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In these proceedings, we summarise how the determinantal structure for
the conditional overlaps among left and right eigenvectors emerges in the
complex Ginibre ensemble at finite matrix size. An emphasis is put on the
underlying structure of orthogonal polynomials in the complex plane and
its analogy to the determinantal structure of k-point complex eigenvalue
correlation functions. The off-diagonal overlap is shown to follow from the
diagonal overlap conditioned on k ≥ 2 complex eigenvalues. As a new
result, we present the local bulk scaling limit of the conditional overlaps
away from the origin. It is shown to agree with the limit at the origin and
is thus universal within this ensemble.

DOI:10.5506/APhysPolB.51.1611

1. Introduction

The motivation to study the statistics of eigenvectors of random matrices
comes from many different directions. In [1], Chalker and Mehlig presented
two important features of eigenvectors of non-Hermitian operators, char-
acterised by the overlap between left and right eigenvectors: their rôle in
the extreme sensitivity of the complex spectrum of such operators and in

∗ Presented at the conference Random Matrix Theory: Applications in the Information
Era, Kraków, Poland, April 29–May 3, 2019.

(1611)



1612 G. Akemann et al.

transient behaviour in the time evolution of complex dynamical systems.
The former has developed into a branch of mathematics under the title of
pseudospectra, cf. [2], whereas the latter has been advocated, e.g. in the
modelling of random neural networks [3]. More traditional applications in
physics include the line width of lasers in a chaotic cavity [4] as well as
scattering in microwave cavities [5] that have been measured in [6].

One of the salient features of RandomMatrix Theory (RMT) is its under-
lying integrable structure. It has enabled an analytic study of many aspects
of spectral correlations, which are relevant in a large number of applications,
cf. [7, 8]. One of our main motivations was to find out whether or not such
an integrable structure also exists when considering eigenvectors, possibly at
finite matrix size N . A multitude of techniques has been developed to tackle
questions about eigenvalues, and so it is not surprising that these have been
also employed in the context of eigenvectors. What is perhaps surprising
is that only rather recently have we seen much progress in attacking the
questions posed by Chalker and Mehlig [1].

Below, we give an incomplete list of results for different ensembles of
random matrices, with the complex Ginibre ensembles introduced in [9] be-
ing most studied. Using a combination of Green’s functions and diffusion
equations, it was noticed early on that the Dysonian dynamics in this ensem-
ble couples the complex eigenvalues and their eigenvectors in a non-trivial
way [10, 11]. These techniques were further developed including Feynman di-
agrams [12, 13], free probability [14] or stochastic differential equations [15],
and applied to different ensembles including products of elliptic Ginibre ma-
trices [12]. These, as well as truncated unitary and spherical ensembles, were
analysed in [16] using probabilistic means, after an earlier breakthrough for
these methods in [17], see also [18] for the correlations between angles of
eigenvectors. The quaternionic Ginibre ensemble appeared more recently
from a probabilistic angle [19, 20] as well as for finite-N in [21], using the
heuristic tools of [22]. An entirely different approach uses supersymme-
try [23] or orthogonal polynomials [24], expressing the relevant quantities in
terms of expectation values of characteristic polynomials. This includes also
eigenvectors of real eigenvalues of the real Ginibre ensemble [23, 25].

A common underlying question is that of universality of the newly found
eigenvectors correlations. While much of this remains open, numerical checks
[17] strongly suggest some universality, and we refer to [13] for a comprehen-
sive list of various ensembles in the global bulk regime, pointing at parallels
and differences. A further indication is the recently found universality of
complex bulk and edge eigenvalue correlations away from the real line, unit-
ing all three Ginibre ensembles [26, 27]. The present work is based on [28]
where we use the technique of orthogonal polynomials in the complex plane,
combined with moment methods developed earlier in [29, 30].
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The following sections are organised as follows. In Section 2, we recall
relevant features of the complex Ginibre ensemble, including the definition of
complex eigenvalue and overlap correlation functions. Section 3 summarises
our discovery of an integrable structure at finite-N , giving determinantal
formulae for the conditional diagonal and off-diagonal overlaps. This ex-
ploits an exact relation between the two. For the off-diagonal overlap, more
details are given in [28]. In Section 4, we focus on the local statistics of
the diagonal overlap everywhere in the bulk of the spectrum, extending the
results for the origin from [28]. For further results regarding edge statistics,
the limiting connection between edge and bulk as well as the asymptotics for
large argument separation in the bulk we refer also to [28]. Our conclusions
and discussion of open problems is presented in Section 5.

