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his colleagues [8–10]. The effective Hamiltonian is then

H̃ = P1

∑
ijσ

′
tij b̂

†
iσ b̂jσ +

1

2

∑
ij

′
Jij

(
Si · Sj −

1

4
νi νj

)
+
(
three-site
terms

)P1 ,

(17)
where now b̂†iσ ≡ â†iσ(1 − n̂†iσ̄), b̂iσ ≡ (b̂†iσ)†, Ŝi is the spin operator in the
fermionic representation and νi ≡

∑
σ n̂iσ(1 − n̂iσ̄). The operators acting

in the occupation number (Fock) space are projected with the operator P1

in such a manner that all site double occupancies are removed (to reduce
the Coulomb energy U

∑
i〈n̂i↑ n̂i↓〉) and replaced with the low-energy virtual

hopping processes on the scale Jij � U . In the Mott insulating limit, we
have a drastic reduction of the occupancy (note that P1 ≡

∏
i(1−n̂i↑ n̂i↓)) to

the single occupancies at each site, i.e., ν̂i =
∑

σ P1〈n̂iσ + n̂iσ̄〉P1 = 1; then
(17) reduces to the Anderson–Heisenberg form, as it should be. Hamiltonian
(17) represents the first step of the modeling procedure.

The second nontrivial step starts from the ingenious quantitative ob-
servation by Anderson [2, 48] that antiferromagnetic arrangement of neigh-
boring spins may be viewed as the precursor of the spin-singlet pairing on
neighboring sites in the corresponding Wannier states.

After I learned about such a possibility [48, 49] I have introduced [12]
the local-singlet pairing operators, since the full exchange term (the Ŝi ·Ŝj−
1
4 ν̂iν̂j) can be rigorously rewritten in the form of

B̂†ij ≡
1√
2

(
b̂†i↑ b̂

†
j↓ − b̂

†
i↓ b̂
†
j↑

)
; B̂ij ≡

(
B̂†ij

)†
, (18)

so that

Jij

(
Ŝi · Ŝj −

1

4
ν̂i ν̂j

)
= −Jij B̂†ij B̂ij . (19)

As a result, the exchange energy is lowered by the creation of local singlets
|ij, ↑↓〉 ≡ 1√

2
(|i ↑〉|j ↓〉 − |i ↓〉|j ↑〉), not necessarily the classical Néel-type

antiferromagnetic state, particularly since the system is two-dimensional and
particles have spin S = 1/2.

The extra bonuses coming from such a representation are three. First,
the effective Hamiltonian (17) can be rewritten in a more closed form, i.e.,

H̃ = P1

∑
ijσ

′tij b̂
†
iσ b̂jσ −

∑
ijk

′ 2tij tjk
U

B̂†ij B̂kj

P1 . (20)
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Second, the pairing is indeed of local but intersite in nature, since it is easy
to show that B̂†ii ≡ 0. This is because

B̂†ij =
1√
2

[
â†i↑

(
1− n̂†i↓

)
â†j↓

(
1− n̂†j↓

)
− â†i↓

(
1− n̂†i↑

)
â†j↑

(
1− n̂†j↓

)]
,

(21)
and for i = j,

â†iσ (1− n̂iσ̄) â†iσ̄ (1− n̂iσ) = â†iσ âiσ̄ â
†
iσ̄ â
†
iσ̄ . . . ≡ 0 , etc. (22)

Note that identity (22) does not appear when one uses (wrongly!) the un-
projected pairing operators, a common omission.

Nonetheless, one can think of the corresponding order parameter in the
form of anomalous average 〈B̂†ij〉. In that situation, its space Fourier trans-
form can play a role of the superconducting gap, at least in Renormalized
Mean-Field Theory (RMFT). Explicitly, we define the gap parameter in the
translationally invariant case as

∆k ≡
〈
B̂†k,−k

〉
=

1

N

∑
Rij

eik·Rij

〈
B̂†ij

〉
'
〈
b̂†k↑ b̂

†
−k↓

〉
, (23)

where Rij ≡ Rj −Ri. Third, from (23) it follows that the superconducting
gap ∆k has the property∑

k

∆k ≡
∑
k

〈
B̂†k,−k

〉
= 0 , (24)

i.e., the value of the superconducting gap, when averaged over the Brillouin
zone, is zero. On the other hand, since〈

