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An Extended Higgs sector could solve many problems of the Standard
Model and is, therefore, investigated by several analyses of the ATLAS
experiment at the LHC. Selected searches for additional Higgs bosons and
other predicted effects of an extended Higgs sector based on 139 fb−1 of
data taken between 2015 and 2018 at a center-of-mass energy of 13 TeV
are summarized.
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1. Introduction

The Standard Model of particle physics (SM) has been tested at many
different experiments and, so far, every measurement made is consistent with
its predictions. However, certain observations indicate that physics beyond
the Standard Model (BSM) must exist. Extensions of the SM Higgs Sector
could solve some of these inconsistencies — for example, by providing a
candidate for dark matter or solving the hierarchy problem. Furthermore,
they are a necessary premise for any supersymmetric (SUSY) extension of
the SM.

A very simple SUSY theory is known as the Minimal Supersymmetric
Standard Model (MSSM) [1]. It assumes two instead of one Higgs doublet
leading to eight degrees of freedom. Like in the SM, after electroweak sym-
metry breaking, three of them are absorbed leading to five mass eigenstates
that could be observed as new particles. These are denoted as h,H,A,H±,
where h is usually identified as the SM-like Higgs particle with a mass of
125 GeV. H± are hypothetical charged Higgs bosons and H(A) would be a
CP-even (odd) and electrically neutral state. With some assumptions moti-
vated by phenomenology, the Higgs sector in the MSSM can be described at
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tree level using only two parameters. These are usually chosen as mA and
tanβ = 〈H0

u〉
〈H0

d〉
, the ratio of the expectation values of the two Higgs doublets.

An extended Higgs sector could lead to different detectable effects at the
Large Hadron Collider (LHC). For a start, it might lead to modifications of
the properties of the SM-like Higgs boson with a mass of 125 GeV and its
couplings. The presence of additional scalar bosons is another possibility.
Furthermore, other new particles that interact with the Higgs sector could
exist.

In the following, the current state of experimental results from the ATLAS
detector [2] in the extended Higgs sector is summarized. Then, recent results
of six different analyses are presented, two of which are based on the full
Run 2 dataset.

2. Current state

So far, all measurements of the properties of the 125 GeV Higgs boson
are consistent with the predictions of the SM. Furthermore, searches for ad-
ditional Higgs bosons have not shown any significant deviations from the SM
[3] background. In figure 1, regions of the [mA, tanβ] plane of the hMSSM
scenario [3] that are excluded at a 95% confidence level are displayed.

However, results based on the full Run 2 dataset are able to access new
regions of the phase space. A first wave of these is currently being published.
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Fig. 1. Excluded regions of the [mA, tanβ] plane in the hMSSM scenario [4].
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3. Latest results

All results shown in the following involve 13 TeV proton–proton collisions
recorded at ATLAS. They cover different recent results from a variety of
topics: searches for heavy Higgs, di-Higgs searches, flavour violation in the
Higgs sector, and invisible or exotic decays.

3.1. Searches for heavy Higgs
3.1.1. BSM A/H → ττ

This analysis focuses on H/A bosons as mentioned in Section 1. High
values of tanβ will enhance the coupling of H/A to down-type fermions
which is why the search for decays into pairs of τ leptons is very promising.
This effect will also increase the fraction of such particles produced in associ-
ation with b-quarks. In figure 2, all production modes that are considered in
this analysis are shown. The considered data consist of 36 fb−1 of integrated

Fig. 2. Strong Higgs production via gluon–gluon fusion and b-associated production
with and without, and incoming b-quark (from left to right) [5].

luminosity with a center-of-mass energy of 13 TeV. The analysis is split into
a fully hadronic (hadhad) and a semi-leptonic (lephad) channel. Events were
selected by a single lepton and a single tau trigger, respectively. In order to
exploit the different production modes, the Signal Region (SR) is split into
a b-veto and a b-tag category. The total transverse mass as defined in

mtot
T =

√
m2

T(Emiss
T , τ1) +m2

T(Emiss
T , τ2) +m2

T(τ1, τ2) (1)

is used as a final discriminant. Its distribution in the b-veto category can be
seen in figure 3 for the lephad and the hadhad channel, separately. The three
main backgrounds are estimated as follows. For misidentified tau leptons
from multijet events, a data-driven technique known as the Fake Factor
method is deployed. For fakes from all other processes, a semi-data-driven
fake rate approach was chosen. All backgrounds containing real τ leptons
are taken directly from Monte Carlo simulations.
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Fig. 3. The mtot
T distribution in the b-veto category [6].

