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We review our recent results for production of ηc(1S) and ηc(2S) in
the γ∗γ∗ → ηc(1S, 2S) fusion and in proton–proton collisions via gluon–
gluon fusion. The quarkonium wave functions are calculated by solving
Schrödinger equation for different cc̄ potentials. Using the Terentev pre-
scription, the light-cone wave functions are obtained. The light-cone wave
functions are used then to calculate γ∗γ∗ → ηc transition form factors.
The theoretical results are compared to the Belle experimental data for
ηc(1S). In addition, we discuss our results for two-photon decay width.
We present also results of our calculations for proton–proton collisions ob-
tained within kT-factorization approach for different unintegrated gluon
distributions. The results for hadroproduction of ηc(1S) are compared to
the LHCb experimental data.
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1. Introduction

There has been a lot of interest recently in the exclusive production
of mesons via photon–photon fusion processes studied mainly at the e+e−

colliders. Such studies were motivated by the expectation that at large
photon virtualities, the measurements of the cross sections provide strong
constrains in the probability amplitude for finding partons in the mesons
[1–3]. The meson–photon transition form factors are also of interest because
of the role they play in the hadronic light-by-light contribution to the muon
anomalous magnetic moment [4].

∗ Presented at XXVI Cracow Epiphany Conference on LHC Physics: Standard Model
and Beyond, Kraków, Poland, January 7–10, 2020.
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A lot of attention has been paid to the case of pseudoscalar light meson
motivated by the experimental data from the CLEO, BaBar, Belle and L3
collaborations for the π0, η and η′ production in e+e− collisions. These
collaborations extracted the transition form factor from single-tag events,
where only one of the leptons in the final state is measured. In this case,
one of the photons is far off the mass shell, while the other is almost real.
Such data allow to test the collinear factorization approach and the onset of
the asymptotic regime.

Similar results have been obtained for the ηc production. In this case, the
ηc mass provides a hard scale that justifies to use a perturbative approach
even for zero virtualities. In the past, this transition form factor was studied
in different approaches (although often only for one virtual photon), such
as: perturbative QCD [5, 6], lattice QCD [7, 8], non-relativistic QCD [9,
10], QCD sum rules [11], as well as from the Dyson–Schwinger and Bethe–
Salpeter equations [12]. In the light-front quark model (LFQM), the case of
one virtual and one real photon has been studied in [13, 14].
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Fig. 1. Basic diagram for the γ∗γ∗ → χc coupling.

The quarkonia production reactions in hadronic collisions is also very in-
teresting (see e.g. [16]). In Ref. [17], we concentrated on the direct hadropro-
duction of the ground state of the charmonium family, ηc(1S), and its first
excited state ηc(2S). Both are pseudoscalar particles of even charge par-
ity JPC = 0−+. Like other C-even quarkonia, the dominant production
mechanism is through the gg → Q gluon fusion 2 → 1 process. For com-
parison, in the standard collinear-factorization approach, one must go to
next-to-leading order (NLO) approximation to calculate the transverse mo-
mentum distribution of the quarkonium state and include 2 → 2 processes
like gg → Qg. In the kT-factorization approach [18–20], the transverse
momentum of the quarkonium originates from the transverse momenta of
incident virtual gluons entering the hard g∗g∗ → Q process.

The kT-factorization approach is especially appropriate in the high-energy
kinematics, where partons carry small momentum fractions of the incoming
protons, mainly discussed in the framework of the BFKL formalism [21]. In
our recent calculations [17], we adopted the color-singlet model, which treats
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the quarkonium as a two-body bound state of a heavy quark and antiquark.
Such a formalism was used previously for the production of χcJ (J = 0, 1, 2)
quarkonia (see e.g. Ref. [22]), and a relatively good agreement with data was
obtained from an unintegrated gluon distribution (UGD), which effectively
includes the higher-order contributions.

2. γ∗γ∗ → ηc coupling

2.1. Non-relativistic quarkonium wave functions

The radial spatial wave functions were obtained by solving the Schrödin-
ger equation [23]. Different potential models known from the literature were
used. The momentum wave functions can be then obtained by calculating
the Fourier transform from the spatial wave functions. In Fig. 2, we show the
resulting wave functions. One can observe some dependence on the potential
used in the calculation1.
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Fig. 2. Radial momentum-space wave function for different potentials.