B̂†ij

〉
=

1√
2

(〈
b̂†i↑ b̂

†
j↓

〉
−
〈
b̂†i↓ b̂

†
j↑

〉)
, (25)

from the translational symmetry i↔ j, we have〈
B̂†ij

〉
=
√

2
〈
b̂†i↑ b̂

†
j↓

〉
, (26)

i.e., the prospective order parameter has a structure similar to the corre-
sponding one, 〈â†k↑ â

†
−k↓〉 in the k-space within the Bardeen, Cooper, Schri-

effer (BCS) theory.
Property (24) tells us that the gap cannot have the ordinary isotropic

(s-wave) structure, i.e., ∆k 6= ∆. Therefore, the simplest explicitly k-de-
pendent representations are those of either extended s-wave or d-wave type,
i.e.,

∆k = ∆ [cos (kxa)± cos (kya)] , (27)
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where in the subsequent analysis we take kxa ≡ kx and kya ≡ ky. Those
two types fulfill relation (24). In addition, form (27) respects the four-fold
symmetry in k-space. Nevertheless, there is an essential difference between
the two forms of (27). Namely, only the d-wave solution has four nodal (zero-
gap) lines defined as ky = ±kx. This theoretical prediction (see, e.g., [49])
has been confirmed in numerous experiments and is practically universally
accepted.

The three essential features: the t–J model, real-space pairing expressed
through the role of the average 〈B̂†ij〉, and the d-wave form of the gap (minus
sign in (27)) compose a canonical model of the strong-correlation version of
the theory of high-Tc superconductivity in the cuprates. The main diffi-
culty is to deal with the projected fermion operators b̂iσ (and b̂†iσ) and the
corresponding projected pairing operators (18).

Model (20) can be extended to the most general single-band form, but
this is not the subject of interest here (for the most general form of t–J
Hamiltonian, see [50]). Instead, in the next section, we reformulate the
model to the form which does not require the projection P1, as well as
includes implicitly the role of oxygen anions in the effective exchange part
(via superexchange [51]).

3.3. t–J–U–V model as extension of t–J model

To avoid the use of projected Fermi operators, we have proposed [51–53]
modification of the original t–J model (17) to the following form:

H̃ =
∑
ijσ

′
tij â

†
iσ âjσ +

1

2

∑
ij

′
Jij Ŝi · Ŝj + U

∑
i

n̂i↑ n̂i↓ +
1

2

∑
ij

′
Vij ni nj , (28)

where the last term represents the intersite direct Coulomb interaction. At
first look, it may seem that the second term should replace the third term,
as we argued above. However, in the present formulation of the t–J model
by Jij we understand now the superexchange between Cu2+ ions via oxygen
anions, whereas the Hubbard term (∼ U) concerns the repulsive intra-atomic
interaction for the electrons on the 3dx2−y2 orbital of Cu ions. Additionally,
the double occupancies are projected out if |tij | � U , as before. However, in
the realistic situation for the cuprates, the effective nearest-neighbor hopping
integral is t ≈ −0.3 eV, whereas U ' 8–10 eV. In effect, the value of kinetic
exchange is 4t2/U ∼ 102 K, far too small when compared to the experimental
value Jij ∼ 1500K ' 0.13 eV. In further analysis here, we mention only
marginally about the last term ∼ Vij , i.e., discuss mainly the t–J–U model.
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The reason why we have introduced first the t–J model is due to the
circumstance that it still constitutes the fundamental basis for analysis of
high-Tc superconductivity. We have realized only recently that if we want
to keep the above realistic values for t and U , then the bare bandwidth of
the effective narrow band is W ' 2.5–3 eV, so even if U parameter is to
be taken as that for Cu2+ dx2−y2 states, (8–10 eV), then we do not have,
strictly speaking, the condition of strong correlations (W � U) fulfilled.
In effect, the starting point (28) may be a better choice, particularly if we
want to keep the parameter values as set above. Furthermore, the effect of
remaining (ligand) orbitals is included implicitly via the exchange term.

