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Probability distribution for the first Casimir operator C1 in the quan-
tum Coulomb field is calculated from first principles of quantum theory of
the Coulomb field formulated by the Author. This is followed by a certain,
I hope novel, formulation of probabilistic interpretation of Quantum Me-
chanics, which allows to avoid lots of “philosophical” talk about Quantum
Mechanics. This talk is very voluminous but not necessarily enlightening.
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1. A nice formula

In Ref. [1] I gave the formula for the matrix element 〈u |exp(−σC1)|u〉,
where |u〉 is the quantum Coulomb field moving with four-velocity u, C1 is
the first Casimir operator of the Lorentz group and σ > 0

〈u |exp(−σC1)|u〉 = (1− z)eze−σz(2−z)

−2z2ez

π

∞∫
0

dν νe−σ(1+ν
2)

∞∑
n=−∞

(ν + i(2n+ 1− z))n−1

(ν + i(2n+ 1 + z))n+2 . (1)

Here, z = e2/π, 0 < z < 1 is the fine structure constant divided by π.
Concerning this formula and some of the formulae reported later one should
note that in infinite sums and integrals one cannot in general change the
order of summation and integration. A simple example is:

∞∫
0

{ ∞∑
n=1

(
ne−nx − (n+ 1) e−(n+1)x

)}
dx = 1 , (2)

(1185)
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but
∞∑
n=1


∞∫
0

(
ne−nx − (n+ 1) e−(n+1)x

)
dx

 = 0 . (3)

The same situation seems to occur in the formula above.
The assumption that σ > 0, i.e., that we are dealing with the so-called

heat kernel, is very useful as it makes the integral in (1) very rapidly con-
vergent. However, the sum in (1) is convergent to a function which vanishes
for ν −→∞ at least as quickly as 1/ν. Therefore, we can take in (1) σ to be
purely imaginary obtaining the autocorrelation function 〈u |exp(−iσC1)|u〉,
−∞ < σ < +∞. Fourier transform of the autocorrelation function of a
self-adjoint operator is the probability distribution for this operator in the
considered state, see the next paragraph. Calculating this Fourier transform
by means of the usual trick with Dirac’s δ-function, we obtain

1

2π

+∞∫
−∞

dσ eipσ 〈u |exp(−iσC1)|u〉

= probability density that the first Casimir operator C1

has the value p in the Coulomb state |u〉
= (1− z)ezδ[p− z(2− z)]

−Θ(p− 1)
z2ez

π

∞∑
n=−∞

(√
p− 1 + i(2n+ 1− z)

)n−1(√
p− 1 + i(2n+ 1 + z)

)n+2 , (4)

0 < z < 1. The first term is a bound state described in [1] and belonging
to the supplementary series while the sum represents continuous spectrum
which belongs to the main series. As probability density, (4) should be non-
negative and summable to 1. Numerically, according to Professor Wosiek,
this seems to be the case but it would be nice to prove it. This, however,
is tricky because of impossibility, mentioned above, of changing order of
summation and integration.

2. Kinematical Axioms for Quantum Mechanics

Formulating Axioms for a great Theory, a theory which creates Weltan-
schauung, I will not translate this German word, because of various pitfalls
around, we have to distinguish between Kinematics and Dynamics.

For example, in the Newtonian Mechanics, kinematics is the geometry of
the Galilean space-time. Galilean geometry is a difficult subject, for the first
time described correctly by Elié Cartan at the first half of the 20th century.
Before Cartan, there was a certain lack of clarity, however, with Newton,
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who introduced the notion of “true mathematical time”, being the closest to
the truth. Probably, he did not go further, because, as Roger Penrose sug-
gests, he already had optics in mind. By the way, the Galilean geometry of
Galilean space-time is, up to date, a topic which is not presented the way it
deserves. Arnold [2] in his excellent book describes it in a footnote. Landau
and Lifshitz in their very good and popular textbook [3] describe it after
Lagrange’s generalized coordinates and the principle of least action. Some
of their statements as, e.g., “relative to arbitrary coordinate system, space
is neither homogeneous nor isotropic” should really be punishable. For a
correct description of geometry of Galilean space-time, see Kopczyński and
Trautman [4], and Penrose [5]. If the Reader is under impression that the
subject of Galilean geometry of Galilean space-time is not terribly impor-
tant I can quote Professor Witkowski, a prominent quantum theoretical
chemist, who told me that there are people who are under impression that
the Schrödinger wave function is a scalar with respect to general Galilean
transformations.

In the Special Theory of Relativity the Kinematics consists of metric
geometry of (3 + 1) flat space-time. Paradoxically, here the textbooks are
somewhat better; there are Authors who do start with the assumed space-
time geometry, though not all. There are many people who continue to write
about trains passing each other, observers discussing their clocks etc. History
of Science, in the case under consideration a science from a century before
us, is very important and should be known but not mixed up with teach-
ing, which should be based on modern understanding. As the former asso-
ciate Editor (1974–1994), and later (1995–2005) Chief Editor of this journal,
I had many exchanges with people who did not like the Special Theory of
Relativity. I had always had the impression that they were victims of their
textbooks; they endlessly analyzed trains, clocks, observers comparing their
clocks etc. The geometry of space-time is a modern equivalent of Euclid and
should be taught as such. The geometry of space-time taught in this way
would rise emotions very similar to those generated by Euclid.

In the General Theory of Relativity the Kinematics is the Riemannian
Geometry of (3 + 1) dimensional space-time, while Dynamics is the law of
motion proposed by Einstein. There is now an industry of inventing laws of
motion which are different from those proposed by Einstein. This industry is
not very edifying, but can be mentioned to illustrate the difference between
Kinematics and Dynamics which might create some difficulty in the General
Theory of Relativity.

