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Thanks to a remarkable progress in understanding of how to perform
NNLO QCD computations, many processes at hadron collisions have been
recently computed to that precision. Despite these developments, the
search for the optimal subtraction scheme that allows us to handle infrared
and collinear singularities in an efficient and general way is still ongoing.
In the following, I will review the nested soft–collinear subtraction scheme
proposed in F. Caola, K. Melnikov, R. Röntsch, Eur. Phys. J. C 77, 248
(2017). This scheme seems to possess many features of the possible optional
scheme; for example, it is analytic, fully local and highly modular. I will
describe an application of this scheme to the description of deep inelastic
scattering of a proton with an electron (DIS) that, together with results on
colour singlet production and decay, completes the set of building blocks
that are required for the application of this scheme to arbitrary processes
at hadron colliders.
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1. Introduction

A differential partonic cross section at NNLO QCD can be written as

dσ̂nnlo = dσ̂vv + dσ̂rv + dσ̂rr + dσ̂pdf , (1)

where dσ̂vv describes the two-loop corrected hard process, dσ̂rv describes a
one-loop corrected single-real emission, dσ̂rr describes a double-real emis-
sions, and dσ̂pdf originates from the collinear renormalization of the parton
distribution functions.

Virtual corrections, present in contributions dσ̂vv and dσ̂rv, contain ex-
plicit poles in the dimensional regularization parameter ε = (d−4)/2 that is
known to be independent of the hard matrix element [1, 2]. The same holds
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true for collinear renormalization contributions dσ̂pdf . In contrast to this,
real corrections, present in contributions dσ̂rv and dσ̂rr, contain singularities
that become poles in 1/ε only upon phase-space integration. We need to
extract these poles without integrating over kinematic features of resolved
final-state particles since our goal is to re-write fully-differential cross sec-
tions in such a way that computation of arbitrary infrared safe observables
becomes possible. This can be achieved using subtraction and slicing meth-
ods [3–18]. They allow us to extract poles that originate from real emission
contributions without integrating over the resolved phase space and thus to
keep the cross section fully differential. Moreover, as we will show in what
follows, the structure of 1/ε poles follows from factorization properties of
QCD matrix elements so that it is possible to demonstrate their cancella-
tion for a generic process.

2. Singularities of real emissions

Singularities of real emission QCD amplitudes come in two varieties:
infrared (soft) singularities which appear when the energy of emitted partons
vanishes and collinear singularities which appear when partons are emitted
in the same direction as another final-state parton. At NNLO, we need
to consider up to two additional partonic emissions relative to the Born
process. The corresponding singular double-soft and triple-collinear limits
of the amplitudes are known to be independent of the hard process [19]. For
instance, the double-soft limit of the matrix element for a process at NNLO
QCD with two additional gluon emissions with momenta k1 and k2 has the
singular structure1

|M({p}, k1, k2)|2 ≈
k1∼k2→0

Eik({p}, k1, k2)× |M({p})|2 , (2)

where Eik({p}, k1, k2) is a generic function that contains the singularities
and that factorizes from the matrix element |M({p})|2 that describes the
hard process. However, propagators of individual diagrams suggest that
there are singular limits beyond purely soft and collinear ones. For instance,
looking at the diagram

p− k1 − k2

k1 k2

p ∼ 1

2p · k1 + 2p · k2 − 2k1 · k2
−→
k1‖p
k2→0

∞ , (3)

1 For simplicity, ignoring colour correlations.
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we observe that an entangled singularity develops if one gluon becomes soft
and the other becomes collinear. For a given amplitude, it can be checked ex-
plicitly that this entangled limit disappears and that remaining soft–collinear
limits can be described by taking soft and collinear limits independently. In
Ref. [20], it was pointed out that this result is general thanks to the phe-
nomenon of colour coherence. As a result, the known soft and collinear
limits [19, 21, 22] must be sufficient to describe and regulate all singularities
in NNLO QCD scattering amplitudes with real emissions.

