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We discuss the Higgs mass and cosmological constant in the context
of an emergent Standard Model, where the gauge symmetries “dissolve” in
the extreme ultraviolet. In this scenario, the cosmological constant scale
is suppressed by power of the large scale of emergence and expected to
be of similar size to neutrino masses. Cosmology constraints then give an
anthropic upper bound on the Higgs mass.
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1. Introduction

The Standard Model provides an excellent description of all particle
physics experiments so far, from the LHC energies to low-energy precision
measurements. The interactions of Standard Model particles are determined
by gauge symmetries. Their masses come from coupling to the scalar Higgs
field with the non-vanishing vacuum expectation value, v.e.v. Additional
mass is generated in QCD from the non-perturbative confinement physics
with dynamical chiral symmetry breaking, with about 99% of the mass of
the hydrogen atom coming from the QCD confinement potential. The Higgs
and QCD condensates fill all space, with values independent of the point in
free space.
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Open puzzles include the origin of the gauge symmetries which determine
particle dynamics and the hierarchies of scales in particle physics. The
Higgs mass is very much less than the Planck scale despite a quadratically
divergent counterterm which naively pushes its value towards the highest
scales. The cosmological constant or vacuum energy density which drives the
accelerating expansion of the Universe is characterized by a scale 0.002 eV [1],
very much smaller than the QCD, Higgs mass and Planck scales.

Here, we argue that the tiny value of the cosmological constant may be
telling us about the deeper origin of gauge symmetries in particle physics —
they may be emergent in the infrared, “dissolving” in the ultraviolet close
to the Planck scale (instead of extra unification) [2]. Given the incredible
success of the Standard Model with no new particles or interactions seen so
far in our experiments, perhaps the symmetries of the Standard Model are
more special than previously anticipated. The Standard Model with mea-
sured parameters works as a consistent theory up to the Planck scale with
a Higgs vacuum that sits very close to the border of stable and metastable.
With an emergent Standard Model, new global symmetry violations would
occur in higher dimensional operators, suppressed by powers of the large
scale of emergence [3, 4]. Connected to space-time translational invariance,
the cosmological constant scale comes out similar to the size of neutrino
masses, suppressed by power of the large emergence scale.

The plan of this paper is as follows. Next, we explain the concept of
emergence in particle physics. Then in Section 3, we discuss the scale hi-
erarchies associated with renormalization: the Higgs mass and zero-point
energies of the quantum field theory. Section 4 concerns the full Standard
Model and the role of running masses and couplings in understanding the
particle physics scale hierarchies. In Section 5, we discuss the cosmological
constant, where particle physics combines with gravity. With an emergent
Standard Model, the tiny value of the cosmological constant puts an an-
thropic upper bound on the size of the Higgs mass. Conclusions are given
in Section 6.

2. Emergence

Emergence in physics occurs when a many-body system exhibits collec-
tive behaviour in the infrared that is qualitatively different from that of its
more primordial constituents as probed in the ultraviolet [5, 6]. As an ev-
eryday example of emergent symmetry, consider a carpet which looks flat
and translational invariant when looked at from a distance. Up close, e.g. as
perceived by an ant crawling on it, the carpet has structure and this trans-
lational invariance is lost. The symmetry perceived in the infrared, e.g. by
someone looking at it from a distance, “dissolves” in the ultraviolet when
the carpet is observed close up.
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For emergent particle physics, the key idea is that for a critical statistical
system deep in the ultraviolet, close to the Planck scale, the only long-range
correlations — light-mass particles — that might exist in the infrared self-
organize into multiplets just as they do in the Standard Model [3]. The
vector modes would be the gauge bosons of U(1), SU(2) and SU(3). In the
self-organization process, small gauge groups will most likely be preferred.
Gauge invariance would be exact (modulo spontaneous symmetry breaking)
in the energy domain of the infrared effective theory. Going above the scale
of emergence, nature would be described by (very possibly) completely dif-
ferent physics with different degrees of freedom. Possible emergent gauge
symmetries in particle physics were discussed in early works by Bjorken [7],
Jegerlehner [3, 8], and Nielsen and collaborators [9]. Recent discussion is
given in [4, 10–13]. Emergent gauge symmetries, where we make symmetry
instead of breaking it, are observed in many-body quantum systems beyond
the underlying QED symmetry and atomic interactions [14–16].