2. The complex Ginibre ensemble and definition
of conditional overlaps

Let us recall the definition of the complex Ginibre ensemble. It consists
of matrices M of size N ×N with its independent complex Gaussian entries
distributed according to

P (M) = π−N
2

exp
[
−TrMM †

]
, (2.1)

where † stands for Hermitean conjugation. The left Lα and right Rα eigen-
vectors with complex eigenvalues λα, 1 ≤ α ≤ N , are defined by

L†αM = λαL
†
α ,

MRα = λαRα , 1 ≤ α ≤ N . (2.2)

They form a bi-orthogonal set with respect to the Hermitean inner product
〈·, ·〉 on CN

〈Lα,Rβ〉 = δα,β , 1 ≤ α, β ≤ N . (2.3)

However, left and right eigenvectors are not orthogonal any more

〈Lα,Lβ〉 6= 0 6= 〈Rα,Rβ〉 , 1 ≤ α < β ≤ N , (2.4)

in contrast to Hermitian RMT. Following [1], the matrix of overlaps between
left and right eigenvectors is then defined as

Oαβ = 〈Lα,Lβ〉〈Rα,Rβ〉 , 1 ≤ α, β ≤ N , (2.5)

where the choice of this combination is motivated by its invariance under a
simultaneous rescaling of the eigenvectors ∀α: Rα → cRα, Lα → Lα/c, for
any complex c 6= 0.
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The joint density of eigenvalues pN (Λ) ofM can be found via a Schur de-
composition, M = U(Λ+T )U †, with U ∈ U(N)/U(1)N unitary, T complex
strictly upper triangular, and Λ = diag(λ1, . . . , λN ) containing the complex
eigenvalues

pN (Λ) =
1

ZN

∣∣∣∆(N)(λ1, . . . , λN )
∣∣∣2 e−

∑N
j=1 |λj |2 . (2.6)

Here, ∆(N)(λ1, . . . , λN ) =
∏N
i>j(λi − λj) is the Vandermonde determinant

of N variables, and the normalising partition function is given by

ZN =

∫
CN

N∏
i=1

dλidλ̄i

∣∣∣∆(N)(λ1, . . . , λN )
∣∣∣2 e−

∑N
j=1 |λj |2 = πN

N∏
j=0

j! . (2.7)

Distribution (2.6) constitutes a determinantal point process. Recalling the
definition of the k-point eigenvalue (ev) correlation function, it holds that

ρ(N,k)(λ1, . . . , λk) =
N !

(N − k)!

∫
CN−k

N∏
i=k+1

dλidλ̄i pN (Λ)

= det
1≤i,j≤k

[
K(N)

ev (λi, λj)
]
, (2.8)

where the kernel of orthogonal polynomials reads at finite-N

K(N)
ev (x, y) = e−|x|

2
N−1∑
m=0

(x̄y)m

πm!
, (2.9)

see [9, 31] for details. It is often written in a more symmetric fashion, using
the invariance K(N)

ev (x, y) → (f(x)/f(y))K
(N)
ev (x, y) of the determinant in

(2.8), when choosing f(x) = e+|x|2/2. The corresponding monic orthogo-
nal polynomials of the rotationally-invariant Gaussian weight e−|z|

2 are the
monomials zk, k = 0, 1, 2, . . ., with (squared) norms hk,∫

C

dzdz̄ zkz̄je−|z|
2

= δj,khj , with hj = πj! . (2.10)

The Andréief integral formula valid for integrable functions φi(x) and ψi(x),
for i = 1, . . . , N ,
N∏
i=1

∫
C

dzidz̄i det
1≤k,l≤N

[φk(zl)] det
1≤k,l≤N

[ψk(z̄l)]=N ! det
1≤k,l≤N

∫
C

dzdz̄φk(z)ψl(z̄)