Therefore, it is useful to study a subtraction scheme for simple processes
with only two external colour charged particles. In the case of the nested
soft–collinear subtraction scheme, this was done for colour singlet production
[23], colour singlet decay [24], and for DIS [25] covering all possible kinematic
configurations with two external QCD partons.

3. Deep inelastic scattering

We will now discuss the construction of the nested soft–collinear sub-
traction scheme using DIS as an example. Since final-state quarks do not
develop soft singularities, we only consider the partonic channel

q(p1) + e−(p2)→ e−(p3) + q(p4) + g(p5) + g(p6) , (4)

which possesses the most complex singular structure. For this channel, we
define2

2s dσ̂rr =

∫
[dg5][dg6] θ(E5 − E6) FLM(1, 4, 5, 6) ≡ 〈FLM(1, 4, 5, 6)〉 , (5)

where3

FLM(1, 4, 5, 6) = N
∫

dLips({p}) (2π)dδ(d)

(
p1 + p2 −

6∑
i=3

pi

)
×|M tree({p}, p5, p6)|2 × Ô(p3, p4, p5, p6) , (6)

and

[dgi] =
dd−1pi

(2π)d−12Ei
θ(Emax − Ei) , (7)

is the phase-space volume of the parton i. Emax is a sufficiently large but
otherwise arbitrary4 parameter that provides an upper bound on energies

2 For simplicity, we do not show the momenta labels of the electrons in the FLM func-
tion.

3 Now and in the following, we use {p} = {p1, p2, p3, p4} as the set of hard momenta
describing the hard process.

4 More specifically, Emax should be greater than or equal to the maximal energy that
a final-state parton can have according to the momentum conservation constraint.
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of individual partons; its role will become clear later. The two emitted
partons are identical. Instead of averaging the amplitude, we found conve-
nient to use this fact to order them in energy by introducing θ(E5 − E6) in
Eq. (5). Thereby, the only single-soft singularity that needs to be regular-
ized is E6→0 since E5 → 0 implies that both gluons g(p5) and g(p6) become
soft. The factor N in Eq. (6) includes all the relevant symmetry factors,
dLips({p}) is the phase space of the hard process, M tree is the matrix ele-
ment and Ô is an arbitrary infrared safe observable. We will proceed with the
discussion of how infrared and collinear singularities can be extracted from
the function FLM(1, 4, 5, 6) without integration over resolved phase space.

3.1. Soft singularities

We begin by regulating the double-soft singularity. To this end, we
introduce an operator S that extracts the leading singularity by acting on
the function FLM(1, 4, 5, 6). Its action is defined as5

〈SFLM(1, 4, 5, 6)〉

=

∫
[dg5][dg6] θ(E5 − E6) Eik({p1, p4}, p5, p6)× 〈FLM(1, 4)〉 , (8)

where 〈FLM(1, 4)〉 is the fully-differential cross section of the hard process.
The soft gluons factorize from the matrix element [19], cf. Eq. (2), the in-
frared safe observable and the energy-momentum conserving δ function. We
insert the identity operator I = [I − S] + S into the phase space and obtain

〈FLM(1, 4, 5, 6)〉 = 〈[I − S]FLM(1, 4, 5, 6)〉+ 〈SFLM(1, 4, 5, 6)〉 . (9)

In the first term on the right-hand side, the double-soft singularity is regu-
lated. In the second term on the right-hand side (subtraction term), we
require the fully-differential cross FLM(1, 4, 5, 6) in the double-soft limit
Eq. (8). Since the gluons decouple entirely from the hard process, we can
integrate analytically over the phase space of the two emitted gluons and
the 1/ε poles can be extracted explicitly [26] independent of the hard pro-
cess. Since energies of soft gluons are no more bound by energy conser-
vation, we introduced an explicit upper bound Emax on their energies, cf.
Eqs. (5), (7)6. The double-soft regulated term still contains unregulated
single-soft and collinear singularities. We will now discuss how to regularize
them.

