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Precise predictions for total and differential cross sections at hadron
colliders are at the heart of LHC physics. The lack of new ‘smoking-
gun’ physics signals requires precise comparisons between measurements
and Standard Model predictions to get a handle on New Physics effects.
Tremendous efforts have been made to push perturbative calculations to
higher orders such that NNLO QCD calculations are now state-of-the-art
for most 2→ 1 and 2→ 2 hard scattering processes. Upcoming five-point
two-loop amplitudes and refined subtractions schemes for real radiation
contributions allow now first steps in the direction of 2 → 3 scattering
processes.
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1. Introduction

Hadron colliders such as the LHC are considered to be discovery ma-
chines, probing a vast range of energies to unveil unknown physics in form of
new interactions or Beyond Standard Model (BSM) particle content. How-
ever, this discovery potential comes with a trade-off, the hadronic environ-
ment in which hard scattering processes take place creates complex final
states. The experimental analysis becomes very challenging and this in-
creases the complexity of theoretical predictions. Any interaction, the Stan-
dard Model (SM) or BSM, is subject to important QCD corrections, and the
theory community has to use the full portfolio of techniques to get theory
uncertainties under control. The motivation for ever increasing theoretical
precision and accuracy is not only a better understanding of the SM itself,
but also the fact that no ‘smoking gun’ new physics signal has been observed
in data yet. Precise comparisons between the SM and measurements will
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allow for an indirect method to probe for New Physics. The quest for greater
precision and accuracy has many aspects but fixed-order perturbative cal-
culations form an essential part of any theory prediction. A tremendous
progress in this field has been observed in the past decade, mainly driven by
the introduction of new calculation techniques and better implementation of
established methods. Next-to-leading order (NLO) QCD and NLO electro-
weak corrections are widely automatised, matched to Monte Carlo programs,
and used by experiments and theorists for the LHC physics modelling.

Predictions at next-to-next-to-leading order in perturbation theory be-
come more and more available, in particular for QCD. State-of-the-art are
low multiplicity (less then three final-state particles) SM processes. For the
availability of higher multiplicity processes, two aspects are essential, the
availability of two-loop amplitudes and the handling of the infra-red singu-
larities in the double real-emission contributions. The computation of two-
loop amplitudes is a challenging task and, so far, is done manually process by
process. There are several attempts to automatise numerical computations,
as has been done at one-loop [1–4], make progress, but they are still far from
being fully general and applicable. The cutting edge are two-loop 5-point
amplitudes, where planar results are already obtained [5, 6]. To deal with
the real radiation contributions, various subtraction or slicing methods have
been developed (corresponding literature can be found in [7]). The four-
dimensional sector-improved residue subtraction scheme proposed in [8] has
been applied successfully to different LHC processes. The implementation
of the scheme into a flexible C++ framework, called Stripper, allows for an
efficient workflow to implement new processes and observables. The first
computation done with this framework was the differential cross sections for
tt̄ pair production [9]. To overcome inefficiencies in the way the subtraction
phase space has been constructed, a new phase-space parameterization has
been proposed in [7] and implemented. These changes allow to minimize
the number of subtraction kinematics in each sector, resulting in a more
efficient Monte Carlo integration, in particular for differential distributions.
The new scheme has been recently applied to top-quark pair production and
decay [10], inclusive jet production [7] and, additionally, it has been used to
obtain the first NNLO QCD calculation of a 2→ 3 process, the production
of three photons [6].