 ,
(2.11)

then immediately leads to the normalisation ZN = N !
∏N−1
j=0 hj , as previ-

ously stated in (2.7).
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One of the main results of [22] is that the conditional diagonal over-
lap D(N,1)

11 (λ) can be expressed as an expectation value with respect to the
joint density pN (Λ) (2.6) alone, after integrating out the upper triangular
matrix T in a recursive manner [22]

D
(N,1)
11 (λ) = EN

(
N∑
α=1

Oααδ(λα − λ)

)

=

∫
CN

N∏
i=1

dλidλ̄i pN (Λ)

N∑
α=1

δ(λα−λ)

N∏
`6=α

[
1 +

1

|λα−λ`|2

]
, (2.12)

where EN is the expectation with respect to (2.1) at the level of matrices.
For the off-diagonal overlaps

D
(N,2)
12 (λ, µ) = EN

 N∑
α 6=β=1

Oαβδ(λα − λ)δ(λβ − µ)

 , (2.13)

a similar expression holds, see (2.16) below. The same mechanism applies
to the overlaps in the quaternionic Ginibre ensemble [20, 21]. In the real
ensemble [23], the Laplace transformed joint density of overlap and condi-
tional eigenvalue is given by an averaged ratio of characteristic polynomials,
thus only depending on the eigenvalues too.

Using this results of [22], in analogy to the k-point correlation functions
(2.8), we introduce the kth diagonal overlap D

(N,k)
11 conditioned on k ≥ 1

eigenvalues, compared to (2.12) for k = 1 1

D
(N,k)
11 (λ1, . . . , λk) =

N !

(N − k)!

∫
CN−k

N∏
i=k+1

dλidλ̄ipN (Λ)
N∏
`=2

[
1 +

1

|λ1 − λ`|2

]

=
e−|λ1|

2
N !

ZN (N − k)!

∫
CN−k

N∏
i=k+1

dλidλ̄i
∣∣∆(N−1)(λ2, . . . , λN )

∣∣2
×

N∏
m=2

πω
(
λm, λ̄m

∣∣λ1, λ̄1

)
. (2.14)

It agrees with (2.12) for k = 1, after using the symmetry of pN (Λ) under
permutation of indices. Here, we have also introduced a new weight func-
tion on C4

ω(z, x|u, v) =
1

π
(1 + (z − u)(x− v)) e−zx , z, x, u, v ∈ C . (2.15)

1 In slight abuse of notation, we omit that the D(N,k)
11 also depend on the complex

conjugated variables λ̄1, . . . , λ̄k, as the k-point functions (2.8) do.
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It immediately follows that the D(N,k)
11 enjoy a determinantal structure, once

we know the kernel corresponding to the new weight (2.15). If the term of
unity was not present in the weight, the orthogonal polynomials would follow
immediately from a Christoffel-type theorem for orthogonal polynomials in
the complex plane [32]. Notice that weight (2.15) is in general complex. Such
a situation is not uncommon in non-Hermitian RMT, e.g. when applied to
QCD with chemical potential [33], cf. [34] for the orthogonal polynomial
approach. For k = 1, we have to compute the normalising partition function
for this weight, given by the product of their (pseudo) norms.

Likewise, we consider off-diagonal overlaps conditioned on k ≥ 2 eigen-
values, compared to k = 2 in (2.13). Based on [22] for k = 1 and the
permutation symmetry of pN (Λ), we have

D
(N,k)
12 (λ1, . . . , λk) =

N !

(N − k)!

∫
CN−k

N∏
i=k+1

dλidλ̄i pN (Λ)
1

|λ1−λ2|2

×
N∏
`=3

[
1 +

1

(λ1−λ`)
(
λ̄2−λ̄`

)]

=
−e−|λ1|

2−|λ2|2N !

ZN (N−k)!

∫
CN−k

N∏
i=k+1

dλidλ̄i∆
(N−1)(λ2, . . . , λN )

×∆(N−1)
(
λ̄1, λ̄3, . . . , λ̄N

) N∏
m=3

πω
(
λm, λ̄m

∣∣λ1, λ̄2

)
.(2.16)

Also here, a determinantal structure arises as a consequence of that for
D

(N,k)
11 . In the following, it will be very important to view all variables λj

and λ̄j for 1 ≤ j ≤ k as independent. From the integrals in (2.14) and (2.16)
containing polynomials and exponentials, it is clear that D(N,k)

11 and D(N,k)
12

viewed as functions in all their independent 2k variables are entire.