In our approach, we treat the ηc meson as a bound state of a charm
quark and antiquark, assuming that the dominant contribution comes from
the cc̄ component in the Fock-state expansion

|ηc;P+,P 〉 =
∑
i,j,λ,λ̄

δij√
Nc

∫
dz d2k

z(1− z)16π3
Ψλλ̄(z,k)

×|ciλ(zP+,pc)c̄
j

λ̄
((1− z)P+,pc̄)〉+ . . . (1)

Here, Nc is the number of colors, and the c-quark and c̄-antiquark carry a
fraction z and 1−z, respectively, of the ηc’s plus-momentum. The light-front

1 In this presentation, we use c = 1, therefore momentum is in GeV.
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helicites of quark and antiquark are denoted by λ, λ̄, and take values of ±1.
The transverse momenta of quark and antiquark are

pc = k + zP , pc̄ = −k + (1− z)P . (2)

The light-cone representation is obtained by Terentev’s prescription [25]
valid for weakly bound systems.

The resulting light-cone wave functions are shown in Fig. 3 for a se-
lected cc̄ potential specified in the figure caption. According to the Terentev
prescription [25]: ⇒ p = k, pz = (z − 1

2)Mcc̄,

ψ(z,k) =
π√

2Mcc̄

u(p)

p
.
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Fig. 3. Radial light-front wave function for the Buchmüller–Tye potential.

The value of the transition form factor at Q2
1, Q

2
2 = 0 can be calculated as

F (0, 0) = e2
c

√
Nc 4mc

∫
dz d2k

z(1− z)16π3

ψ(z,k)

k2 +m2
c

.

The transition form factor F (0, 0) is related to the two-photon decay width

Γ (ηc → γγ) =
π

4
α2

emM
3
ηc |F (0, 0)|2 .

The transition form factor F (0, 0) can be rewritten in the terms of radial
momentum space wave function u(p)

F (0, 0) = e2
c

√
2Nc

2mc

π

∞∫
0

dp p u(p)√
M3
cc̄ (p2 +m2

c)

1

2β
log

(
1 + β

1− β

)
.
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In the non-relativistic (NR) limit, where p2/m2
c � 1, β � 1, and 2mc =

Mcc̄ = Mηc , we obtain

F (0, 0) = e2
c

√
Nc

√
2

4

π
√
M5
ηc

∞∫
0

dp p u(p) = e2
c

√
Nc

4R(0)√
πM5

ηc

,

where β = p√
p2+m2

c

, the velocity v/c of the quark in the cc̄ cms-frame and

R(0) radial wave function at the origin.

2.2. Results

In Table I, we show an example of our results for F (0, 0). In Ref. [15],
we showed also results for ηc(2S).

TABLE I
Transition form factor |F (0, 0)| for ηc(1S) at Q2

1 = Q2
2 = 0.

Potential type mc |F (0, 0)| Γγγ fηc
[GeV] [GeV−1] [keV] [GeV]

Harmonic
oscillator 1.4 0.051 2.89 0.2757
Logarithmic 1.5 0.052 2.95 0.3373
Power-like 1.334 0.059 3.87 0.3074
Cornell 1.84 0.039 1.69 0.3726
Buchmüller–Tye 1.48 0.052 2.95 0.3276
Experiment — 0.067±0.003 [1] 5.1±0.4 [1] 0.335±0.075 [2]

Let us start presentation of our results for transition form factor for one
real and one virtual photon. Such objects are measured for single-tagged
e+e− → e+e−ηc(1S) reaction, i.e. when only one scattered electron/positron
is measured. In Fig. 4, we show results of our calculations for different wave
functions (potentials) for ηc(1S). For comparison, we show also experimental
form factor extracted by the BaBar Collaboration [24]. The theoretical
results depend on the potential used. For some models, the agreement is
better than for the other models. As discussed in [15], the results depend
rather on the mass of the charm quark/antiquark and much less on particular
form of the cc̄ potential.