With emergence, the Standard Model becomes an effective theory valid
up to some large scale, the scale of emergence. The usual Standard Model
action is described by terms of mass-dimension four or less. In addition,
with emergence, one also finds an infinite tower of higher mass dimensional
interaction terms with contributions suppressed by powers of a large ultra-
violet scale M which characterizes the limit of the effective theory. If we
truncate the theory to include only operator terms with mass dimension
at most four, then the gauge-invariant renormalizable interactions strongly
constrain the global symmetries of the theory which are then inbuilt. For
example, electric charge is conserved and there is no term which violates
lepton or baryon number conservation. The dimension-four action describes
long-distance particle interactions. Going beyond mass-dimension four, one
finds gauge-invariant but non-renormalizable terms where global symmetries
are more relaxed and which are suppressed by powers of the large ultraviolet
scale associated with emergence. Possible lepton number violation, also as-
sociated with Majorana neutrino masses, can enter at mass-dimension five,
suppressed by a single power of the large emergence scale [17]. Baryon num-
ber violation can enter at dimension six, suppressed by the large emergence
scale squared [17, 18]. Constraints from neutrino masses and proton decay
searches suggest a scale of emergence in the region of 1015 to 1016 GeV [4].

With emergence, global symmetries would be restored with increasing
large energy until we come close to the large energy scale M , where higher
dimensional terms become important. Then the system becomes increas-
ingly chaotic with new global symmetry breaking in the extreme ultraviolet.
This scenario differs from the situation in unification models which exhibit
maximum symmetry in the extreme ultraviolet.
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3. Scale hierarchies in particle physics

Scale hierarchies arise from the size of QCD and Higgs condensates com-
pared to the Planck scale as well as from renormalization effects involving
the Higgs mass and zero-point energies associated with quantum fields.

The Higgs boson discovered at CERN in 2012 [19, 20] completes the
particle spectrum of the Standard Model. In all experimental tests so far,
it behaves very Standard Model like [21, 22] and provides masses to the
Standard Model particles.

Theoretically, the renormalized Higgs mass squared comes with the di-
vergent counterterm

m2
h bare = m2

h ren + δm2
h , (1)

where

δm2
h =

K2

16π2
6

v2
(
m2
h +m2

Z + 2m2
W − 4m2

t

)
(2)

relates the renormalized and bare Higgs mass, with the renormalized mass
connected to the physical pole mass. Here, K is an ultraviolet scale charac-
terizing the limit to where the Standard Model should work, v is the Higgs
v.e.v., and the mi are the Higgs, Z, W and top-quark masses. We neglect
contributions from lighter-mass quarks. If K is taken as a physical scale,
then why is the physical Higgs mass so small compared to the cut-off? This
is the Higgs mass hierarchy puzzle. Boson and fermion contributions en-
ter Eq. (2) with different signs. The renormalized and bare masses would
coincide with no hierarchy puzzle if

2m2
W +m2

Z +m2
h = 4m2

t . (3)

This equation is the Veltman condition [23]. It implies a collective cancel-
lation between bosons and fermions. Taking the pole masses for the W , Z
and top quark (80, 91 and 173 GeV) would require a Higgs mass of 314 GeV,
much above the measured value1.

Pauli [24] pointed out that a similar situation occurs with the zero-point
energies, ZPEs, induced by quantization [25]. Along with condensates as-
sociated with spontaneous symmetry breaking, the ZPEs contribute to the
vacuum energy in particle physics and, together with gravitational contribu-
tions, to the cosmological constant [26–28]. Zero-point energies come with
ultraviolet divergence requiring regularization and renormalization. Work-
ing in flat space-time

ρzpe =
1

2
~
∑

particles

gi

kmax∫
0

d3k

(2π)3

√
k2 +m2 . (4)

1 Next-to-leading order corrections are suppressed by 1/(4π)2 and neglected here.
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Here, m is the particle mass; gi = (−1)2j(2j + 1)f is the degeneracy factor
for a particle i of spin j, with gi > 0 for bosons and gi < 0 for fermions.
The minus sign follows from the Pauli exclusion principle and the anti-
commutator relations for fermions. The factor f is 1 for bosons, 2 for each
charged lepton and 6 for each flavour of quark (2 charge factors for the quark
and antiquark, each with 3 colours).