3. Results at finite-N

The first observation made in [28] is a simple operation relating D(N,k)
11

and D(N,k)
12 that allows to compute the latter from the former, both at finite

and large-N . Let T̂ be the transposition acting on functions g on C2k, with
k ≥ 2, depending on the set of four variables λ1, λ̄1, λ2, λ̄2 (and possibly
more). It is defined by exchanging λ̄1 ↔ λ̄2

T̂ g
(
λ1, λ̄1, λ2, λ̄2, . . .

)
= g

(
λ1, λ̄2, λ2, λ̄1, . . .

)
. (3.1)

In particular, it leaves the remaining variables λ3, λ̄3, . . . λk, λ̄k (if present)
untouched. This leads to the following relation.
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Lemma 1. [28] Exact relation between conditional diagonal and off-diagonal
overlaps. For any 2 ≤ k ≤ N , the following identity holds:

D
(N,k)
12 (λ1, . . . , λk) =

− e−|λ1−λ2|
2

1− |λ1 − λ2|2
T̂D

(N,k)
11 (λ1, . . . , λk) . (3.2)

Notice that in order to determine the off-diagonal overlap of Chalker
and Mehlig, D(N,2)

12 (λ1, λ2) in (2.13), we need to know the diagonal overlap
D

(N,2)
11 (λ1, λ2) conditioned on two eigenvalues.

Proof. Lemma 1 is easily seen when applying T̂ to (2.14) for k ≥ 2

T̂D
(N,k)
11 (λ1, . . . , λk) =

N ! e−λ1λ̄2

ZN (N − k)!

∫
CN−k

N∏
i=k+1

dλidλ̄i∆
(N−1)(λ2, . . . , λN )

×∆(N−1)
(
λ̄1, λ̄3 . . . , λ̄N

)
πω
(
λ2, λ̄1

∣∣λ1, λ̄2

)
×

N∏
m=3

πω
(
λm, λ̄m

∣∣λ1, λ̄2

)
. (3.3)

Writing out the first weight that can be pulled out of the integral

πω
(
λ2, λ̄1

∣∣λ1, λ̄2

)
=
(
1 + (λ2 − λ1)

(
λ̄1 − λ̄2

))
e−λ2λ̄1 , (3.4)

as well as comparing to (2.16), the statement (3.2) follows.

3.1. Determinantal structure of the conditional diagonal overlaps

Comparing (2.8) and (2.14) and using the theory of Dyson and Mehta [31]
(which also applies to kernels that are not self-adjoint), we can immediately
read off the determinantal structure of the kth diagonal overlap

D
(N,k)
11 (λ1, . . . , λk) =

Z ′N−1

ZN
e−|λ1|

2
det

2≤i,j≤k

[
K

(N−1)
11

(
λi, λ̄i, λj , λ̄j

∣∣λ1, λ̄1

)]
,

(3.5)

where we have defined the corresponding kernel and reduced kernel

K
(N)
11

(
x, x̄, y, ȳ

∣∣λ1, λ̄1

)
= ω

(
x, x̄

∣∣λ1, λ̄1

)
κ(N)

(
x̄, y
∣∣λ1, λ̄1

)
, (3.6)

κ(N)
(
x̄, y
∣∣λ1, λ̄1

)
=

N−1∑
k=0

Pk(x)Qk(y)

dk
, (3.7)
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respectively. It contains the monic polynomials Pk(x) and Qk(y) that are
orthogonal (and in general different) with respect to weight (2.15)

〈Pi, Qj〉 :=

∫
C

dzdz̄ ω
(
z, z̄
∣∣λ1, λ̄1

)
Pi(z)Qj(z) = δi,jdj . (3.8)

The corresponding partition function follows in terms of the (squared) norms

Z ′N−1 = (N − 1)!
N−2∏
j=0

dj (3.9)

after applying again Andréief’s integral formula (2.11). For k = 1, the
determinant in (3.5) is absent — a notation we will adopt throughout —
and the diagonal overlap D(N,1)

11 (λ1) is only determined through these pre-
factors in (3.5).