In Fig. 5, we show the dependence of the transition form factors on both
photon virtualities for ηc(1S) (left panel) and ηc(2S) (right panel) as an
example for the Buchmüller–Tye potential. Such distributions were shown
in [15] for the first time.
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Fig. 4. Normalized transition form factor F̃ (Q2, 0) as a function of photon virtual-
ity Q2. The BaBar data are shown for comparison (see Lees et al. [24]).
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In Fig. 6, we show the form factors in slightly different representation

ω =
Q2

1 −Q2
2

Q2
1 +Q2

2

and Q̄2 =
Q2

1 +Q2
2

2
.

We observe scaling in the ω variable.
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The convergence of Q2F (Q2) to its asymptitic value is shown in Fig. 7
for different potentials used in [15]. Even at Q2 ∼ 30 GeV2, our results are
very far from the asymptotic value (different for different wave functions).
The effect of RGE was discussed in [15] and was shown to be very slow.

)2 (GeV 2Q
0 10 20 30 40 50

,0
) 

(G
e

V
)

2
 F

(Q
2

Q

0

0.2

0.4

0.6

0.8

1

1.2

oscillator logarithmic 

power­like Cornell

Buchmuller­Tye

(1S)
c

η

)2 (GeV 2Q
0 10 20 30 40 50

,0
) 

(G
e

V
)

2
 F

(Q
2

Q

0

0.2

0.4

0.6

0.8

1

1.2

oscillator logarithmic

power­like Cornell

Buchmuller­Tye

(2S)
c

η

Fig. 7. Q2F (Q2, 0) as a function of photon virtuality Q2. The horizontal lines 8
3fηc

are shown for reference.

3. Inclusive production of ηc quarkonia
in proton–proton collisions

3.1. Theoretical approach

The diagram shown in Fig. 8 illustrates the situation adequate for the
kT-factorization calculations used in Ref. [17].
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Fig. 8. Generic diagram for the inclusive process of ηc (1S) or ηc (2S) production
in pp scattering via two gluons fusion.

The inclusive cross section for ηc-production via the 2→ 1 gluon–gluon
fusion mode is obtained from

dσ =

∫
dx1

x1

∫
d2q1

πq2
1

F
(
x1, q

2
1

) ∫ dx2

x2

×
∫

d2q2

πq2
2

F
(
x2, q

2
2

) 1

2x1x2s
|M|2 dΦ(2→ 1) . (3)

The unintegrated gluon distributions are normalized such that in the
DGLAP-limit,

F
(
x, q2

)
=
∂xg

(
x, q2

)
∂ log q2

. (4)

Let us denote the four-momentum of the ηc by P . It can be parametrized as

P = (P+, P−,P ) =

(
m⊥√

2
ey,

m⊥√
2

e−y,P

)
, (5)

We, therefore, obtain for the inclusive cross section

dσ

dyd2P
=

∫
d2q1

πq2
1

F
(
x1, q

2
1

)
×
∫

d2q2

πq2
2

F
(
x2, q

2
2

)
δ(2) (q1 + q2 − P )

π

(x1x2s)
2 |M|

2
, (6)

where the momentum fractions x1,2 of gluons are

x1 =
m⊥√
s

ey , x2 =
m⊥√
s

e−y . (7)

The off-shell color singlet matrix element is written in terms of the Feynman
amplitude as

Mab =
qµ1⊥q

ν
2⊥

|q1||q2|
Mab

µν =
q1+q2−
|q1||q2|

n+
µ n
−
νMab

µν =
x1x2s

2|q1||q2|
n+
µ n
−
νMab

µν . (8)
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Then, we obtain for the cross section

dσ

dy d2P
=

∫
d2q1

πq4
1

F
(
x1, q

2
1

)
×
∫

d2q2

πq4
2

F
(
x2, q

2
2

)
δ(2)(q1 + q2 − P )

π

4
|n+
µ n
−
µMµν |

2
. (9)

It is related to the γ∗γ∗ηc transition form factor through the relation

F
(
Q2

1, Q
2
2

)
= e2

c

√
Nc I

(
q2

1, q
2
2

)
. (10)

The vector product [q1, q2] is defined as

[q1, q2] = qx1q
y
2 − qy1qx2 = |q1||q2| sin(φ1 − φ2) . (11)

Then, the averaged matrix element squared becomes

|n+
µ n
−
µMµν |

2
= 16π2α2

s

1

4

1

Nc

∣∣[q1, q2] I
(
q2

1, q
2
2

)∣∣2 1

(N2
c − 1)2

∑
a,b

δabδab

= 4π2α2
s

1

Nc (N2
c − 1)