There is a subtle issue with how to handle ultraviolet divergences consis-
tent with the fundamental symmetries in the problem. For example, imagine
a two-dimensional world with circular symmetry. Then treating divergences
involves a circle in momentum space extrapolated to infinity. If we instead
sought to use a triangle in momentum space, the corners and edges would vi-
olate the underlying circular symmetry and might reasonably lead to wrong
results when connecting to experiments the two-dimensional physicist might
perform. A well-known example where two classical symmetries clash with
quantum effects associated with ultraviolet momenta is the chiral anomaly.
The vector vector axial-vector triangle diagram cannot be evaluated in a way
that preserves gauge invariance (current conservation) at the vector vertices
γα and γβ , while preserving chiral symmetry at the axial-vector vertex γµγ5.
Gauge invariance wins with the correction in the axial-vector current leading
to the correct decay rate for π0 → 2γ in QED [29, 30] and the large η′ mass
in QCD [31].

For the ZPEs, it is important to choose a Lorentz covariant regularization
procedure to ensure that the renormalized zero-point energy satisfies the
correct vacuum equation of state. Dimensional regularization with minimal
subtraction, MS, is a good regularization. One finds

ρzpe = −pzpe = −~ gi
m4

64π2

[
2

ε
+

3

2
− γ − ln

(
m2

4πµ2

)]
+ . . . (5)

from particles with mass m [32]. Here, pzpe is the pressure, D = 4 − ε the
number of dimensions, µ the renormalization scale, and γ is Euler’s constant.
If one instead uses a brute force cut-off on the divergent integral, the leading
term in the ZPE proportional to k4max obeys the radiation equation of state
ρ = p/3. Equation (5) means that the ZPE vanishes for massless particles,
e.g., the photon. For the Standard Model particles, the ZPE is induced by
the Higgs mechanism.

Bosons and fermions contribute to the net zero-point energy with differ-
ent signs. This led Pauli to suggest a collective cancellation of the ZPE [24],
much like the Veltman condition for the Higgs mass squared. If we wish
to cancel the net ZPE, then the Pauli equivalent to the Veltman condition
reads [24, 33]
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6m4
W + 3m4

Z +m4
h = 12m4

t ,

6m4
W lnm2

W + 3m4
Z lnm2

Z +m4
h lnm

2
h = 12m4

t lnm
2
t , (6)

where we again neglect the lighter mass quarks. For the Standard Model
with the physical W , Z and top-quark masses, these two equations would
need a Higgs mass of about 319 GeV and 311 GeV, respectively, close to the
Veltman value of 314 GeV. With the Standard Model particle masses, the
net ZPE is negative and fermions dominate.

If we want to cancel the Pauli constraints, we need some extra strength
in the boson sector. A popular candidate for possible extra particles beyond
the Standard Model are 2 Higgs Doublet Models, 2HDMs [34]. These are
a simple extension of the Standard Model. One introduces a second Higgs
doublet. There are 5 Higgs bosons, two neutral scalars h and H, one pseu-
doscalar A and two charged Higgs states H±. Since the 125 GeV Higgs-like
scalar discovered at CERN in 2012 [19, 20] has so far showed no departure
from the Standard Model predictions, it must be assumed in any model with
extra Higgs states that one of the neutral scalars h is a lot like the Standard
Model Higgs.

Theoretical constraints on 2HDMs come from tree level unitarity, vacuum
stability and requiring perturbative couplings. In addition, an extra Z2

symmetry is imposed relating the two Higgs doublets to eliminate unwanted
flavour changing neutral currents with Yukawa couplings. This Z2 symmetry
may be softly broken (through a mass mixing term).