An alternative representation of the reduced kernel uses the inverse
C

(N−1)
ij of the moment matrix Mij = 〈zi, zj〉, 0 ≤ i, j ≤ N − 1, leading

to [35]

κ(N)
(
z̄, z
∣∣λ1, λ̄1

)
=

N−1∑
i,j=0

ziC
(N−1)
ij z̄j . (3.10)

Employing an LDU -decomposition ofM

M = LDU , (3.11)

where D is a diagonal matrix, L and UT are lower triangular matrices with
the diagonal entries equal to 1, we can express the above polynomials and
norms in terms of these matrices

Pk(z) =

k∑
m=0

(
L̄−1

)
km

zm ,

Qk(z) =
k∑

m=0

zm
(
U−1

)
mk

, (3.12)

for k ≥ 0, with D = diag(d0, . . . , dN−1). In [28] Section 3.4, the matri-
ces L,D, and U were determined. They can be expressed in terms of the
following function:

fp(x) = (p+ 1)ep(x)− xep−1(x) , p = 0, 1, . . . , (3.13)
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containing the exponential polynomials

ep(x) =

p∑
k=0

xk

k!
, p = 0, 1, 2, . . . , (3.14)

where we define e−1(x) ≡ 0. The resulting expressions read

Lpm = δpm − λ̄1
fp−1

(
λ1λ̄1

)
fp
(
λ1λ̄1

) δp,m+1 , p,m ≥ 0 , (3.15)

dm = (m+ 1)!
fm+1

(
λ1λ̄1

)
fm
(
λ1λ̄1

) , m ≥ 0 , (3.16)

Umq = δmq − λ
fm−1

(
λλ̄
)

fm
(
λλ̄
) δq,m+1 , m, q ≥ 0 . (3.17)

This immediately determines the normalisation constant (3.9) and thus the
prefactor in (3.5). In particular, it gives an exact finite-N expression for the
diagonal overlap at k = 1 (2.12)

D
(N,1)
11 (λ1) =

Z ′N−1

ZN
e−|λ1|

2
=

1

π
fN−1

(
λ1λ̄1

)
e−λ1λ̄1 , (3.18)

after multiplying out the telescopic product of the norms in (3.9). The
inversion of the lower triangular matrices L and UT is also not difficult,
resulting into (

L−1
)
pq

=

{
0 q > p ,

λ̄p−q1

fq(λ1λ̄1)
fp(λ1λ̄1)

q ≤ p ,

(
U−1

)
pq

=

{
λq−p1

fp(λ1λ̄1)
fq(λ1λ̄1)

q ≥ p ,
0 q < p .

(3.19)

While this determines polynomials (3.12) and thus also kernel (3.6) this does
not lead to a form that is easily amenable to an asymptotic large-N analysis.
The reason is that polynomials (3.12) are not standard polynomials, with
existing tables for their asymptotic behaviour. Thus, the reduced kernel in
(3.7) containing a triple sum is not easy to handle in the limit of N →∞.

Fortunately, in [28], an alternative form was derived after a long calcu-
lation. It only contains single sums in terms of the exponential polynomials
(3.14) and function (3.13). Defining the function

Fn(x, y, z) = en(xy) en(xz)− en(xyz) en(x) (1− x(1− y)(1− z))

+
(1− y)(1− z)

n!

(xyz)n+1en(x)− xn+1en(xyz)

1− yz
, (3.20)

for n = 0, 1, . . ., this result can be cast into the following:
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Theorem 1. [28] Determinantal structure of conditional diagonal overlaps.
For any 1 ≤ k ≤ N , it holds

D
(N,k)
11 (λ1, . . . , λk) =

1

π
fN−1

(
|λ1|2

)
e−|λ1|

2

× det
2≤i,j≤k

[
K

(N−1)
11

(
λi, λ̄i, λj , λ̄j

∣∣λ1, λ̄1

)]
, (3.21)

where the kernel K(N−1)
11 from (3.6) is given in terms of weight (2.15) and

the reduced kernel

κ(N)
(
x̄, y
∣∣λ1, λ̄1

)
=

(N + 1)FN+1

(
λ1λ̄1,

x̄
λ1
, yλ1

)
− λ1λ̄1FN

(
λ1λ̄1,

x̄
λ1
, yλ1

)
(
x̄− λ1

)2
(y − λ1)2 fN

(
λ1λ1

) .