3.4. Results for t–J–U model and comparison to experiment
for the cuprates

In this subsection, we discuss our results obtained within our origi-
nal Diagramatic Expansion for the Gutzwiller Wave Function (DE-GWF)
method elaborated formally in series of papers [51–61]. This method was for-
mulated first for the normal and magnetic states [62–64] and, subsequently,
extended to the analysis of unconventional (real-space) paired systems such
as high-Tc cuprates [51–61], heavy fermions [65–67], and twisted bilayer
graphene [68]. Here, we provide details only for the high-Tc systems. Be-
fore going into detailed discussion, we should mention that the DE-GWF
method represents a natural extension of the Renormalized Mean-Field
Theory (RMFT) in its statistically consistent (SGA) form. Such an exten-
sion allowed us for a semiquantitative (in some instances fully quantitative)
description of selected properties, as elaborated below.

3.4.1. Outline of DE-GWF approach

As discussed above, the general philosophy is to extend the original
Gutzwiller approach formulated originally to describe normal and magnetic
correlated states [62–64] to the form applicable for description of unconven-
tional superconductivity. For this purpose, we define the correlated many-
particle wave function |ΨG〉 with the Ansatz

|ΨG〉 = P̂ |Ψ0〉 , (29)

where P̂ is the properly chosen Guzwiller (non-unitary) projection operator
and |Ψ0〉 is wave function of corresponding uncorrelated state. The operator
P̂ has a different form from the original Gutzwiller wave function (cf. Büne-
man et al. [62]), but preserves basic properties of the original formulation.
Parenthetically, this operator has been selected to allow for a systematic di-
agrammatic expansion in real space (with the corresponding Wick theorem
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preserved, etc.). The function |Ψ0〉 is selected by a self-consistent procedure
outlined below; this last selection marks a second departure from the original
approach. However, relation (29) is of the original Gutzwiller character, so
|ΨG〉 can be called Gutzwiller-type wave function (in brief, Gutzwiller WF).

Next, we decompose the total projection into product of site–site com-
ponents, i.e.,

P =
∏
i

P̂ =
∏
i

∑
Γ

λi,Γ |Γ 〉ii〈Γ | , (30)

with variational parameters {λi,Γ } corresponding to site i occupancies |∅〉i,
| ↑〉i, | ↓〉i and | ↑↓〉i: empty, single with spin σ =↑ or ↓, or double ↑↓
occupancies at site i, respectively. Our purpose is to calculate ground-state
energy

〈H〉G =
〈ΨG|Ĥ|ΨG〉
〈ΨG|ΨG〉

=
〈Ψ0|P̂ ĤP̂ |Ψ0〉
〈Ψ0|P̂ 2|Ψ0〉

. (31)

Now, the trick is to introduce the following representation of the projection
operator in a translationally invariant system [62–64]:

P̂ 2
i ≡ 1 + x d̂HFi , (32)

where d̂HFi ≡ n̂HFi↑ n̂HFi↓ , with n̂HFiσ ≡ n̂iσ − n0, with n0 ≡ 〈Ψ0|n̂iσ|Ψ0〉.
Using the normalization condition of the local basis, i.e., i〈Γ |Γ 〉i = δΓΓ ,
we can express all the {λiΓ } parameters via x and hence have just a single
variational parameter characterizing |ΨG〉 for translationally invariant states.

Two methodological remarks are to be made at this point. First, al-
though operator (30) is a product of single-site operators, the total (multi-
site) averages in (31) will still contain intersite products of the local op-
erators, i.e., contain intersite correlations. Nevertheless, since the opera-
tors 〈P̂ ĤP̂ 〉G and 〈P̂ 2〉G contain uncorrelated wave function, the multi-site
correlation functions may be decomposed into possible pair-site averages
〈â†iσâiσ〉0, 〈â

