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The process of unfolding is a crucial part of many particle physics anal-
yses, representing the correction of measured spectra in data for the finite
detector efficiency, acceptance and resolution from the detector to particle
or from the particle to parton levels. Compared to other commonly used
methods, the Fully Bayesian Unfolding (FBU) returns not only an unfolded
value and its uncertainty, but provides the full binned posterior probability
density. This study focuses on the dependence of unfolding results on the
regularization parameter strength τ applied to different high-energy physics
spectra.
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1. Introduction

Simplified schematic procedure for every unfolding method can be ex-
pressed for given data D, background B, and unfolded particle spectrum p
in the case of migrations from the detector to particle level as

p =
1

ε
M−1 η (D −B) , (1)

where ε and η are the efficiency and acceptance corrections respectively, and
M−1 is the inverse migration matrix which maps migrations from the particle
to detector levels of the studied spectrum. The symbolM−1 stands here also
for different unfolding algorithms, e.g., Invert, TUnfold, Svd, Ids, BinByBin,
and IterativeBayes implemented as a part of the RooUnfold package [1].
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All these approaches thus have the same input components D, B, M , ε
and η, an example of which is shown in Fig. 1.
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Fig. 1. (Color online) Unfolding ingredients. (a) Migration diagram; (b) Detector-
level (gray/blue) and particle-level (light gray/red) spectra; (c) Migration ma-
trix between particle and detector levels; (d) Efficiency (gray/blue) and accep-
tance (light gray/red) corrections as a function of the transverse momentum of the
hadronically decaying top quark.

2. Fully Bayesian Unfolding

The Bayesian theorem is the main building block of the presented FBU [2]
method and is based on the conditional probability of A given B

P (A|B) =
P (B|A)P (A)

P (B)
. (2)

In applications in high-energy physics, Eq. (2) can be rewritten to obtain
the probability of the truth T (particle spectrum) given measured data D as

P (T |D) =
P (D|T )π(T )

Norm.
, (3)

where P (D|T ) is the likelihood function L(D|T ) and π(T ) is the prior in-
formation on the truth spectrum. The prior is usually unknown, and if set
to a constant, called flat .
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However, the prior might be chosen as an arbitrary function of T , driven
by some reasonable arguments of the analyzer, in this way, the regularization
of the FBU method is introduced and defined by π(T ).

The detailed formula for the unfolded spectrum with N bins is con-
structed using a product of Poisson distributions

P (T |D) ∝ L(D|T )π(T )

=


N∏
i=1

1

εi

(
N∑
j=1

MijTj

)[ηi(Di−Bi)]

[ηi(Di −Bi)]!
e
−
(

N∑
j=1

MijTj

) e−τabsS(T ) ,
(4)

where the prior is introduced as an exponential π(T ) = e−τabsS(T ) with the
parameter τabs describing the strength of the regularization. In other words,
it implies in the case of τabs = 0 that no regularization is applied and the
prior is flat (equal to one). In contrast, non-zero τabs with regularization
function S(T ) defines how the resulting spectrum is regularized.

In this study, two approaches of regularization were taken into account.
First, the curvature regularization

S(T ) =
N−1∑
t=2

(∆t+1,t −∆t,t−1)2 (5)

using the sum of second derivatives (differences)

∆t1,t2 = Tt1 − Tt2 (6)

and second, the entropy regularization

S(T ) = −

[
−

N∑
t=1

Tt∑
Tt′

log

(
Tt∑
Tt′

)]
. (7)

In order to get the posterior of the unfolded spectrum for each ith bin, the
marginalization of the full multi-dimensional posterior is performed

pi(Ti|D) =

∫ ∫
P (T |D)dT1 . . . dTi−1dTi+1 . . . dTN . (8)

The unfolded result is taken as the fitted mean of the fit Gauss function
and the uncertainty is taken as the posterior σGauss standard deviation. Ex-
ample of four bins of the spectrum of transverse momentum of hadronically
decaying top quark derived in private simulation using MadGraph [3] and
Delphes [4] is given in Fig. 2 and Fig. 3. See the details below.
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Fig. 2. (Color online) Marginalized posterior probability for four bins of the trans-
verse momentum of hadronically decaying top quark in private simulation. The
vertical (red) line represents the mean of the fitted Gauss function.

The dimension of the likelihood function L(T ) is given by the number
of bins N of the studied spectrum. While running the FBU method, many
pseudo-experiments (truth spectrum) need to be generated and the calcu-
lated likelihood function has to be efficiently sampled in the truth space.

One of the efficient ways is to use a Monte Carlo Markov Chain algorithm,
and especially the Hamiltonian Monte Carlo Markov Chain with the No-U-
Turn sampler [5]. The idea is to transfer the sampling of L(T ) to classical
motion of a virtual particle in an N -dimension hyperspace with the potential
L(T ). The name chain refers to the fact that the motion of the particle is
derived step-by-step and creates chains, see Fig. 4. The feature of No-U-
Turn samples avoids the particle coming back to the same point in the
hyper-space so the computation converges faster.
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Fig. 3. Unfolded spectrum of the transverse momentum of the hadronically de-
caying top quark produced in the process of top-quark pair production in proton–
proton collisions, private simulation. Insets show the FBU posteriors for each bin.