How do 2HDMs affect the Pauli and Veltman conditions? Possible extra
Higgs states are looked for in direct searches [35, 36]. The parameter space is
constrained with lower bounds on the masses from global electroweak fits [37]
and rare B-decay processes [38, 39]. Different model scenarios depend on the
fermion-to-Higgs couplings. The most constrained are type II models with
600 GeV < mH± , 530 GeV < mA and 400 GeV < mH

2. Here, one doublet
couples to up-type quarks and one to down-type quarks and leptons. Others
are type I fermiophobic model where all fermions couple to just one doublet,
lepton specific (one doublet to quarks and one to leptons) and flipped (the
same as type II except leptons couple to the doublet with up-type quarks).
There are also inert models where only one doublet acquires a v.e.v. and
couples to fermions. These models are less constrained. For the Veltman
condition extended to 2HDMs, a favoured benchmark point is quoted in
type II model with mH ∼ 830 GeV and mA,mH± ∼ 650 GeV [42]. For

2 Tighter constraints for type II models were claimed in [40], viz. 740 GeV < mH± ,
750 GeV < mA and 700 GeV < mH . These lower bounds are above the upper
bounds from tree level unitarity assuming exact Z2 symmetry (with no mass mixing
soft symmetry breaking term), viz. mH± ≤ 616 GeV, mA ≤ 711 GeV and mH ≤
609 GeV with mh taken to be 125 GeV as measured at the LHC [41].
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the mass constraints quoted for type II models, we would need also extra
fermions in the energy range of the LHC to cancel the Pauli condition if this
scenario is manifest in nature.

4. Scale hierarchies with running masses and couplings

The Standard Model particle masses and couplings are related by

mf = yf
v√
2

(f = quarks and charged leptons) , (7)

where yf are the Yukawa couplings

m2
W =

1

4
g2v2 , m2

Z =
1

4

(
g2 + g′2

)
v2 (8)

with g and g′ the SU(2) and U(1) electroweak couplings, and

m2
h = 2λv2 , (9)

where λ is the Higgs self-coupling.
The SU(2) and QCD SU(3) couplings, g and gs are asymptotically free,

whereas the U(1) coupling g′ is non-asymptotically free, rising in the ultra-
violet. (The fine structure constant and its generalizations are defined by
αi = g2i /4π.) Running of the Higgs self-coupling λ determines the stability
of the electroweak vacuum. With the Standard Model parameters measured
at the LHC, λ decreases with increasing resolution up to some very large
scale. The sign of the β-function

βλ = µ2
d

dµ2
λ
(
µ2
)

(10)

determines the scale evolution of λ with βλ dominated by a large negative
top-quark Yukawa coupling contribution (without which the sign of βλ would
be positive). QCD interactions of top quarks are also essential for keeping
the β-function negative. Vacuum stability depends on whether λ crosses zero
or not deep in the ultraviolet and involves a delicate balance of Standard
Model parameters.

If we take just the Standard Model with no coupling to undiscovered new
particles, then one finds that the electroweak vacuum sits very close to the
border of stable and metastable suggesting possible new critical phenomena
in the ultraviolet, within 1.3 standard deviations of being stable on relating
the top-quark Monte Carlo and pole masses [43]3. Taking the pole massmt =

3 This 1.3σ difference is reduced if one includes the difference, about 600 MeV, in the
top-quark and Monte Carlo and pole masses discussed in [44].
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173GeV, the 125 GeV Higgs mass is close to the minimum needed for vacuum
stability. If the Standard Model parameters were just slightly different,
the low-energy effective theory emerging from the extreme ultraviolet would
be completely different from the Standard Model — see [4] and references
therein. The Higgs and other particle masses might be linked to physics
close to the Planck scale.

Evolution of the Standard Model running couplings is shown in figure 1,
where we evaluate the running couplings using the evolution code mr: Stan-
dard Model matching and running C++ package [45]. Corresponding to the
running couplings in figure 1, in figure 2, we show the running top-quark,W ,
Z and Higgs boson masses and the Higgs v.e.v. v up to the scale, just above
1010 GeV, where λ becomes negative in this calculation with metastable vac-
uum. If here we reduce the PDG top mass to 171 GeV, then the vacuum
stays stable up to the Planck scale.