(3.22)

The result for the conditional off-diagonal overlaps (2.16) follows from
Lemma 1, and we refer to [28] for details of its determinantal structure,
given in terms of a matrix valued 2× 2 kernel that follows from Theorem 1.

4. Bulk universality at large-N

In this section, we focus on a particular large-N limit, the local scaling
limit in the bulk of the spectrum. Compared to [28] where this limit was only
taken at the origin — a point that is representative for the bulk spectrum in
the complex Ginibre ensemble — we generalise the result to any bulk point.
In [28], many further results we obtained at large-N based on Theorem 1,
including the large-argument limit of the local bulk correlations and the
local edge scaling limit. We refer to [28] for the precise statements. Once
again we only focus on the diagonal overlap. Fixing a bulk point

√
Nz0,

with 0 ≤ |z0| < 1, cf. (4.14), we define the following bulk scaling limit:

D
(bulk, k)
11 (λ1, . . . , λk)= lim

N→∞

1

N
D

(N,k)
11

(√
Nz0+λ1, . . . ,

√
Nz0+λk

)
, (4.1)

and, correspondingly, for the off-diagonal overlap D(bulk, k)
12 .

Theorem 2. Local bulk scaling limit of conditional diagonal overlaps. It
holds that

D
(bulk, k)
11 (λ1, . . . , λk) =

1

π
det

2≤i,j≤k

[
K

(bulk)
11

(
λi, λ̄i, λj , λ̄j

∣∣λ1, λ̄1

)]
, (4.2)

where the limiting kernel is given by

K
(bulk)
11

(
u, ū, v, v̄

∣∣λ, λ̄) =
1

π

(
1 + |u− λ|2

)
e−|u−λ|

2
κ(bulk)

(
ū, v
∣∣λ, λ̄) , (4.3)
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together with the limiting reduced kernel

κ(bulk)
(
ū, v | λ, λ̄

)
=

d

dz

(
ez − 1

z

)∣∣∣∣
z=(ū−λ̄)(v−λ)

. (4.4)

A similar result can be derived for D(bulk, k)
12 using again Lemma 1, and

we refer to [28] for details.

Proof. The proof of the theorem for z0 = 0 can be found in [28]. Let
0 < z0 < 1. Note that

e−xeN−1(x) =
Γ (N, x)

Γ (N)
, (4.5)

that relates the exponential polynomial to the incomplete Gamma function
Γ (N, x) =

∫∞
x dttN−1e−t. In particular, it holds for large-N [36] that

Γ
(
N,N |z|2

)
Γ (N)

∼ Θ
(
1− |z|2

)
, (4.6)

given in terms of the Heaviside function Θ. The uniform convergence on
the disc of radius

√
N implies that the exponential polynomial eN (x) can be

replaced by the exponential ex away from the edge of the spectrum2. We will
simply go through the asymptotic of the building blocks of the prefactor and
kernel in (3.21) and (3.22), keeping the leading order terms. We denote by

λ = λ1 =
√
Nz0 + ρ ,

x =
√
Nz0 + ξ ,

y =
√
Nz0 + η . (4.7)

For the exponential polynomial, we have

eN±1

(
|λ|2
)
∼ e|λ|

2
= exp

[
N |z0|2 +

√
N(z0ρ̄+ z̄0ρ) + |ρ|2

]
, (4.8)

which implies for (3.13)

1

N
fN−1

(
|λ|2
)
∼
(
1− |z0|2

)
exp

[
N |z0|2 +

√
N(z0ρ̄+ z̄0ρ) + |ρ|2

]
. (4.9)

2 For a finer asymptotic at the edge see [36], leading to the local complementary error
function kernel stated in [37], including its universality.
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The following term requires a bit more analysis:

FN+1

(
|λ|2, x̄

λ̄
,
y

λ

)
∼ eλx̄+λ̄y − ex̄y+|λ|2 (1− (λ̄− x̄) (λ− y)

)
+

(
λ̄−x̄

)
(λ−y)

(|λ|2−x̄y) (N+1)!

