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A new model of color reconnection in the Monte Carlo generator Her-
wig 7 is presented. It is based on the minimization of a boost-invariant
distance of the parton system, where all partons have momentum as well
as spacetime position assigned. We test the influence of both types of
variables, namely the rapidity span and transverse distance, on the actual
need to reconnect the system to better describe soft physics measurements.
We find reasonable agreement with the data and conclude that spacetime
topology of the event can be useful for hadron collision modeling.
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1. Introduction

The investigation of physics of hadron collisions at the LHC experiments
has reached unprecedented levels of precision especially with respect to per-
turbative QCD calculations. However, hadron collision modeling consists of
number of other mechanisms, which proceed at low-energy regime, gener-
ally known as hadronization and underlying event. These phenomena are
less understood and one method to study them is by using general-purpose
Monte Carlo event generators [1–5], which become indispensable for current
measurements.
∗ Presented by M. Myska at XXVI Cracow Epiphany Conference on LHC Physics:
Standard Model and Beyond, Kraków, Poland, January 7–10, 2020.
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One of the problems in simulating hadronization is how to correlate
multiple parton interactions (MPI) within a single hadron collision. The de-
scription of MPI in Monte Carlo programs has a relatively long history, see
e.g. [1, 2, 4, 6–10]. Assuming we leave the parton correlations inside a hadron
behind, we still need to unpuzzle the interactions of MPI among each other.
One possible approach is to test an existence of would-be extra gluon ex-
changes exhibiting as a color changes in the outgoing partons. This type of
algorithms are called color reconnection [11–15]. Such a mechanism is also
motivated by a need of corrections for errors in the leading-color approxima-
tion of the parton shower. A summary of the history of color reconnection
and the effects of such a mechanism on precise measurements is given in
[16]. Herwig 7 first focused on reconnecting excited qq̄ pairs, called clusters,
by minimizing the sum of the invariant masses [12]. Later, work [14] ex-
panded upon this model to introduce the possibility of forming so-called
baryonic clusters qqq and q̄q̄q̄ from three ordinary/mesonic clusters. Other
methods have investigated color reconnection at the perturbative stages
of event simulation or have taken inspiration from perturbative techniques
[17–19].

In these proceedings, we summarize main points of [20], where we discuss
the need of the introduction of spacetime coordinates for all partons inside
the event simulation in Herwig 7. Such information allows us to deal with
spacetime separation between the particles for the first time, since all the
other stages of generation of pp event involve only the energy-momentum
framework. In particular, spacetime picture provides a guidance what parts
of the event are allowed to undergo color reconnection within a given slice
of phase space, if one thinks that color reconnection needs to be a causal
effect. We believe that this approach might be crucial especially for heavy-
ion collisions, where the measured final state strongly depends on the po-
sition of interaction inside the overlap region, e.g. a phenomenon known
as jet quenching [21–23]. As a result, pp-oriented event generators have
also started to include more spacetime information, using these coordinates
for various aspects of the simulation, such as collective hadronization ef-
fects [24, 25] and a spacetime evolution of the parton shower [26]. PYTHIA
recently introduced a framework for generating spacetime coordinates [27]
for quantitative studies of Lund string fragmentation [28]. The effects of
introducing spacetime coordinates have been recently studied in dipole evo-
lution in γ∗A collisions [29].

2. Event simulation in Herwig 7

Since the color reconnection is mainly motivated by existence of MPI
and deals with clusters, formed at the beginning of the hadronization step
of the event generation, we now start with their short description. Herwig 7
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distinguishes two classes of MPI: hard and soft, with the transverse momen-
tum cut pmin

⊥ separating them. This parameter is then left free for tuning
to data.

The hard interactions are calculated perturbatively and initial- and final-
state partons undergo showering. The color topology is motivated by the
leading-color approximation used in the shower. The soft scatterings are
modeled phenomenologicaly according to multi-peripheral MPI model [9, 10]
and the created partons do not get showered.