Fig. 4. Example of the likelihood function sampling using HMCMC and No-U-Turn
sampler.
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3. Regularization strength parameter study

In this section, commonly used spectra were unfolded with both curva-
ture and entropy based regularization.

The spectra of top quarks in proton–proton collisions at
√
s = 14 TeV

were generated by the MadGraph generator [3], showered by PYTHIA 8 [6]
to provide the particle level, and finally with the detector level simulated by
Delphes [4].

Throughout this section, every τ parameter is normalized to curvature
Ctruth resp. entropy Etruth of the particle spectrum and number of bins N

τ =
τabs

CtruthN
resp. τ =

τabs

EtruthN
(9)

so that the normalized τ is roughly comparable between spectra. As an
example of the regularization effect, spectra of the top-quark pairs ηtt̄, mtt̄

and ptt̄T were chosen with the gradual impact of regularization shown from
left to right in figures 5, 6 and 7 using the curvature method.

(a) τ = 0 (b) τ = 640 (c) τ = 1000 000

Fig. 5. Unfolding closure test of the ηtt̄ over-binned spectrum with the average
diagonal value of the normalized migration matrix f̄diag = 0.4 for different values
of the regularization strength parameter τ .

Plots on the left are obtained without applying the regularization, in the
middle regularization is applied with an optimal parameter strength τ , and
on the right there are plots with extremely high τ .

Finer binning was chosen on purpose to construct example spectra which
are more difficult to unfold, because of statistical fluctuations. The variable
describing this is the average fraction of events staying on the diagonal

f̄diag =

N∑
i=1

Mii

N
, (10)
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where N is the number of bins and M is the normalized unfolding matrix.
The closer the f̄diag is to one, the more stable unfolding process is. Usually,
it is required at least 50% of migration in the diagonal bins, f̄diag > 0.5. The
spectra in figures 5, 6 and 7 correspond to f̄diag = 0.4, 0.5 and even 0.22.

(a) τ = 0 (b) τ = 600 (c) τ = 100 000

Fig. 6. Unfolding closure test of the mtt̄ over-binned spectrum with the average
diagonal value of the normalized migration matrix f̄diag = 0.5 for different values
of the regularization strength parameter τ .

The unfolding of the mtt̄ spectrum with f̄diag = 0.22 oscillates without
using regularization (figure 7 (a)). In this case, regularization is useful, as
can be seen in figure 7 (b).

(a) τ = 0 (b) τ = 540 (c) τ = 1000 000

Fig. 7. Unfolding closure test of the ptt̄T over-binned spectrum with the average
diagonal value of the normalized migration matrix f̄diag = 0.22 for different values
of regularization strength parameter τ .
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The problem which emerges is the selection of the optimal strength pa-
rameter τ to obtain the best result. As a metric of a successful unfolding,
the relative χ2

rel./n.d.f. as a function of τ was chosen. The relative χ2 is
computed between the unfolded and the particle spectrum in simulation as

χ2
rel(τ)/n.d.f. =

χ2
reg(τ)/n.d.f.

χ2
τ=0/n.d.f.

=
χ2

reg(τ)

χ2
no-reg τ=0

. (11)

This study provides unfolding with the regularization parameter τ in the
range [0, 1000] in equidistant binning of width 20. Uncertainties are obtained
using 20 unfolding processes for each bin with different starting random
seed in the MCMC. The migration matrix and corrections are statistically-
independent of input spectra.

3.1. Results

Figure 8 represents results of many unfolding rounds using regularization
based on minimizing the curvature or entropy (figure 9). On the left, there
are drawn the curvature or entropy, relatively to values without applying
regularization. Thus values in the first bin are equal to one by definition.
On the right, relative χ2 is plotted as a function of τ . Expected decreasing
behavior of the relative curvature and entropy with respect to τ was proven
(figures 8 (a), 9 (a)).

(a) C(τ)
Cτ=0

(b) χ2(τ)

χ2
τ=0

Fig. 8. Relative curvatures (left) and χ2 (right) of five spectra as a function of the
regularization parameter τ .
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Fig. 9. Relative entropies (left) and χ2 (right) of five spectra as a function of the
regularization parameter τ .

4. Conclusion

Results show the ability to use regularization in the FBU unfolding
method. The expected behavior is the improvement in terms of χ2 with
an optimal strength parameter τ , but for larger τ , the χ2 rises to the point
where the unfolded spectrum is close to a constant with the lowest curvature
and entropy.

This is demonstrated in the case of different spectra and binning, to
judge a variety of results. On the other hand, the normalization of τ to the
truth curvature and entropy should make the τ comparable between spectra.

Despite this fact, no common minimum for all five spectra of the relative
χ2 was found. To be able to derive a general formula for the optimal strength
parameter τ choice, the region of τ on the x-axis has to be extended with
finer binning and the process needs to be more deeply understood, e.g.,
different normalization of τ could be one of the possible ways.
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