†
iσâ
†
jσ′〉0, etc., which can be calculated self-consistently (sub-

script 0 means they are evaluated in the uncorrelated state). In the low-
est order, one can recover the Gutzwiller-type (SGA) approximation, e.g.,
〈â†iσâjσ〉G ≡ q〈â†iσâjσ〉0, etc. Such a procedure provides a fast method of
obtaining results, but provides also the reason why the Gutzwiller (GA) and
Gutzwiller-type (SGA) approximations cannot yield a stable paired (super-
conducting) state in a purely repulsive Hubbard model. In this respect,
the t–J and t–J–U models provide nontrivial results already in the low-
est order. Finally, we introduce the so-called effective Hamiltonian method
to determine |Ψ0〉. First, we note that apart from variational parame-
ter x, we have to determine self-consistently also the averages 〈â†iσâjσ〉0
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and 〈â†i↑âj↓〉0. This can be carried out by imposing the condition for min-
imum with respect to |Ψ0〉 of the functional with the Lagrange multiplier
〈H〉G ≡ 〈ΨG|Ĥ|ΨG〉 − λ(〈Ψ0|Ψ0〉 − 1), i.e., by imposing formally the neces-
sary condition

δ [F − λ (〈Ψ0|Ψ0〉 − 1)]

δ〈Ψ0|
= 0 , (33)

where F ≡ 〈HG〉 − 2µG nGN , N is the number of sites and nG is the
occupancy per site in the |ΨG〉 state. In effect, this condition can be brought
to the form [54] of diagonalizing the effective single-particle Hamiltonian of
the form of

Heff
0 ≡

∑
ijσ

′
teff
ij â

†
iσ âjσ +

∑
ij

′ (
∆eff
ij â

†
i↑ â
†
j↓ + h.c.

)
, (34)

with
teff
ij ≡

δF
δPij

, ∆eff
ij ≡

δF
δSij

, (35)

where Pij ≡ 〈â†iσ âjσ〉 − δijn0 and Sij ≡ 〈â†iσ â
†
jσ〉0. They represent effective

hopping and real-space-pairing amplitudes.
The formulation thus reduces to a closed set of equations solved within a

self-consistent procedure which, unlike the quantum Monte Carlo approach
[69, 70], can be calculated for extended (infinite) systems. This is one of
the principal advantages of the method. Our method allows also for an
approximate discussion of single-particle properties as complementary to
those characterizing the global (macro) correlated state. Concrete physical
properties are discussed next. The results are calculated as a function of the
range of intersite correlations until they converge to practically asymptotic
values (usually, the averages calculated at most up to the fifth coordination
spheres are sufficient).

3.4.2. Comparison to experiment

In Fig. 12 (a), (b), we summarize some of our theoretical results obtained
within the t–J–U model with the help of DE-GWF method, as well as com-
pare them with experiment (for details see [51]). In Fig. 10 (a), we repro-
duce the doping dependence of the d-wave superconducting gap magnitude
∆G in the correlated ground state |ΨG〉. We observe the two characteristic
points, at which the gap disappears, namely, at the Mott-insulating bound-
ary (x = 0) and at the upper critical concentration located at x ' xc2 ∼ 0.35
(the individual curves represent different choices of the model parameters,
cf. [51]). Additionally, the “dome-like” curve exhibits a maximum at the
optimal doping, x = xc1 ' 0.2. All these features model the behavior of
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Tc = Tc(x) drawn in Fig. 9 (a), except in experiment the holes localize al-
ready at x = 0.05. Also, the vanishing gap at x = 0 is to the instability
of correlated metallic phase (represents the Mot–Hubbard point). In turn,
the same behavior appears deep in the metallic phase (for x → xc2) and is
due to the circumstance that the concentration of holes is large enough to
break easily the local pairing expressed by 〈B†ij〉, simply due to the suffi-
cient dilution of carriers by holes. It is a sort of percolation threshold for
the proliferation of the pair bonds throughout the whole system [71]. The
fact that the pairing vanishes deep inside the metallic state makes this state
completely different from BCS state, where the pairs are formed from the
momentum states (k,−k), which have a spatial extension much larger than
the intraatomic distance. Perhaps, even more striking feature of the high-Tc

superconductivity has been shown in Fig. 12 (b), where we plot the kinetic
energy gain by electrons in the superconducting state with respect to that
in the normal (paramagnetic metallic) state. This behavior also differs from
that expected in the BCS theory, where the pairs gain in potential energy
with respect to the normal state, i.e., it is solely determined by the magni-
tude of pairing interaction. Here, the pairing interaction is combined with
the pair correlated motion. One should note also that other selected prop-
erties are reproduced at least semiquantitatively, as reported elsewhere [51].