Both types of interactions are bound together through the optical theo-
rem [30] in the form of

σtot(s) = 2π

∞∫
0

db2
(

1− e−(χhard(b,s)+χsoft(b,s))
)
, (1)

where σtot(s) is the total cross section of the given collision at a c.m.s.
energy squared, s. The integration goes over the impact parameter of the
collision, b. The eikonal factor is split to hard and soft component, both
given by the same prescription

χ(b, s) =
1

2
A(b;µ)σinc

(
s; pmin
⊥
)

=
1

2
〈n(b, s)〉 (2)

but with the different values of its parameter µ, which has a meaning of
inverse hadron radius. The total cross section σtot and the hard inverse
radius µhard are tunable parameters and fully determine the soft inverse
radius µsoft through (1). A(b;µ) is a function describing an overlap of the
colliding hadrons at given b and σinc(s; pmin

⊥ ) is the inclusive cross section
to produce a pair of partons above pmin

⊥ . The same as inverse radius, also
values of σinc(s; pmin

⊥ ) for hard and soft component differ. This formalism
was developed in [31] and Herwig’s implementation is built on the Jimmy
framework [7].

With the exception of momentum conservation requirement, Herwig 7
generates all MPI independently and thus assumes a Poissonian distribution
for their multiplicities (for both hard and soft MPI) at a given b1

Pi,k(b) =
(2χh(b))i

i!

(2χs(b))
k

k!
e−2(χh(b)+χs(b)) , (3)

where indices i and k denote the actual number of hard and soft interactions.
To understand this, we explicitly write in (2) that we consider the eikonal
factor to be one half of the mean number of interactions 〈n〉 of the given

1 We have dropped the functional dependence on s.
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type. The last step is to integrate (3) over the b space to produce the
exact probability to produce the corresponding number of hard and soft
interactions in an event. Figure 1 shows the joint Poissonian distributions for
several cases and confirms our expectations: the more scatters are produced,
the more likely it is that the collision is central (small b). More details of
the technicalities involved in the implementation of MPI algorithm can be
found in [1].

Fig. 1. Joint Poissonian distribution Ph,k(b), as a function of impact parameter b,
for a number of h hard scatters and k soft scatters. We have used the following fixed
values for the distributions: σinc

hard = 83 mb, σinc
soft = 127 mb, µ2

hard = 0.71 GeV2,
and µ2

soft = 0.52 GeV2. All distributions are normalized to unit area.

Partons from the hard interactions are showered down to the parton
shower cutoff scale, and the resulting color topology has triplets connected
to anti-triplets via gluon connections. At the lower scales, Herwig 7 uses the
cluster hadronization model [32] based on the pre-confinement property of
angular-ordered showers [33]. This model requires as an input a set of quarks
and anti-quarks, and thus all hadronizing gluons are non-perturbatively split
into qq̄ pairs. The algorithm then combines all partons into the qq̄ pairs,
which are the closest in the color space, and typically also nearest in momen-
tum space due to pre-confinement. These qq̄ pairs are, therefore, colorless
objects called clusters, or more specifically mesonic clusters.

Due to the chosen leading-color topology for the additional scatters, MPI
are color-connected to the beam remnant and other subprocesses. It is shown
in [12], that this approximation performs significantly worse for the soft MPI
and thus an extra treatment is required. The clusters undergo the color
reconnection. It aims to minimize a chosen measure, typically momentum-
based, of the given set of clusters. Herwig 7 has currently three available
models [12, 14]: Plain, Statistical/Metropolis, and Baryonic.
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3. Spacetime coordinates generation

There are two parts of how our new model generates coordinates to
partons: individual MPI are moved to their own position and partons orig-
inating from them are smeared around these points. For the MPI position
generation, we first need to specify the actual impact parameter of a colli-
sion. It is randomly sampled according to distribution drawn in Fig. 1. Once
b is determined for a given event, we set the incoming beam positions to be
at (±b/2, 0, 0, 0), i.e. aligned along the x-axis, for simplicity. The overlap
function then determines the sampling of MPI positions through the ran-
dom radius b′ with respect to the beam positions. In this work, an overlap
function is chosen to be a Bessel function of the third kind

A(b;µ) =
µ2

96π
(µb)3K3(µb) . (4)

Since the overlap region is given by the convolution of the two protons’
transverse profiles G(b′;µ), we get the necessary sampling function as an
integrand of it2

A(b) =

∫
d2b′G

(
b′
)
G
(
b− b′

)
. (5)

The overlap function governs the density of MPI scattering centres in the
transverse plane for a given offset between the protons. We note that hard
and soft scatters use different µ2 values. As a result, hard scatters are slightly
more concentrated in the centre of the transverse plane, while soft scatters
have a longer tail.