(
(x̄y)N+2 e|λ|

2−
(
λλ̄
)N+2

ex̄y
)
.

(4.10)

The leading order exponent of the terms in the first line is 2N |z0|2, compared
to the leading exponent of the second line N+N |z0|2 +(N+2) ln |z0|2, after
using Stirling’s formula. The latter is thus subleading for large-N , due to
t − 1 > ln(t) for 0 < t = |z0|2 < 1, and can thus be neglected compared
to the first. The limit of a vanishing denominator (and numerator) can
be estimated using l’Hôpital, leading to the same conclusion. The same
argument applies to |λ|2FN . Together with asymptotic (4.9) this leads to
the following asymptotic for the reduced kernel:

κN
(
x̄, y|λ, λ̄

)
∼ eN |z0|

2+
√
N(z0ξ̄+z̄0η)−|ρ|2

×
eρξ̄+ρ̄η − eξ̄η+|ρ|2 (1− (ξ̄ − ρ̄) (η − ρ)

)
(ξ̄ − ρ̄)2(η − ρ)2

. (4.11)

The weight function (2.15) in scaling (4.7) reads

w
(
x, x̄|λ, λ̄

)
=

1

π

(
1 + (ξ − ρ)(ξ̄ − ρ̄)

)
e−N |z0|

2−
√
N(z0ξ̄+z̄0ξ)−|ξ|2 . (4.12)

Putting all these factors together, we obtain

K
(N)
11

(
x, x̄, y, ȳ

∣∣λ, λ̄) ∼ e
√
Nz̄0(η−ξ) e−|ξ|

2−|ρ|2 (1 + |ξ − ρ|2
)

π
(
ξ̄ − ρ̄

)2
(η − ρ)2

×
(

eρξ̄+ρ̄η − eξ̄η+|ρ|2 (1− (ρ̄− ξ̄ ) (ρ− η)
))

= e(
√
Nz̄0+ρ̄)(η−ξ)e−|ξ−ρ|

2

(
1 + |ξ − ρ|2

)
π

×

(
1−e(ρ̄−ξ̄)(ρ−η)

(
1−
(
ρ̄− ξ̄

)
(ρ−η)

))
(
ξ̄ − ρ̄

)2
(η − ρ)2

. (4.13)

The prefactors fN (η) = exp[(
√
Nz̄0 + ρ̄)η] and 1/fN (ξ) can be eliminated by

the conjugation of kernel (4.13) and thus the kernel in (4.13) is equivalent
to kernel (4.2) stated in our Theorem 2.
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We note in passing that from (2.8),

ρN,1
(√

Nz
)

= K(N)
ev

(√
Nz,
√
Nz
)

=
1

π

Γ
(
N,N |z|2

)
Γ (N)

=
1

π
Θ
(
1− |z0|2

)
,

(4.14)
asymptotic (4.6) leads to the circular law for the global density.

In [28], several further results were derived, including the local edge scal-
ing limit of the conditional diagonal and off-diagonal overlap, the asymptotic
connection between these local edge and bulk correlations, as well as the al-
gebraic decay of the local bulk correlations in the large-argument limit. We
shall not repeat these results here. We only mention that the following rela-
tion was derived for the large-argument limit in [28], relating the local bulk
k-point density and overlap correlation functions.

Lemma 2. [28] Relation between conditional diagonal overlap and density
correlations in the local bulk scaling limit. For k ≥ 2, it holds that

D
(bulk, k)
11 (λ1, . . . , λk) = (−1)k−1

k∏
m=2

1 + |λm − λ1|2

|λm − λ1|4

×
(

1− |λm − λ1|2 − (λm − λ1)
∂

∂λm

)
ρ(bulk, k)(λ1, . . . , λk) . (4.15)

For k = 1, the overlap is constant D(bulk, 1)
11 (λ1) = 1

π , cf. Theorem 2, and
equals the local (and global) bulk density ρ(bulk, 4, 1), cf. (4.16) below. The
limiting k-point density correlation functions in (4.15) are summarised in
the following:

Theorem 3. Local limiting bulk correlation functions. For any bulk point√
Nz0, with 0 ≤ |z0| < 1, the following bulk scaling limit holds:

ρ(bulk, k)(λ1, . . . , λk) = lim
N→∞

ρ(N,k)
(√

Nz0 + λ1, . . . ,
√
Nz0 + λk

)
= det

1≤i,j≤k
[KGin (λi, λj)] , (4.16)

with the Ginibre kernel

KGin(x, y) =
1

π
exp

[
−1

2
|x|2 − 1

2
|y|2 + x̄y

]
. (4.17)

A similar result to Lemma 2 holds for D(bulk, k)
12 , thanks to Lemma 1. For

the proof of Lemma 2, we refer to [28]. The first version of Theorem 3 goes
back to [9] who proved this limit at the origin. The extension to the bulk is
not difficult, using (4.5) und (4.6).
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5. Discussion and open problems

In these proceedings, we have reported on recent results regarding the
determinantal structure for the conditional overlaps in the complex Ginibre
ensemble [28]. The analyticity of the diagonal overlap yields the off-diagonal
overlap using a simple transposition operator in Lemma 1. In the large-N
limit, we focussed on the local bulk scaling limit, generalising the results
of [28] to hold for arbitrary bulk points, to which the overlaps are condi-
tioned. We expect that this universality holds for a more general class of
weight functions. Given that the local bulk universality of the k-point den-
sity correlation functions Theorem 3 is known to hold for a much wider class
of random matrices, see e.g. [37] for Wigner matrices, and that we have
the relation that relates the corresponding overlap to the density correlation
functions through a differential operator in Lemma 2 in the Gaussian case,
we conjecture the local bulk overlaps to be universal as well. The same
probably holds for the local overlap edge correlations, cf. [15], even if we
currently do not have such a relation to the density correlations. The latter
are universal as well, cf. [37].

It is not uncommon that an approach that uses orthogonal polynomi-
als for finite-N is more difficult when it comes to deriving global correla-
tion functions, both for eigenvalues and eigenvectors. Here, the methods
of Green’s functions [10, 11] and Feynman diagrams [13] advocated by the
Kraków group have proven much more useful. We refer to [13] for a compre-
hensive list of global bulk correlations of the off-diagonal overlap in various
ensembles, see also the references therein. It seems clear that the global bulk
correlations are much less universal, containing a weight specific term, and
that only their algebraic decay that also follows from the local bulk corre-
lations at large argument [28, Corollary 4] is universal. Clearly much more
future study is needed on this aspect, including more general weight func-
tions. A particularly interesting ensemble is the elliptic Ginibre ensemble
that allows one to interpolate between the Ginibre and Gaussian unitary en-
semble. It would be very interesting to study the transition from the strongly
correlated overlaps between eigenvectors and their known independence in
the Hermitian limit. For the real eigenvalues of the real Ginibre ensemble
results for the elliptic ensemble have been reported very recently [25] — see
also these proceedings.

Let us comment further on the relation to known results in the other
two Ginibre ensembles with real and quaternionic entries. Away from the
real axis, the complex eigenvalue correlation functions at the edge and in the
bulk of the spectrum have been shown to agree between the real, complex
and quaternionic Ginibre ensemble, see [26, 38] and [26, 27], respectively.
Regarding eigenvectors, their global bulk correlations have been shown to
agree for the complex and quanternionic ensemble [21]. Therefore, it is
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tempting to conjecture that the agreements hold also for the real ensemble,
away from the real line. Here and in the quaternionic ensemble, the local
overlap correlations in the bulk and at the edge are currently open. It
would be very helpful to detect an integrable structure for the real and
quaternionic ensemble at finite-N , this time of Pfaffian-type, as reported
in a determinantal form for the complex ensemble here. At least in the
quaternionic Ginibre ensemble, the way to proceed using skew-orthogonal
polynomials is clear, based on the expression for the overlaps in terms of
averages over complex eigenvalue pairs only, see [21].

Research on eigenvector statistics has become a very active field now and
we hope that this paper will lead to fruitful applications in the area of the
theme of this workshop.
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