410 610 810 1010 1210 1410 1610 1810 2010
 [GeV]µ

0

0.2

0.4

0.6

0.8

1 g'
g

s
g

t
y
λ

Fig. 1. Running of the Standard Model gauge couplings g, g, gs for the electroweak
SU(2) and U(1) and colour SU(3), the top-quark Yukawa coupling yt and Higgs
self-coupling λ. (From left, the points describe the evolution of gs, yt, g, g′, λ in
descending order.)

Both the Veltman and Pauli constraints are evaluated from loop dia-
grams so the masses which appear there are really renormalization group,
RG, scale-dependent. Boson and fermion contributions enter with different
signs and evolve differently under RG evolution which means they have a
chance to cross zero deep in the ultraviolet.

Veltman crossing means that the renormalized and bare Higgs mass
squared first coincide, with the scale hierarchy at lower energies then ra-
diatively generated through evolution. The scale of Veltman crossing is
calculation-dependent. With the Standard Model evolution code [45], cross-
ing is found at the Planck scale with a Higgs mass about 150 GeV, and not
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Fig. 2. Running MS masses and the Higgs v.e.v. in the Standard Model. For the
relation to the PDG pole masses, see [45]. Uncertainties are calculated by varying
all PDG values up and down by their respective uncertainties. (In the printed black
and white version, the points from top describe the evolution of v, mt, mZ , mW ,
mh.)

below with the measured mass of 125 GeV — see figure 3 for input PDG
masses of 125, 142 and 150 GeV. If we take input values mt = 171 GeV and
mh = 125 GeV leading to a stable vacuum in this calculation, then Veltman
crossing happens not below the Planck scale. In alternative calculations,
Veltman crossing was reported at 1016 GeV with a stable vacuum [3], about
1020 GeV [46] and much above the Planck scale of 1.2 × 1019 GeV [47, 48]
with a metastable vacuum.

410 610 810 1010 1210 1410 1610 1810 2010
 [GeV]µ

3.5−
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0v1
C
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Fig. 3. Running of the Veltman coefficient for Standard Model particles. Here,
CV1 = 3

v2 (m
2
h +m2

Z + 2m2
W − 4m2

t ) =
9
4g

4 + 3
4g

′4 + 6λ − 6y2t evaluated using the
running couplings in figure 1. The points are for Higgs masses mh equal to 150,
142 and 125 GeV (top to below).
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Figure 4 shows the evolution of the two Pauli constraints in Eq. (6),
using again the evolution code in [45]. The first Pauli condition with terms
∝ m4 crosses zero above 1016 GeV corresponding to the net bosonic ZPE
contribution outgrowing the fermionic top-quark contribution. The second
Pauli condition is shown up to 1010 GeV, above which λ becomes negative.
With negative λ, the combination m4

h lnm
2
h develops an imaginary part cor-

responding to vacuum instability; [ln(−λ) = lnλ − iπ for λ > 0]. For the
stable vacuum case with inputs mt = 171 GeV and mh = 125 GeV, one
finds that both Pauli curves cross zero between 1017 and 1018 GeV in this
calculation. With a stable vacuum, λ remains positive definite so that v
remains finite and the second Pauli condition develops no imaginary part.

410 610 810 1010 1210 1410 1610 1810 2010
 [GeV]µ

1.6−

1.4−

1.2−

1−

0.8−

0.6−

0.4−

0.2−

0

Pauli 1

Pauli 2

Fig. 4. Running values of the Pauli conditions in Eq. (6) for the Standard Model
particles (bosons–fermions), e.g. Pauli 1 {6m4

W + 3m4
Z +m4

h − 12m4
t} and Pauli 2

{6m4
W lnm2

W + 3m4
Z lnm2

Z +m4
h lnm

2
h − 12m4

t lnm
2
t}. The Pauli 1 (lower) points

are normalized to v4. The Pauli 2 (upper) points are normalized to v4 ln v2 and
plotted up to the scale so they develop an imaginary part when λ crosses zero just
above µ = 1010 GeV signaling vacuum instability.