∣∣[q1, q2] I
(
q2

1, q
2
2

)∣∣2 . (12)

This leads to our final result

dσ

dy d2P
=

∫
d2q1

πq4
1

F
(
x1, q

2
1

) ∫ d2q2

πq4
2

F
(
x2, q

2
2

)
×δ(2) (q1 + q2 − P )

π3α2
s

Nc (N2
c − 1)

∣∣[q1, q2] I
(
q2

1, q
2
2

)∣∣2 .
In real calculation, we take µ2

F = m2
T and for renormalization scale(s)

α2
s → αs

(
max

(
m2

T, q
2
1T

))
αs

(
max

(
m2

T, q
2
2T

))
, (13)

(mT is the transverse mass of the meson). From the proportionality of the
g∗g∗ηc and γ∗γ∗ηc vertices to the leading order (LO)

ΓLO(ηc → gg) =
N2

c − 1

4N2
c

1

e4
c

(
αs

αem

)2

ΓLO(ηc → γγ) , (14)

where the LO γγ width is related to the transition form factor for vanishing
virtualities through

ΓLO (ηc → γγ) =
π

4
α2

emM
3
ηc |F (0, 0)|2 . (15)
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At NLO, the expressions for the widths read (see [26])

Γ (ηc → γγ) = ΓLO(ηc → γγ)

(
1− 20− π2

3

αs

π

)
,

Γ (ηc → gg) = ΓLO(ηc → gg)
(

1 + 4.8
αs

π

)
. (16)

TABLE II

Total decay widths as well as |F (0, 0)| obtained from Γtot using the next-to-leading
order approximation.

Experimental values Derived from Eq. (16)
Γtot [MeV] |F (0, 0)|gg [GeV−1]

ηc(1S) 31.9± 0.7 0.119± 0.001

ηc(2S) 11.3± 3.2± 2.9 0.053± 0.010

We use a few different UGDs which are available from the literature, e.g.
from the TMDLib package (see [27]) or the CASCADE Monte Carlo code (see
[28]).

1. Firstly, we use a glue constructed according to the prescription (ini-
tiated in Kimber et al. [29] and later updated in Martin et al. [30]),
which we label below “KMR”. It uses as an input the collinear gluon
distribution from Harland-Lang et al. [31].

2. Secondly, we employ two UGDs obtained by Kutak [32]. There are
two versions of this UGD. Both introduce a hard scale dependence via
a Sudakov form factor into solutions of a small-x evolution equation.
The first version uses the solution of a linear, BFKL evolution with a
resummation of subleading terms and is denoted by “Kutak (linear)”.
The second UGD, denoted as “Kutak (non-linear)” uses instead a non-
linear evolution equation of the Balitsky–Kovchegov-type. Both of the
Kutak UGDs [32] can be applied only in the small-x regime, x < 0.01.

3. The third type of UGD has been obtained by Hautmann and Jung
from a description of precise HERA data on deep inelastic structure
function by a solution of the CCFM evolution equations. We use
“Set 2” from [33].

3.2. Results

In Fig. 9, we show the cross-section distributions for (x1, q1T) (left panel)
and (x2, q2T) (right panel). For the LHCb kinematics, the two distributions
are not identical: x1 � x2 and on average q1T < q2T.
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Fig. 9. Two-dimensional distributions in (x1, q1T) (left panel) and in (x2, q2T) (right
panel) for ηc(1S) production for

√
s = 8 TeV. In this calculation, the KMR UGD

was used for illustration.

The projections on longitudinal momentum fraction and gluon transverse
momentum squared are shown in the left and right panels of Fig. 10.

Fig. 10. Distributions in log10(x1) or log10(x2) (left panel) and distributions in q1T
or q2T (right panel) for the LHCb kinematics. Here, the selected UGDs were used
in our calculations. Here, we show an example for

√
s = 8 TeV.