x
x-xC1

(a) (b)

Fig. 12. Pairing d-wave gap in the correlated ground state versus x; (b) kinetic
energy gain as a function of deviation from the optional doping x− xc1. Only the
full DE-GWF approach for the t–J–U model reproduces correctly the experimental
data (solid lines). Neither SGA approximation in t–J–U model nor t–J model
predictions have this property (cf. the dashed and dot-dashed curves, respectively).
For details, see Ref. [51]. The experimental points are taken from Ref. [72].
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Some dynamical properties have also been successfully reproduced by a
modified version of our DE-GWF approach, in which the relevant correla-
tion functions have been determined explicitly in the k space. This method
has been called k-DE-DWF [73]. The selected results are summarized in
Fig. 13 (a), (b). The experimental photoemission spectrum of electron ex-
citation [74] represented in (b) is compared with our results in (a). We see
a characteristic kink in the dispersion relation of those correlated particles
[75] and the two intervals with an almost-linear dispersion relation of each
of them. What is even more intriguing is that the upper part of the excited
electrons, very close to the Fermi energy, is almost doping-independent, i.e.,
of universal character. Such a feature is in direct contradiction with what
one would export from the band or standard Landau Fermi-liquid theories,
where the Fermi velocity (i.e., the slope of the curve E −EF = vF(k − kF))
should be diminishing with the decreasing carrier concentration [46]. Our
present approach successfully reproduces the experimental behavior under
the assumption that the Fermi velocity (i.e., that very close to the Fermi
level) describes single-electron states of electrons described byHeff (cf. (34)),
whereas the part below the kink describes excitations from a well-developed
correlated state, i.e., is described by the projected original Hamiltonian
P ĤP . Such an assumption can be understood in the following manner.
The excitation close to the Fermi surface are of the more ordinary Fermi-
liquid-type, since they are the excitations to empty states at and above the
Fermi surface; those involve only moderate electron–hole correlations. How-
ever they are still essential, since the Fermi velocity vF is x-independent. On
the other hand, the excitation from a deeper region below the Fermi surface
are of higher energy and require a substantial involvement of higher-energy
processes.

(a) (b)

Fig. 13. The photoemission (ARPES) spectrum close to the Fermi level (b) and its
decomposition into the linear parts (a), below and above the kink, as shown by the
arrows. For discussion, see the main text and Ref. [73].
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Associated with the question, that we have both the correlated and ef-
fective single-particle states, is that connected with the appearance of the
true superconducting gap ∆G and the pseudogap ∆pg. The former appears
as the quantity ∆G ∼ 〈â†i↑ â

†
j↓〉G. On the other hand, we have proposed [73]

that the pseudogap is roughly proportional to the effective gap ∼ ∆eff
ij . In

effect, whereas the ground-state characteristics such as ∆G and the electron
spectrum deep inside the Fermi volume are fully correlated, the universal
Fermi velocity, Fermi wave-vector, pseudogap, etc. are interpreted as charac-
teristics obtained from the effective single-particle dynamics represented by
Ĥeff . This interpretation, although in agreement with selected experimental
properties, requires thorough further investigation. One must underline that
the effective Hamiltonian described the single-particle excitations that cor-
respond to quasiparticle excitations in ALFL, i.e., below the Mott threshold.

4. Outlook

In this paper, we have overviewed briefly the three fundamental proper-
ties of correlated systems:

(i) the concept of an almost localized Fermi liquid with heavy quasipar-
ticles (m∗/m0 � 1) and their specific property — spin-direction-
dependent effective masses of quasiparticles [16, 17, 19, 29, 32];

(ii) localization–delocalization (Mott–Hubbard) transitions which may take
the form of either insulator–metal transition for electrons systems
[35, 44], insulator–superfluid transition in cold-atom bosonic systems
[76] or baryon matter to quark–gluon plasma transition in hadronic
condensed matter [39];

(iii) high-temperature superconductivity induced by a specific real-space-
pairing [2, 12, 51] in which an interplay between the strong repulsive
Coulomb interaction and exchange interactions play the dominant role.