2. Top-quark pair production and decay
in the Narrow-Width Approximation

The modelling of the top-quark decays enriches the phenomenology of
top-quark pair production considerably. On the one hand, it allows to study
features of quark pairs which are inaccessible in the case of a stable top-quark
computation like spin-correlations and, on the other hand, it is possible to
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study the impact of NNLO QCD corrections closer to experimental reality
where the decay products rather than the on-shell top-quarks are measured.
The Stripper framework has been modified to allow for heavy particle de-
cays within the Narrow-Width Approximation (NWA), including full spin
correlations. In particular, the di-leptonic top-quark decay channel has been
implemented up to NNLO QCD [10]. The spin-correlation of the top-quark
pair is a particular well-suited topic to be studied in such a computational
setup. Conceptually, the spin density matrix [11] encodes all the information
about polarization and correlations, but is difficult to access experimentally,
since a reconstruction of the top-quark momenta is necessary and the spin-
vectors are only known indirectly over the spin-analysing power of the decay
products. However, some differential observables directly related to the de-
cay products encode spin correlations between the top-quark parents. One
example is the azimuthal opening angle ∆φ`¯̀ of the two charged leptons.
Experimentally, this observable is easily accessible and allows for more pre-
cise measurements since no top-quark reconstruction is necessary to study
them in the experimental fiducial phase-space volume. Yet, fiducial phase-
space definitions usually require a careful understanding of the phase-space
cuts. The ATLAS study [12] discusses a measurement of this observable in
the fiducial phase space and an extrapolation to the inclusive phase space.
A tension in the shape of the ∆φ`¯̀ differential cross section with respect to
the NLO SM Monte Carlo predictions has been observed in the extrapolated
phase-space volume. For this particular case, the NNLO QCD predictions
for ∆φ`¯̀ have been computed and presented in [10]. Details about the cal-
culation are not reproduced here and are only summarized.

As it can be seen in Fig. 1, the NNLO QCD corrections loosen the
tension in the inclusive phase space but do not resolve them completely.
On the other hand, within the fiducial phase space, they are well-described
by the NNLO predictions, see Fig. 2. In this context, an additional issue
about the definition of normalized differential cross sections became clear.
The shown differential cross sections are normalized to the full (inclusive or
fiducial) cross section

R =
1

σ

dσ

dX
.

To be explicit on how the normalized differential distributions in Figs. 1
and 2 have been obtained, we consider the following perturbative expansions:

σ = σ0 + αSσ
1 + α2

Sσ
2 ,

dσ

dX
=

dσ0

dX
+ αS

dσ1

dX
+ α2

S

dσ2

dX
,

where X is a infra-red safe observable. The PDFs used for the computations
are matched to the perturbative order, thus we compute
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Fig. 1. Normalized differential cross section with respect to ∆φ`¯̀ within the inclu-
sive phase space as described in [10].
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Fig. 2. Normalized differential cross section with respect to ∆φ`¯̀ within the fiducial
phase space as described in [10].

σLO = σ0 with σi computed with LO PDFs ,
σNLO = σ0 + αSσ

1 with σi computed with NLO PDFs ,
σNNLO = σ0 + αSσ

1 + α2
Sσ

2 with σi computed with NNLO PDFs ,

and similar for the differential ones. We thus obtain the normalized differ-
ential cross section at NNLO by defining

RNNLO =
1

σNNLO
dσNNLO

dX
,

and similar for the lower orders. If we consider the normalization, we see
that 1/σ might be re-expanded in αS such that one obtains a series expansion
for R
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R =
1

σ

dσ

dX
= R0 + αSR

1 + α2
SR

2 ,

R0 =
1

σ0

dσ0

dX
,

R1 =
1

σ0

dσ1

dX
− σ1

σ0

1

σ0

dσ0

dX
,

R2 =
1

σ0

dσ2

dX
− σ1

σ0

1

σ0

dσ1

dX
+

((
σ1

σ0

)2

− σ2

σ0

)
1

σ0

dσ0

dX
.

To again specify the used PDFs, we evaluate analogously

RLO,exp = R0 with σi computed with LO PDFs ,
RNLO,exp = R0 + αSR

1 with σi computed with NLO PDFs ,
RNNLO,exp = R0 + αSR

1 + α2
SR

2 with σi computed with NNLO PDFs .

When considering scale variations, the scale is varied everywhere simul-
taneously, in the numerator as well the denominator. In Fig. 3, we show the
differences between the expanded and not expanded normalized differential
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Fig. 3. Expanded normalized differential cross section with respect to ∆φ`¯̀ within
the inclusive phase space as described in [10].
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cross section. In particular, one can observe that at NLO, while being con-
sistent within scale uncertainty, the shape of the ∆φ`¯̀ distribution changes
significantly when expanding the cross section. However, this ambiguous be-
haviour is resolved at NNLO, where both methods give consistent results. It
cannot be stressed enough that the NNLO predictions significantly improves
the scale dependence, in both definitions of the normalized differential cross
section.