The 95% C.L. upper limits on the production cross section times branch-
ing fraction can be seen in figure 4 alongside the corresponding limits in the
[mA, tanβ] plane in the M125

h scenario [3].
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h

scenario [6].

3.1.2. BSM bH(H → bb)

This analysis focuses on the production of a heavy neutral scalar in asso-
ciation with a b-quark where the scalar decays into a pair of b-quarks. Some
of the production processes considered are displayed in figure 5. Similarly
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Fig. 5. Feynman diagrams for some of the leading-order processes for the production
of a heavy neutral Higgs boson in association with one or two b-quarks in the
5-flavour scheme [7].

to the analysis in Section 3.1.1, this search is sensitive to high values of
tanβ. All in all, 27.8 fb−1 of data are considered. For the event selection,
a single jet trigger is required to have fired at Level 1. For the High Level
Trigger, a logical OR between a single (ET > 225 GeV) and a double b-tag
trigger is implemented. The SR is split into six subregions based on the
number of jets (4, 5, 6) and the number of b-tagged jets after reconstruction
(nb ≥3: bbb region, nb = 2: bb anti-region). Due to the final-state radi-
ation (FSR) of the b-jets, the reconstructed mass of the two b-jet system,
mbb, is heavily smeared. The goal is to isolate events with a low amount
of FSR. To achieve this, correlations between three different kinematic vari-
ables are used: The transverse momentum of the (sub-)leading b-jet pT1(2),
and mbb are exploited. In figure 6, pT1 is plotted versus mbb for multijet
background and a hypothetical signal. To exploit the correlations, a princi-
ple component analysis (PCA) is conducted. Here, the three input variables
are linearly combined to construct the new variable m′bb that possesses the
best separation power. This new variable is then used for a simultaneous
fit in all 6 subcategories with a freely floating background normalisation.
The multijet contribution in the bb-anti regions is used as a template in the
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bbb SR. This procedure is repeated for every tested mass point, ending up
in 15 different definitions for m′bb and independent fits. The results are pre-
sented as 95% C.L. upper limits on cross section times branching ratio and
in the [mA, tanβ] plane in the MSSM for different scenarios in figure 7.
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Fig. 7. Observed and expected upper limits on production cross section times
branching fraction at 95% C.L. as a function of the Higgs boson mass (left) in the
[mA, tanβ] plane in the MSSM for different scenarios [7].

3.2. Di-Higgs searches

Searches for processes with two Higgs bosons (di-Higgs) are of special
interest for an extended Higgs sector. Not only would a hypothetical heavy
enough resonance be able to decay into two SM-like bosons, the non-resonant
production itself may also be sensitive to BSM effects. The possible final
states of a di-Higgs system with a high expected branching ratio (4b and
bbWW ) have challenging backgrounds, while the decay channels with a clear
signature have very low expected branching fractions (e.g. 4γ). Therefore,
there is no single channel that dominates the sensitivity, thus searches are
currently investigating a plethora of different possible final states.

3.2.1. VBF hh → 4b

One di-Higgs search that has recently published a new result recently is
investigating pairs of Higgs bosons produced via vector boson fusion (VBF)
that then decay exclusively into b-quarks. The decay of two Higgs bosons
into four b-jets in the final state has the highest expected branching ratio but
a very challenging background. The VBF production processes at tree level
are displayed in figure 8. Interference between the resonant and non-resonant
production diagrams may lead to a lower production cross section than in
the SM-like exclusively non-resonant case. The analysis considered 126 fb−1
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of data taken between 2016 and 2018. Events were selected by a combination
of 4 b-jet triggers. After reconstruction, there must be at least four central
b-jets as well as two forward jets satisfying |η| > 2.0. The signal is then
isolated by cuts on the jet kinematics that split the event selection into
signal, validation and side band regions. For this, a system of inequations
is implemented involving the invariant mass of the (sub-)leading two-b-jet
system, m(sub−)lead

2b , the invariant mass of the four-b-jet system, m4b, as well
as the distance between the two b-jets in each subsystem, ∆R

(sub−)lead
2b . In

figure 9, the different regions are graphically displayed as ellipses in the
[mlead