Quantum Mechanics, when compared with the great theories mentioned
above, is a disaster. I mean pedagogical and cultural disaster, because, in
purely cognitive terms, it contributed perhaps more to the volume of our
understanding that the great theories mentioned previously. The Authors
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as a rule do not describe the difference between Kinematics and Dynamics.
As an example, I will quote Bongaarts [6] who gives Axioms for Quantum
Mechanics.

To my mind his Axioms I and II are definitions rather then axioms,
because they describe the way we are going to use the words state and
observable. But I will not argue. I take from Bongaarts Axioms I and II:

Axiom I. The state of a quantum system is represented by a unit vector ψ
in a Hilbert space H.

Axiom II. An observable of the system is represented by a self-adjoint
operator A in H.

I omit Bongaarts’ Axiom III because it takes the Author three pages
to formulate it and contains, among other things, the Schrödinger equation
and the Probabilistic Interpretation of Quantum Mechanics (!), without ever
mentioning the geometry of underlying space-time. Instead, having Axioms I
and II, I will formulate one Definition and one Theorem. The Theorem ac-
tually belongs to the Functional Analysis but, for the Reader’s convenience,
I will give a simplified proof.

Definition. The matrix element
〈
ψ
∣∣e−iλA∣∣ψ〉, where λ is a real number

and A is an observable, is called autocorrelation function for the observable
A in the state |ψ〉.

Theorem. The Fourier transform of each autocorrelation function is non-
negative and summable to 1.

Proof. We write |ψ〉 =
∑

n cn |ψn〉, where |ψn〉 are eigenfunctions of the
observable A, with corresponding eigenvalues being An. Therefore,〈

ψ
∣∣∣e−iλA∣∣∣ψ〉 =

〈∑
n

cnψn

∣∣∣e−iλA∣∣∣∑
m

cmψm

〉
=
∑
n,m

cncm

〈
ψn

∣∣∣e−iλAm

∣∣∣ψm〉
=
∑
n,m

cncmδmne−iλAm =
∑
n

∣∣∣cn∣∣∣2e−iλAn ,

and the Fourier transform is

1

2π

∞∫
−∞

dλ eipλ
∑
n

|cn|2 e−iλAn =
∑
n

|cn|2 δ(An − p) ,
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which is clearly a non-negative and summable to 1 function:
∞∫
−∞

dp
∑
n

|cn|2 δ(p−An) =
∑
n

|cn|2 = 1 .

Now, a question arises: what can be done about a function which is non-
negative and summable to 1? The great idea due to Andrei Kolmogorov
is that it should be called a probability distribution. This idea by Kol-
mogorov introduces clarity to the subject, which, in despite of great efforts
by truly great thinkers such as Pascal, Laplace, Maxwell, Boltzmann or
Gibbs, was plagued by circular arguments or metaphysics which baffled even
such thinkers as Russel and Popper.

In what follows, we call the Fourier transform of the autocorrelation
function

〈
ψ
∣∣e−iλA∣∣ψ〉 the probability distribution for the observable A in

the state |ψ〉.
As a simple application we shall derive the Born rule which is thus seen

to be a simple theorem and not a postulate, which in the past generated a
voluminous discussion in which an obscure metaphysics mixes up with an
error and/or inconsistence. The proof is as follows. Let ψ(x) be a square
integrable function on the straight line −∞ < x < ∞ which describes a
state and X be an observable which corresponds to the position on the line.
We have

1

2π

+∞∫
−∞

dλ eiqλ
〈
ψ
∣∣∣e−iλX ∣∣∣ψ〉 =

1

2π

+∞∫
−∞

dλ eiqλ
+∞∫
−∞

dx |ψ(x)|2 e−iλx

=

+∞∫
−∞

dx |ψ(x)|2
 1

2π

+∞∫
−∞

dλ eiλ(q−x)

 =

+∞∫
−∞

dx |ψ(x)|2 δ(q − x)

= |ψ(q)|2

which means that the probability of finding the particle in q is |ψ(q)|2.

3. The probability density for the first Casimir operator C1

in the quantum Coulomb field |u〉, continued

In accordance with what is above, for 0 < z = e2/π < 1,

(1− z)ezδ [p− z(2− z)]

−Θ(p− 1)
z2ez

π

∞∑
n=−∞

(√
p− 1 + i(2n+ 1− z)

)n−1(√
p− 1 + i(2n+ 1 + z)

)n+2
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is the probability distribution for the first Casimir operator C1 in the quan-
tum Coulomb field |u〉. Professor Wosiek says that numerically this function
seems indeed to be non-negative. But we lack a general proof, mainly due
to the difficulty mentioned at the beginning of Section 1. However, for small
z which is the case experimentally where z = e2/π ≈ 0.0023, we can argue
as follows: we can neglect z under the sum and obtain

(1− z)ezδ [p− z(2− z)]−Θ (p− 1)
z2ez

π

∞∑
n=−∞

(√
p− 1 + i(2n+ 1)

)−3
= (1− z)ezδ [p− z(2− z)] + Θ (p− 1)

π2z2ez

8

sinh
(
π
2

√
p− 1

)
cosh3

(
π
2

√
p− 1

)
which is seen to be everywhere positive by inspection. Summability to 1 is
also simple to see, one has only to remember that in the contribution from
the bound state one has to keep only the terms up to z2 in z.

The Author is very grateful to Dr. Andrzej Rostworowski from the Jag-
ellonian University for help in preparation of the final version of this paper.
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