3. Inclusive jet cross sections with full colour dependence

The production of jets is naturally the most common hard scattering pro-
cess at hadron colliders. It is phenomenologically interesting due to the sen-
sitivity to QCD parameters such as PDFs, αS or new physics at high-energy
scales. Inclusive jet rates have been considered to be good benchmark, for
PDF determination and allow to pin-point large-x gluon PDFs. They are
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Fig. 4. Single inclusive jet rates in bins of jet transverse momentum and pseudo-
rapidity, details on the setups can be found in [13].
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also interesting from the perturbative QCD point of view as the underlying
partonic processes exhibit all possible QCD limits at NNLO. This makes
this process particularly difficult to compute, but by the same token might
serve as benchmark for computation schemes. Double differential inclusive
jet rates at NNLO QCD have been obtained by the NNLOJet Collaboration,
for example [13] within the leading colour approximation for the fermionic
contributions. The first computation with full colour dependence has been
obtained in [7]. The inclusive jet rates in bins of the jet transverse mo-
mentum pT and pseudo-rapidity |η| are shown in Fig. 4. The NNLO QCD
prediction shows reduced scale dependence and reasonable K-factors with
respect to NLO ranging from 1 to 10% and general good agreement with
CMS data. A comparison with the results from the NNLOJet Collaboration
shows that there is no significant difference due to the sub-leading colour
effects and thus those effects can be estimated to be less than 1% which
corresponding to statistical uncertainty from the Monte Carlo integration in
the most precise bins.

4. Three photon production

A natural next step is to go to higher multiplicity processes e.g., with
genuine 2 → 3 kinematics. The main bottleneck here is the availability of
two-loop virtual matrix elements. A lot of progress has been made in the past
few years to tackle the easiest class of 2→ 3 processes, those with all external
and internal particles massless. Different approaches are in development to
achieve an efficient evaluation of the relevant matrix elements. Numerical
reconstruction methods have been successfully applied to achieve analytic
expressions for all planar (leading colour) pure QCD helicity amplitudes in
the Euclidean phase-space region [13]. The first (planar) 2→ 3 amplitude in
the physical region has been computed in [6] for the three photon production
process qq̄ → γγγ. The approach has made use of the known analytic IBP
reductions for the planar topologies [14] and a representation of the planar
master integrals in terms of iterated integrals [15]. Non-planar contributions
to the full matrix elements are not yet available due to the lack of IBP
relations and an appropriate representation of the master integrals. The
master integrals have been derived only in terms of differential equations
and numerical boundary conditions suitable for numerical evaluations [16].
Thus, a representation of the non-planar amplitude in terms of a function
basis is not feasible yet. For an NNLO QCD computation, the relevant
qq̄ → γγγ matrix element can be decomposed in the following way:∑

2Re
〈
M (2)

∣∣M (0)
〉

= M (lc, 1)
(
N3

c − 2Nc + 1/Nc

)
+M (lc, 2)

(
N3

c −Nc

)
+M (f)

(
N2

c − 1
)

+M (np) (Nc − 1/Nc) .
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The M (lc, 1) (M (lc, 2)) parts contain all planar diagrams with non-Abelian
(no non-Abelian) couplings. The M (f) features all planar diagrams with
fermion loops while M (np) collects all non-planar diagrams. The computa-
tion of the non-planar part M (np) is not yet within reach and thus, since it
also contains fermion loop diagrams, it is not possible to include the M (f)

contributions consistently due to gauge invariance. We then obtain the
gauge-invariant planar part of the amplitude by neglecting everything but
M (lc, 1) andM (lc, 1). The series in the dimensional regularization parameter ε
of the matrix element is computed in a straightforward manner in terms of
the ‘pentagon’-function basis

∑
2Re

〈
M (2)