Below we summarize briefly each of the items (i)–(iii).

(i)+(ii) Almost localized Fermi liquids and their evolution
The heavy masses appear not only in ALFL near the Mott–Hubbard

transition, but also for the case of metallic compounds, for the so-called
heavy-fermion systems, representing the systems of hybridized, e.g., 4f elec-
trons with itinerant (conduction) electrons, the former being at the border
of Mott localization. A classic example of such a system is CeAl3 [77] prop-
erties of which are presented in Fig. 14. It is fascinating that such systems
can be described as ordinary metals with electron masses m∗/m0 ∼ 103 (m0

— free electron mass in vacuum). In effect, their Fermi temperature can
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be estimated as TF ≡ µ/kB ∼ 10K, i.e., is of the same order of magnitude
as that of the liquid 3He, which at ambient pressure is TF ' 2K. In both
the heavy-fermion and liquid-3He systems, we can thus destroy the Fermi-
surface structure by a moderate thermal disorder of T ∼ 10K. In effect, the
system of such fermions should represent for T � TF an incoherent (classi-
cal) gas with the molar entropy approaching gradually the value 2R ln 2 for
spin 1/2 particles and quenched (zero) orbital moment. This is the regime

(a) (b)

(c)

(d)

Fig. 14. The fundamental electronic properties of heavy fermions CeAl3 [77], UBe13,
and CeCu2Si2 [78]. The straight lines are guide to the eye. (a) and (b) linear
— specific heat coefficient approaching the value γ & 1.5/mol K2 as T → 0 for
CeAl3 (see also the insets to (a) and (b)); (c) temperature-dependent resistivity
approaching the Baber–Ladau–Pomeranchuk ∼ T 2 dependence as T → 0 (cf. the
inset); (d) inverse statistic magnetic susceptibility versus T (the inset shows the
asymptotic Pauli behavior for T → 0). The Curie–Weiss behavior characteristic
for localized magnetic moment character for T → 0 is observed.
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where the difference between the quasiparticle states in ALFL and the non-
interacting fermions arises. Namely, the ALFL quasiparticles describe the
correlated state evolving in the heavy-fermion system into a system of local-
ized spins (localized magnetic moments) and the entropy for spin S = 1/2
approaches the value R ln 2, i.e., half of the value for the free fermion gas.
In Fig. 15, we schematically present such a lattice gas of fermions confined
in the localized state within an elementary cell. In the narrow-band system
discussed in Section 2, the changeover from itinerant to localized takes the
form of discontinuous phase transition. It should be mentioned that the dou-
ble localized-itinerant nature of f -electron systems is not as sharply defined
and still remains debatable. Besides, the quasiparticle behavior of all ALFL
systems is related to the simultaneous appearance of robust spin and charge
collective fluctuations, not touched upon here [36, 37]. Those quantum fluc-
tuations are particularly important near the quantum phase transitions or
either magnetic of delocalization–localization type. For the sake of com-
pleteness, in Table I we have summarized simple scaling laws of physical
properties due to single-particle (quasiparticle) excitations in ALFL. Note,
that all the properties scale with a single renormalization parameter, the
inverse mass enhancement factor q. The form of those laws should change
if the effects of collective excitations were included.

Fig. 15. Lattice gas of fermions of spin 1/2, confined within elementary cells. The
parameter U � kBT expresses the repulsive intra-cell interaction (e.g., the Hub-
bard term) to suppress a double occupancy of the cell by two fermions with oppo-
site spins. This is the principal factor of localization for the average filling of one
fermion per cell.
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(iii) High-temperature superconductivity