If the Standard Model is emergent below some large ultraviolet scale M ,
e.g. associated with vacuum stability and perhaps close to the scale where λ
crosses zero, then the Standard Model will “dissolve” into more primordial
degrees of freedom above this scale. With an emergent Standard Model, ex-
trapolating perturbative evolution calculations above any scale of emergence
corresponds to extrapolating into an unphysical region since the degrees of
freedom there will be completely different.
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5. Vacuum energy and the cosmological constant

Vacuum energy is measured through the cosmological constant Λ which
appears in Einstein’s equations of General Relativity. Before we couple to
gravity, only energy differences have physical meaning, which allows us to
cancel the ZPE through normal ordering.

Einstein’s equations read

Rµν −
1

2
gµν R = −8πG

c2
Tµν + Λgµν . (11)

Here, Rµν is the Ricci tensor, R is the Ricci scalar and Tµν is the energy-
momentum tensor for excitations above the vacuum; G is Newton’s constant
and c is the speed of light. These equations determine the geodesics on
which particles propagate in curved space-time. The cosmological constant
measures the vacuum energy density

ρvac = Λ/(8πG) . (12)

It receives contributions from the ZPEs, any (dynamically generated) po-
tential in the vacuum, e.g. induced by the QCD and Higgs condensates, and
a renormalized version of the bare gravitational term ρΛ [49]4, viz.

ρvac = ρzpe + ρpotential + ρΛ . (13)

Matter clumps together under normal gravitational attraction, whereas
the cosmological constant is the same at all points in space-time and drives
the accelerating expansion of the Universe. As an observable, the cosmolog-
ical constant is renormalization scale-invariant. It is independent of how a
theoretician might choose to calculate it5

d

dµ2
ρvac = 0 . (14)

On distance scales much larger than the galaxy, the Universe exhibits a large
distance flat geometry. Observations based on supernovae type 1a, the large
scale distribution of galaxies and the Cosmic Microwave Background [1, 50]
point to a small positive value for the cosmological constant corresponding to

ρvac = (0.002 eV)4 (15)

and a present period of accelerating expansion that began about five billion
years ago.

4 Note that ρΛ corresponds to V0 Eq. (3.8) of [26].
5 Here, General Relativity is taken as a classical theory with Newton’s constant RG
scale-invariant.
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Historically, Einstein introduced the cosmological constant in an attempt
to give a static Universe [51]. Shortly afterwards, he expressed doubts de-
scribing Λ as “greatly detrimental to the formal beauty of the theory” [52].
The static Universe solution proved unstable to local inhomogeneities in the
matter density. Einstein abandoned the cosmological constant, setting it
equal to zero, following Hubble’s observation of an expanding Universe [53].
Feynman in his lectures on gravitation also wrote that he believed Einstein’s
second guess and expected a zero cosmological constant [54]. It returned to
physics with discovery of the accelerating expansion of the Universe.

Whereas the total ρvac is renormalization scale-invariant, individual con-
tributions in Eq. (13) do carry scale dependence. For example, the ZPE
contributions in Eq. (5) are scale-dependent both through explicit µ2 de-
pendence and through the running masses. The Higgs potential is RG-scale-
dependent through the scale dependence of the Higgs mass and Higgs self-
coupling, which determines the stability of the electroweak vacuum. This
renormalization scale dependence cancels to give the scale-invariant ρvac.
The important question is whether there is anything left over. How big
is the remaining ρvac? How do we understand the measured tiny value in
Eq. (15) with scale 0.002 eV when individual contributions involve the QCD
and electroweak scales?

One finds a simple explanation with an emergent Standard Model. With
a finite cosmological constant, Einstein’s equations have no solution where
gµν is the constant Minkowski metric [26]. That is, space-time transla-
tional invariance (a subgroup of the group of general co-ordinate trans-
formations) is broken without extra fine tuning. The reason is that ρvac
acts as a gravitational source which generates a dynamical space-time, with
accelerating expansion for positive ρvac. (For a Universe dominated by
the cosmological constant, space-time is described by the de Sitter met-
ric, ds2 = dt2 − e2H∞t(dr2 + r2dθ2 + r2 sin2 θdφ2), where H2

∞ = 1
3c

2Λ is the
Hubble constant in the infinite future.) A large net ρvac would challenge the
successful phenomenology of Special Relativity and particle physics with flat
space-time in our experiments.