∣∣M (0)
〉

(~x ) =
0∑

i=−4

∑
k∈Fi

εifk(~x )cik(~x ) ,

where fk(~x ) is a short-hand for the various pentagon functions (and cor-
responding products) and Fi represents the set of functions that appear at
a given order in ε. The rational coefficients cik(~x ) are implemented after
simplification using rational numbers to avoid loss of precision in interme-
diate steps. They are simplified by using Fermat and Mathematica. For the
most complicated coefficients, rational field reconstruction as implemented
in the FiniteFlow [17] software is used to add up the large amount of individ-
ual terms. The pentagon functions are evaluated with the public available
code from [15]. The final implementation needs 10 to 50 mins for a single
evaluation of the full matrix element. This is mostly due to the large set
of functions appearing in the final result. The evaluation of the two-loop
finite remainder function from the matrix element is the computationally
most expensive part in this NNLO QCD computation. We evaluated 30 000
phase-space points from unweighted tree-level events. The computation of
the other NNLO QCD contribution, real–virtual and double real corrections,
has been computed within the Stripper framework and has been computa-
tionally cheap (roughly 2 000 CPU hours). All one-loop matrix elements
have been obtained from the OpenLoops [18] software.

A phenomenological study of the production of three isolated photons
at NNLO QCD has been performed for the experimental setup of [19]. For
details about phase-space cuts and other parameters I refer the interested
reader to [6]. A central observable is the fiducial cross section within the
phase-space constraints, and the perturbative QCD results are shown in
Fig. 5.

The NNLO QCD corrections are significant and improve the agreement
with the ATLAS measurement which is only poorly described by NLO QCD.
The corrections are far outside of the theory uncertainty estimates from
scale variation at lower order, which has already been observed in various
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Fig. 5. Fiducial cross sections from perturbative QCD for the production of three
isolated photons compared to ATLAS measurement [19].

colour singlet production processes. A very close example is the photon-
pair production [20], which shows very similar features. Differentially, a
selection of observables can be found in Fig. 6. We observe a significant
improvement in the description of the ATLAS measurement in terms of
normalization and also non-trivial shapes. As already pointed out, the large
NNLO/NLO K-factors are very similar to those observed for the two-photon
process. However, there is a particular difference between two and three
photons which is the absence of a gg-box contribution in the latter. The
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Fig. 6. Differential cross section with respect to the leading photon pT(γ1) (left) and
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corresponding one-loop amplitudes for the gg → γγγ process vanish due
to Furry’s theorem. As pointed out in [20], analogous contributions in the
photon pair process give a +10% contribution to the cross section. For the
three-photon process, the gg initial state only enters through the double real
radiation contribution at NNLO. In Fig. 7, the cross section is decomposed
in the different partonic fluxes as computed from LHAPDF for the used
NNPDF3.1 PDF set. Here, the gg channel gives only a small contribution
to the total cross section. At the next order (N3LO), the gg channel would
also contribute through a separately finite loop-induced contribution from
the process gg → γγγg. The contribution of this higher order correction is
estimated to be very small.
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Fig. 7. Decomposition of the fiducial cross section for three-photon production into
partonic fluxes.

5. Summary and outlook

Precision predictions for LHC processes are important and will gain im-
portance while more and more precise measurements from Run 2 and the
future high-luminosity phase appear. Great efforts are made to improve the-
oretical predictions in accuracy and precision. Fixed-order perturbation the-
ory is an important tool to understand the SM and has been pushed forward
to higher orders and more complicated final states. The state-of-the-art for
low multiplicity processes is now NNLO QCD, possibly supplemented with
NLO EW. The two main difficulties are subtraction methods and compu-
tations of virtual matrix elements. NNLO QCD subtraction methods are
on their way to be generally applicable and automated. The calculations
presented in this letter demonstrate the current capabilities of the Stripper
framework as a flexible and automated scheme. The phenomenological ap-
plications furthermore demonstrate important implication of NNLO QCD
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corrections, from strongly reduced scale uncertainties in top-quark pair and
jet observables to large K-factors like in the production of three photons.
The latter process is also the first ever 2 → 3 process computed at NNLO
QCD and opens up a new chapter in NNLO QCD perturbative calculations.
The methods to obtain the (planar) two-loop matrix elements are generic
and can be applied to other massless 2 → 3 processes, opening up more
possibilities for phenomenological studies at NNLO QCD.

The research of R.P. has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and in-
novation programme (grant agreement No. 683211).
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