A formal approach developed by our group during the last decade con-
sists of starting from the statistically-consistent Gutzwiller approximation
(SGA) [46, 52–54] and then generalizing it into a systematic diagrammatic
approach for the Gutzwiller wave [51, 54–61]. Very recently, the latter ap-
proach has been generalized further to include collective quantum spin and
charge excitations (fluctuations) [36]. A detailed review including also the
effect of collective excitations is being prepared separately [79]. Here, we
have summarized only the main results, particularly those which have a di-
rect comparison to experiment. Let us mention also that our principle aim
was (and still is) to develop a fairly coherence description of overall proper-
ties of high-temperature superconductors, even though it involves utilizing a
set of different approximations within the same formal (variational) frame-
work. We discuss briefly only the two features. First of them concerns the
variety of phases appearing for high-Tc systems. A schematic plot of such
a phase diagram is shown in Fig. 16 (a), (b). The main novel feature is the
appearance of charge-density-wave state characterized by temperature Tc,
as well as of spin-density-wave state below TSDW (cf. Fig. 16 (a), (b)). In
connection with this, we have included in our analysis [59] the pair-density-
wave appearance and it indeed appears below the optimal doping, in rough
accordance with the experiment [80]. Unfortunately, also a small s-wave
component of the superconducting gap (∆s 6= 0) sets in, a feature which is
in disagreement with the persistence of zero gap in the nodal direction (i.e.,
along the kx = ky line in the Brillouin zone), a canonical property of the
d-wave superconductivity. This difficulty requires a definite clarification.

Fig. 16. The phase diagram comprising also various charge-density-wave states:
(a) theory and (b) experiment [80]. For details, see Ref. [59].
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Appendix
Elementary view of localization–delocalization transition

Mott criterion for interaction electron gas

For an ideal nonrelativistic electron gas of spin S = 1/2 particles, its
kinetic energy (per particle) is

〈T 〉 =
3

5

~2

2m∗

(
3π2N

V

)2/3

∼ ρ2/3 , (36)
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where ρ ≡ N/V is the particle density and m∗ — its effective mass. On the
other hand, we can estimate the static Coulomb interaction per particle as

〈V12〉 =
e2

κr12
=

e2

κ(V/N)1/3
∼ ρ1/3 , (37)

where κ is the dielectric constant (here at the border of localization). The
fundamental statement is that the instability of the free-electron (delo-
calized) state can be estimated if the two energies are comparable, i.e.,
〈T 〉 = 〈V12〉. Then, the Mott criterion of localization has the form of

aB ρ
1/3
c ∼ 0.2 , (38)

where aB = ~2
m∗e2κ is the effective Bohr radius of 1s-type atomic state in the

medium. Note that if the critical concentration ρ > ρc, the itinerant gas
state should be stable as 〈T 〉 > 〈V12〉, whereas for ρ < ρc, the interaction
energy dominates and hence the particles are confined within the cell of
radius ac = ρ

−1/3
c . In other words, aB/ac ∼ 1/5, which means that the

effective lattice constant of the frozen spin-1/2 particles is a ' 5aB. In
such a manner, the translational symmetry of the gas state is broken, as the
dominant repulsive Coulomb interaction causes the particles distanced from
each other as far away as possible. Criterion (38) represents a rudimentary
version of the Mott transition. It works surprisingly well for many solid-state
systems [1].

Localization–delocalization criterion for confined ultrarelativistic fermions

Suppose we have an ultrarelativistic gas of fermions; for simplicity as-
sume they are of a single color. Then, their Fermi energy is

εF = ~c
(
3π2ρ

)1/3
+ ε0 , (39)

where their kinetic energy of individual particles εk = ~ck ≡ cp and ε0 is
their binding energy in the confined-fermion state. On the other hand, let
us assume that we have additional confining pair-particle interaction in the
form of

εc = ε0 +
1

2
k̃ 〈ri − rj〉p , (40)

where k̃ is the interaction parameter. Additionally, the total particle energy
is then ε0+1/2 ∗ (confining potential) and p is the exponent depending on the
model (usually p = 1). In effect, by applying the same condition as above,
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i.e., 〈T 〉 ' εF/2, we obtain the critical concentration for the localization–
delocalization transition

ρp+1
c =

1

3π2

(
k̃

2~c

)3

. (41)

Note that the particles are confined in space, but the nature of their quantum
states changes at the critical density. For their stability, an external potential
is needed first. It is the periodic potential for electrons in solid and the
harmonic trapping potential for cold atoms or quarks. On this playground,
we have an interplay between the kinetic energy (favoring delocalized states)
and their mutual repulsive interaction, which favors the frozen (localized)
configuration. Both types of the states can have a confined nature on a
macro scale.
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