With regards to the spacetime coordinates generated by the parton
shower algorithm, we recently showed that distances traveled in transverse
space are mostly negligible [20]. They get significant only at small energy
scales. Therefore, we only give positions to the partons that remain at the
end of the shower and we assign them the same virtuality ν2 to put the
threshold on its minimal value. A parton of mass m thus receives the mean
lifetime in its rest frame

τ0 =
~m
ν2

. (6)

The distance traveled by a parton is simply result of the appropriate Lorentz
transformation, where time of the decay is sampled according to the expo-
nential decay law

Pdecay(t < t∗) = 1− exp

(
− t
∗

τ

)
, (7)

where t∗ is the rest-frame decay time and t its equivalent in a lab-frame.
2 We have suppressed the dependence on µ for clarity.
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Once all the partons have their new coordinates with respect to their MPI
scattering centre, we then shift these coordinates using the points produced
from the MPI coordinate generator. One example of the final positions is
shown schematically in Fig. 2.

x

y

Fig. 2. (Color online) A schematic diagram for how our model introduces trans-
verse spacetime coordinates for the multiple parton interactions (black points), and
for the end of the parton shower. Different colored points are partons from dif-
ferent, respectively ring-colored MPI centres. The thin black circles represent a
characteristic scale for parton propagation about the MPI centre.

4. Spacetime color reconnection

The first model of color reconnection in Herwig was the so-called Plain
color reconnection. For simplicity, we start with its description, where we
include the new information from spacetime coordinates and then we move
to the model, which was actually used to describe the experimental data:
the baryonic spacetime model.

The classical Plain color reconnection is based on the check if the sum
of clusters’ invariant masses after the reconnection is smaller than the sum
before the reconnection. If this is the case, the reconnection is accepted with
a constant probability which is a tunable parameter of the model. In other
words, only parton momenta are used in such a measure and it may lead to a
connection of causally-disconnected partons. In the Plain model extended by
incorporating the spacetime information, we still deal with mesonic clusters
but instead of invariant mass we use measure defined as

R2
ij =

∆r2
ij

d2
0

+ ∆y2
ij , (8)

which can be calculated for two cluster constituents i, j. This measure
contains a combination of spacetime transverse distance between the con-
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stituents ∆r2
ij = (~x⊥,i−~x⊥,j)2 and rapidity difference ∆yij . d0 is the charac-

teristic length scale for color reconnection in our spacetime model, which is
a tunable parameter. This parameter can also be viewed as the strength of
the transverse component of the spacetime measure relative to the rapidity
component. The Plain color reconnection based on the measure from (8) re-
cursively checks the sum of the pairing of cluster constituents and searches
for the minimal variant. If the sum of the cluster separations is smaller after
a possible reconnection

Rqq̄′ +Rq′q̄ < Rqq̄ +Rq′q̄ ′ , (9)

then we accept the reconnection with a flat probability. A similar model
was studied earlier in [34].

Let us now move to baryonic spacetime color reconnection. It uses the
algorithm from [14], where the partners for mesonic and baryonic reconnec-
tion are found by using the projection onto a given cluster’s quark axis. In
the case of baryonic cluster pair, we cannot directly compare the sum of
measures (8), since we would be starting with 3 clusters — each with 2 par-
tons — and ending with 2 clusters with 3 partons. For the latter situation,
the transverse distance measure is actually not defined. The algorithm deals
with two baryonic clusters as with a set of three quarks and three antiquarks.
A pair of quark–antiquark is found with the lowest possible measure (8). A
mean spacetime position and rapidity is then calculated for the remaining
diquark (anti-diquark) system. We allow baryonic reconnection if the fol-
lowing criterion is true:

Rq,qq +Rq̄,q̄q̄ < Rq,q̄ +Rqq,q̄q̄ . (10)

The reconnection is accepted with probability wb, which is a new tunable
parameter. If the reconnection is rejected, all three candidate clusters remain
ordinary mesonic clusters.

We note that the above-described model already relies on the preselection
of clusters for reconnection based on parton rapidities. It is meant as a first
discriminating factor when searching for potential partners. The transverse
separation between constituents in measure (8) provides extra information
and thus improves the original baryonic color reconnection model, especially
in larger systems like heavy-ion collisions.