2b , msublead
2b ] plane alongside the distributions for a SM-like signal and

the multijet background. In order to extract limits on the production cross
section times branching ratio, a fit in m4b is conducted where the SM-like
(background only) hypothesis is fitted to the observed data which can be seen
on the left in figure 10. Limits are set for a broad and a narrow resonance,
separately.
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3.3. Flavour violation
3.3.1. BSM H(125)→ eµ/ee

This analysis searches for the decay of a 125 GeV Higgs boson into two
electrons as well as the lepton flavour conservation violating decay into an
electron and a muon. The Feynman diagrams for these decays can be seen
in figure 11 for the two leading production mechanisms.

e

e/µ

q

q
e/µ

e

Fig. 11. Feynman diagrams for H → eµ/ee in the VBF (left) or ggF production
channel (right).

The full 139 fb−1 of Run 2 data are considered. Events are selected with a
single electron (muon) trigger. Additionally, some kinematic cuts are applied
along with a b-veto. The low and high pT signal regions are split by a pT
requirement on the leading lepton. If events in the high pT category contain
two jets in opposite hemispheres, they are classified as VBF. All other high
pT events define the ggF category which is also split into a central and a non-
central subcategory based on |η| of both leptons. In total, there are four SRs
for each decay channel. The invariant mass of the two-lepton system, mll, is
used as the final discriminant. Its distribution in the ee(µ) channel can be
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seen in figure 12 on the left (right) for data, background and a hypothetical
signal with an assumed branching fraction of 2(0.05)%. The Higgs mass
window is chosen to be 110 < mll < 160 GeV. The side bands are used
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Fig. 12. (Colour on-line) Likelihood fits to the mll distribution in data (points)
using the background model (black/blue line) for all categories. A goodness of fit
is tested by evaluating a χ2 value for each category based on statistical errors only.
The signal parametrisation with a branching fraction set to B(H → ee) = 2% is
also shown (grey/red line) [9].

as a CR. The backgrounds are described by analytic functions and fitted
to the data. Results are presented as scans of the C.L. in dependence of
the respective branching fraction as can be seen in figure 13. The 95% C.L.
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upper limit on the branching fractions are 3.6 × 10−4 and 6.1 × 10−5 for
the ee and the eµ channel, respectively. This marks a strong improvement
compared to the previous best results of 1.9× 10−3 and 3.5× 10−4 based on
36.1 fb−1 of data.

3.4. Invisible/exotic decays
3.4.1. H(125) → invisible combination

As mentioned in Section 1, couplings of new, unknown or invisible parti-
cles to the 125 GeV Higgs boson are also considered part of an extended Higgs
sector. In a recently published result, three different searches for invisible
Higgs decays were combined. In the first one, the Higgs boson is assumed to
be produced in a VBF process. The other two searches focus on Higgs bosons
produced in association with a vector boson where the vector boson decays
leptonically Z(lep)H or hadronically V (had)H, respectively. Emiss

T triggers
are required to have fired for the VBF and the V (had)H channels. Any sin-
gle lepton trigger marks an event for the Z(lep)H channel. All three anal-
yses impose cuts on the missing transverse energy: VBF: Emiss

T > 180 GeV,
Z(lep)H: Emiss

T > 90 GeV, and V (had)H: Emiss
T > 150 GeV. Z(νν)+jets

andW (lν)+jets are the dominant backgrounds in the VBF and the V (had)H
channel, whereas Z(νν)Z(ll) and W (lν)Z(ll) are the dominant ones in the
Z(lep)H channel. Results are presented as the negative logarithmic likeli-
hood (LLH) ratio versus the branching fraction, B(H → inv), in figure 14.
The best fit values lies at BR(H → inv) = 0.13 ± 0.08 with a 95% C.L.
observed (exp.) upper limit of BR(H → inv) < 0.26(0.17+0.07

−0.05).
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4. Conclusion and outlook

Thus far, ATLAS results are compatible with the SM-like Higgs scenario.
However, there is still room for BSM physics in the Higgs sector. For one,
additional heavy Higgs bosons could hide at higher masses that have simply
not yet been accessed. Other effects of an extended Higgs sector are expected
to be so rare that analyses will only become sensitive with more data.

In any case, exciting times lie ahead and ATLAS is looking forward to
Run 3 and the High-Luminosity LHC.
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