5 For simplicity, ignoring colour correlations. A comprehensive definition is given in [20].
6 Since the left-hand side of Eq. (9) is Emax-independent, the explicit Emax dependence
in the analytic subtraction term needs to cancel with an implicit dependence in the
regulated term; the possibility to vary this parameter provides a useful check on the
implementation of the subtraction scheme.
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We continue with the single-soft limit. Due to the energy ordering
θ(E5 > E6), there is only one single-soft singularity E6 → 0. To regular-
ize it, we introduce an operator S6 [26] that extracts the leading single-soft
singularity and insert the identity operator I = [I − S6] + S6 into the phase
space. We obtain

〈[I − S]FLM(1, 4, 5, 6)〉
= 〈[I − S6] [I − S]FLM(1, 4, 5, 6)〉+ 〈S6 [I − S]FLM(1, 4, 5, 6)〉 . (10)

The first term on the right-hand side is free of soft singularities. However,
it still contains collinear singularities. In the subtraction term, gluon p6
decouples from the function FLM(1, 4, 5, 6). Hence, we can again integrate
analytically over its phase space and extract the 1/ε poles independent of
the hard process. What remains reduces to an NLO correction to DIS whose
remaining singularities are treated in the usual FKS approach [27, 28] for
NLO QCD computations.

3.2. Collinear singularities

In the collinear limits, many different singular configurations exist. How-
ever, working in the physical gauge, collinear singularities factorize on ex-
ternal legs and we can decompose the matrix element squared as

|M tree({p}, p5, p6)|2

=

∣∣∣∣∣∣
5 6

1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
5 6

4

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
5 6

41

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
6 5

41

∣∣∣∣∣∣
2

+(finite in any collinear limit) , (11)

where either three definite partons become collinear (first two) or two pairs
of partons become collinear at once (last two). To control which partons
these are, we follow the FKS approach [27, 28] and its NNLO extension [4],
and introduce partition functions

1 = w51,61 + w54,64 + w51,64 + w54,61 (12)

into the first term on the right-hand side of Eq. (10). The partition functions
w5i,6j are designed to dampen all but a few collinear singularities7

lim
5‖i

w5j,6k ∼ δij , lim
5‖i

w5j,6k ∼ δik for i, j, k ∈ {1, 4} , (13)

and, therefore, project on the different singular contributions on the right-
hand side of Eq. (11).

7 Explicit formulas for our choice of the partition functions w5i,6j and detailed prop-
erties can be found in Ref. [25].



1236 K. Asteriadis

The last two singular contributions on the right-hand side of Eq. (11)
that correspond to the double-collinear partitions w51,64 and w54,61 contain
collinear singularities that are effectively NLO-like. However, in the first
two that describe triple-collinear partitions w51,61 and w54,64 still different
kinematic configurations are present. For example, looking at the partition
w51,61∣∣∣∣∣∣

5 6

1

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
5 6

1
+

6 5

1
+

6 5

1

∣∣∣∣∣∣
2

, (14)

we find contributions to the amplitude squared that are still singular when
(p5 ‖ p1), (p6 ‖ p1) and (p5 ‖ p6 ‖ p1). They are isolated in the phase
space and can be separated by splitting the angular phase space of the
two emissions into different regions. We, therefore, introduce yet another
partition of unity

1 = θ
(
η61 <

η51
2

)
+ θ

(η51
2
< η61 < η51

)
+ θ

(
η51 <

η61
2

)
+θ
(η61

2
< η51 < η61

)
≡ θ(a) + θ(b) + θ(c) + θ(d) , (15)

with ηij = (1 − cos θij)/2, where θij is the angle between the directions
of particle i and j. In each partition and sector, the structure of collinear
singularities is now fully defined and it is straightforward to write down
the fully-regulated double real contribution. As an example, we consider
the triple-collinear partition w51,61 and the sector θ(a). By construction,
there are two collinear singularities: a double-collinear when (p6 ‖ p1) and a
triple-collinear when (p5 ‖ p6 ‖ p1). Introducing operators C1 and C61 [26]
that extract the corresponding leading triple-collinear and double-collinear
singularities, and inserting them iteratively into the phase space, we obtain〈