At the end of the model description, we would like to note that the
building of baryonic spacetime color reconnection model in Herwig 7 required
additional changes to the original code. These changes are of more general
nature than the specifics of our model and we refer the reader to a separate
publication [35].
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5. Results

Before obtaining results, there are eight parameters of the model which
have to be set to match the experimental data [36–40] as best as pos-
sible. This so-called tuning procedure was performed within the Auto-
tunes [41] framework that internally makes use of the Rivet and Professor
frameworks [42, 43]. Figure 3 shows χ2 values for two pairs of the param-
eters, namely (µ2

hard) and (pmin
⊥ ). The white area in the parameter space

means that the model fails to fit the data without violating the total cross
section.
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Fig. 3. (Color online) χ2 contour planes for parameter sets (µ2
hard, p

min
⊥ ) and (ν2,

d0). Darker areas correspond to smaller χ2 values. In the right plot, we show three
points corresponding to the chosen variations of (ν2, d0).

TABLE I

The newly tuned parameters for Minimum Bias simulation and our baryonic space-
time color reconnection model. The top row is the retuned parameters of the old
Herwig 7 Minimum Bias model. The bottom row is the three new parameters of
the spacetime components of our model, and a determined parameter of the old
model.

σtot [mb] RDiff pmin
⊥ [GeV] µ2

hard

[
GeV2

]
96.0 0.2 3.0 1.5
ν2
[
GeV2

]
d0 [fm] wb µ2

soft

[
GeV2

]
4.5 0.15 0.98 0.254

Besides the best-fit values (labeled “H7 + STCR”), written in Table I,
we also choose two other points from the (ν2, d0)-plane in order to show
the variability of our spacetime model. These points are “Variation 1” (ν2 =
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2.1 GeV2, d0 = 0.55 fm) and “Variation 2” (ν2 = 3.3 GeV2, d0 = 0.05 fm).
Most of the parameters have already been explained. We add an extra
parameter RDiff , the amplitude of the non-diffractive cross section. We reit-
erate that the µ2

soft parameter is not tuned itself but calculated by the model
with respect to other parameters

Let us make two extra remarks on tuning. First, the baryonic color
reconnection probability wb got the value of 0.98, which seems too large.
This is actually caused by the preselection of candidate clusters for the color
reconnection, as described in detail in [14]. Second, we avoid to retune the
probability for strangeness production during the hadronization and keep
the value from [14], despite the recent developments described in [44]. We
leave a full retune of all the hadronization parameters to future work.

As an example of results obtained from the newly tuned Herwig 7 with
the spacetime color reconnection model, we show the rapidity and transverse
momentum distributions as measured in [38], see Fig. 4. Here, we put several
distributions in each plot. They differ only in cuts on the track momentum
and/or on minimum number of tracks in the event. These observables are
crucial for the description of Minimum Bias and soft physics, and we find
that the model is perfectly capable at describing the distributions. Moreover,
we add two gray lines (solid and dashed) to each distributions corresponding
to the chosen variation points as described above (“Variation 1” and “Vari-
ation 2”). They form a very nice envelope of the experimental data and
demonstrate further adaptability of the model. More results of our work
can be found in [20].
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Fig. 4. Charged particle spectra against rapidity and transverse momentum for
various leading track p⊥ and number of charged particle Nch slices. An overall
good agreement with data is found. The variations are purely in the spacetime
length and minimum virtuality parameters of our model.
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6. Conclusions

We probed the possibility of using spacetime positions of partons in
the hadronization step of proton collision simulation in Herwig 7 for the
first time. In order to do so, we first implemented two new mechanisms
how to generate the spacetime coordinates: the positions of MPI scattering
centers, and the propagation distances at the end of the parton shower.
Then we used the transverse plane distances among partons in combination
with their rapidities to define a measure that we minimize when performing
baryonic color reconnection. We call this model as baryonic spacetime color
reconnection.

We observe that this model provides meaningful results for many observ-
ables in Minimum Bias events in pp collisions at the LHC. These optimistic
results open a completely new branch of studies. One can further develop ei-
ther the spacetime position generation algorithms or the color reconnection
step. For instance, one can allow only certain MPI subsystems to reconnect
with each other, see [45], or one can use the coordinates to decrease the com-
putation complexity of soft-gluon-evolution model [18] by focusing on the
small neighbourhood in spacetime. Another possibility might be to study
the final state of the event in more detail using spacetime coordinates, as
started in [27]. One interesting idea is the interplay between Bose–Einstein
correlations, and hadron position and extent [46]. Moreover, we would like
to point out that this work might also be taken as a step towards larger
system description, as heavy-ion collision.
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