With the Standard Model as an effective theory emerging in the infrared,
low-energy global symmetries can be broken through additional higher di-
mensional terms, suppressed by powers of the large emergence scale [10].
Suppose the vacuum including condensates with finite v.e.v.’s is transla-
tional invariant and flat space-time is consistent at dimension four, just as
suggested by the successes of the Standard Model and Special Relativity.
Then the RG-invariant scales Λqcd and electroweak Λew might enter the cos-
mological constant with the scale of the leading term suppressed by Λew/M ,
whereM is the scale of emergence (that is, ρvac ∼ (Λ2

ew/M)4 with one factor
of Λ2

ew/M for each dimension of space-time). This scenario, if manifest in
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nature, would explain why the cosmological constant scale 0.002 eV is similar
to what we expect for the neutrino masses [55], which for Majorana neutri-
nos are themselves linked to a dimension-five operator with mν ∼ Λ2

ew/M
[17]. The cosmological constant would vanish at dimension four. In this
sense, Einstein’s second guess, also Feynman’s guess, would be correct: the
cosmological constant vanishes if we truncate the action to terms of mass
dimension four or less. This vanishing cosmological constant is equivalent
to a renormalization condition ρvac = 0 at dimension four imposed by global
space-time translational invariance, even in the presence of large QCD and
Higgs condensates. The precision of global symmetries in our experiments,
e.g. lepton and baryon number conservation, tells us that the scale of emer-
gence should be deep in the ultraviolet, much above the Higgs and other
Standard Model particle masses. Taking 0.002 eV = Λ2

ew/M gives a value
of M about 1016 GeV.

The tiny cosmological constant enters as a subleading term in the low-
energy expansion of the action for an emergent Standard Model. Within
this scenario, anthropic arguments place an upper bound on the value of
Λew. It is interesting that the parameters of particle physics interactions are
fine-tuned to our existence [56, 57]. Small changes in particle masses and
couplings would lead to a very different Universe, assuming that the vac-
uum remained stable, with one example that small changes in the light-quark
masses can prevent Big Bang nucleosynthesis. Accelerating expansion of the
Universe takes over when the energy density associated with the cosmological
constant exceeds the mean matter density (including dark matter contribu-
tions). Weinberg argued that if the cosmological constant were ten times
larger, the present period of acceleration would have begun earlier enough
that galaxies would have no time to form [58]. With ρvac ∼ (Λ2

ew/M)4, this
constraint corresponds to a factor of 1.33 on Λew or upper bound on the
Higgs mass, which is complementary to the lower bound, about 125 GeV,
needed for electroweak vacuum (meta)stability with other PDG parameters
held fixed.

6. Conclusions

With the great success of the Standard Model at the LHC and in low-
energy precision experiments, it is worthwhile to re-evaluate our ideas about
the origins of gauge symmetry in particle physics. Might the gauge symme-
tries be emergent? The (meta)stability of the electroweak vacuum suggests
that the Standard Model parameters measured in experiments might be cor-
related with physics deep in the ultraviolet. Global space-time translational
symmetry and the successful phenomenology of flat space-time in labora-
tory experiments and our everyday experience is consistent with emergent
symmetry, with the cosmological constant scale suppressed by power of the
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large scale of emergence. In this scenario, the cosmological constant scale
would be similar to the size of Majorana neutrino masses. The tiny cosmo-
logical constant may be teaching us about the deeper origin of symmetry in
particle physics. Future experiments will measure the dark energy equation
of state with the EUCLID mission of ESA expected to be sensitive to vari-
ations from a time-independent cosmological constant of 10% or more [59].
(This experiment will measure the ratio of the pressure to energy density
for dark energy, parametrized as w = w0 + (1 − a)w1 to accuracy 2% for
w0 and 10% for w1, where a is the Universe scale factor (= 1 today) and
w = −1 with w1 = 0 for a time-independent cosmological constant.) Next
generation neutrinoless double β-decay experiments [60, 61], e.g. the future
LEGEND 1000 tonne experiment at Gran Sasso [62], will be sensitive to
Majorana neutrinos with mass in the range of the scale of the cosmological
constant scale, 0.002 eV.
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