Transverse momentum distributions for ηc(1S) are shown in Fig. 11 for
three different collision energies for different unintegrated gluon distributions
specified in the figure. The LHCb data points are shown for comparison.
Our theoretical results almost agree with the LHCb data for

√
s = 7 and

8 TeV, while at
√
s = 13 TeV the preliminary experimental data are above

our predictions. We have no idea how to explain the disagreement.
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Fig. 11. Differential cross section as a function of transverse momentum for prompt
ηc(1S) production compared with the LHCb data (see [34]) for

√
s = 7, 8TeV

and preliminary experimental data [35] for
√
s = 13 TeV. Different UGDs were

used. Here, we used the g∗g∗ → ηc(1S) form factor calculated from the power-law
potential.

Our predictions for ηc(2S) are shown in Fig. 12. The shapes of the
distributions are similar to those for ηc(1S) while the cross section is slightly
smaller.

The dependence on form factors is shown in Fig. 13. In general, our
results are less uncertain as far as the form factor is considered compared to
uncertainties due to unintegrated gluon distributions shown above.

Finally, in Fig. 14, we demonstrate how important is inclusion of the
form factor. The effect is huge. This puts into question all calculations in
which the form factor is not included.
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Fig. 12. Differential cross section as a function of transverse momentum for prompt
production of ηc(2S) for

√
s = 7, 8, 13TeV.

 (GeV)
T

p
0 2 4 6 8 10 12 14

 (
n

b
/G

e
V

)
T

/d
p

σ
d

1

10

210

310

410

510

(1S) prompt production LHCb data
c

η

2.0<y<4.5

 ]­1FF normalized to F(0,0)=0.079[GeV

Power­law 

Buchmuller­Tye

Harmonic oscillator

Logarithmic

  UGD: KMR from MMHT2014nlo2
T = m

F

2µ =  7TeV   s

 (GeV)
T

p

0 2 4 6 8 10 12 14

 (
n

b
/G

e
V

)
T

/d
p

σ
d

1

10

210

310

410

510

]­1FF normalized to F(0,0)=0.038[GeV

Power­law 

Buchmuller­Tye

Harmonic oscillator

Logarithmic

(2S)  2.0<y<4.5
c

η

  UGDF: KMR from MMHT2014nlo2
T = m

F

2µ =  7TeV   s
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obtained from different potential models of quarkonium wave function and one
common normalization of |F (0, 0)|.
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2
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4. Conclusion

Here, we briefly summarize our results found in [15] and [17].

— The transition form factor for different wave functions obtained as a
solution of the Schrödinger equation for the cc̄ system, for different
phenomenological cc̄ potentials from the literature, was calculated.

— We studied the transition form factors for γ∗γ∗ → ηc (1S, 2S) for
two space-like virtual photons, which can be accessed experimentally
in future measurements of the cross section for the e+e− → e+e−ηc
process in the double-tag mode.

— The transition form factor for only one off-shell photon as a function
of its virtuality was studied and compared to the BaBar data for the
ηc(1S) case.

— Predictions for ηc(2S) were presented.

— Dependence of the transition form factor on the virtuality was studied
and delayed convergence of the form factor to its asymptotic value 8

3fηc
as predicted by the standard hard scattering formalism was observed.

— There is practically no dependence of transition form factor on the
asymmetry parameter ω, which could be verified experimentally at
Belle II.
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— The kT-factorization approach with modern UGDs leads to good de-
scription of the LHCb data for pp → ηc(1S) → pp̄ for

√
s = 7, 8 TeV

and somewhat worse for
√
s = 13 TeV. There is some room for colour

octet. Feed down contribution is small [36].

— Range of x1, x2 and q1T, q2T was discussed. For the LHCb kinematics,
very small longitudinal momentum fractions are probed. Transverse
momenta are not too small.

— We do not see an obvious sign of the onset of saturation. The LHCb
cross section grows even faster than our result without saturation.
However, the gluon transverse momenta are not small.

— Predictions for hadroproduction of ηc(2S) were also presented.

— We also discussed uncertainties related to g∗g∗ → ηc form factor. They
are somewhat smaller than those related to UGDs.

Recently, we have performed similar studies also for scalar quarkonium
χc(0) [37] and light f0(980) meson [38].
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and Wolfgang Schäfer for collaboration on the topics presented in this short
review. This study was partially supported by the National Science Center,
Poland (NCN) grant UMO-2018/31/B/ST2/03537 and by the Center for
Innovation and Transfer of Natural Sciences and Engineering Knowledge in
Rzeszów.
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