[I − S6] [I − S]w51,61θ(a)FLM(1, 4, 5, 6)
〉

=
〈

[I − C61] [I − C1] [I − S6] [I − S]w51,61θ(a)FLM(1, 4, 5, 6)
〉

+
〈
C61 [I − C1] [I − S6] [I − S]w51,61θ(a)FLM(1, 4, 5, 6)

〉
+
〈
C1 [I − S6] [I − S]w51,61θ(a)FLM(1, 4, 5, 6)

〉
. (16)

In partition w51,61 and sector θ(a), all singularities are now regulated. We
proceed in the same way for the remaining partitions and sectors.
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3.3. Fully-regulated differential cross section

To write down a formula for the fully-regulated differential cross sec-
tion, we need to introduce additional operators that extract various soft
and collinear singularities. The complete list of such operators is presented
below. It includes the soft operators

S Double-soft : E5, E6 → 0 ,

S6 Single-soft : E6 → 0 , (17)

and the collinear operators8

Ci Triple-collinear : p5 ‖ p6 ‖ pi ,
C5i , C6i Double-collinear : p5 ‖ pi , p6 ‖ pi ,

C56 Double-collinear : p5 ‖ p6 , (18)

with i, j ∈ {1, 4}. Using these operators, the fully-regulated contribution for
the double-real emission is written as

2s dσ̂rr

=
∑

i,j=1,4
i 6=j

〈
[I − S] [I − S6] [I − C6j ] [I − C5i] [dg5][dg6]wi5,j6FLM(1, 4, 5, 6)

〉
+
∑
i=1,4

〈
[I − S] [I − S6]

[
θ(a) [I − Ci] [I − C6i] + θ(b) [I − Ci] [I − C56]

+θ(c) [I − Ci] [I − C5i] + θ(d) [I − Ci] [I − C56]
]

×[dg5][dg6]wi5,i6FLM(1, 4, 5, 6)
〉
. (19)

Details about the analytic integration of the subtraction terms, including
explicit formulas for the 1/ε poles, can be found in Ref. [25] and references
therein. After combining with remaining contributions Eq. (1) (and chan-
nels), all 1/ε poles cancel and we arrive at a finite formula that can be used to
compute arbitrary infrared safe observables in d = 4 dimensions numerically.

4. Conclusion and outlook

We have analytically computed all the subtraction terms for NNLO QCD
corrections to deep inelastic scattering within the nested soft–collinear sub-
traction scheme in Ref. [25]. We implemented the fully-differential cross

8 A complete definition of the action of this operators on the cross section and phase
space can be found in Ref. [25].
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section in a computer code that allows us to compute arbitrary observables
with NNLO QCD precision. We used it to validate the analytic formulas for
the subtraction terms through numerical checks against predictions obtained
from a direct integration of analytic DIS coefficient functions [7, 29–33]. We
found that our formalism performed well and allowed us to check individual
NNLO coefficients to a few permille precision. In general, we found that we
obtained permille precision on the NNLO total cross section, corresponding
to a few percent precision on the NNLO coefficient, already after running
for a few hours on an 8-core machine.

The derived analytic results for NNLO QCD corrections to deep inelastic
scattering allow us to extend the nested soft–collinear subtraction scheme
to processes involving partons both in the initial and in the final state. We
are currently using these results as building blocks to design subtractions
for more complicated LHC processes.

I want to thank the organizers of XXVI Cracow Epiphany Conference for
an interesting conference. My research was supported by Karlsruhe School of
Particle and Astroparticle Physics (KSETA). It was partially supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under grant 396021762-TRR 257.
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