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Two methods of eigeninference, using one-point and two-point Green’s
functions, are compared and tested on large samples of random matrices.
We note that the first method is mostly robust and very fast, whereas the
second method is based on a flawed assumption (the matrix appearing in
an optimization problem being in many cases not positive-definite) and
computationally complex, which limits its usability.
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1. Introduction

The Wishart ensemble is the ensemble of sample covariance matrices

S =
1

T
XX† , (1)

where Xiα, with i = 1, . . . , N and α = 1, . . . , T , are independent, Gaussian-
distributed numbers. For T → ∞ and r = const. < 1, the entries of a
sample covariance matrix Sij would tend to the values Σij of the “true”
covariance matrix. (The case of the parameter r = N

T being larger than one
is uninteresting because of the appearance of T − N trivial eigenvalues, so
henceforward we will consider only r < 1.)

The problem of determining the eigenvalues of Σ given the eigenvalues
of S (“eigen-inference”) is complex, and various ways of approaching it have
been tried. The search for efficient methods of eigeninference was already
active in the 1960s [1]. Since that time, a number of methods have been
invented, including the method of characteristic polynomials [2] and Mestre’s
“G-estimation” [3].
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Here we focus on two methods of eigeninference, a “statistical method”
using two-point Green’s function and numerical minimization [4, 5] and an
“analytical method” using one-point Green’s function and Padé approxi-
mants [6, 7]. We will describe the methods, discuss potential pitfalls in
their application, and test the methods on samples of randomly generated
matrices.

2. Preliminaries

The one-point Green’s function for the Wishart ensemble,

GS(z) =
1

N

〈
tr

1

z1N − S

〉
, (2)

is a generating function for the spectral moments αSi =
∫
L ρS(λ)λ

idλ

GS(z) =
∞∑
i=0

1

zi+1

〈
1

N
trSi

〉
≡
∞∑
i=0

αSi
zi+1

, (3)

and it also allows one to calculate the spectral distribution from the Sochocki–
Plemelj formula

ρS(λ) = −
1

π
lim
ε→0+

=GS(z)|z=λ+iε . (4)

The two-point Green’s function for the Wishart ensemble is

GS(z, w) =
1

N2

〈
tr

1

z1N − S
tr

1

w1N − S

〉
c

, (5)

where the subscript ‘c’ denotes the connected part defined as

〈AB〉c ≡ 〈AB〉 − 〈A〉〈B〉 . (6)

Its double expansion in z and w around infinity yields the double spectral
moments

αSi,j =

〈
1

N
tr
(
Si
) 1

N
tr
(
Sj
)〉

c

. (7)

The two-point Green’s function can be expressed in terms of one-point
Green’s functions (as a consequence of AJM universality [8])

GS(z, w) =
1

N2
∂z∂w ln

[
GS(w)−GS(z)

z − w

]
=

1

N2

[
∂zGS(z)∂wGS(w)

[GS(z)−GS(w)]2
− 1

(z − w)2

]
. (8)
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By expanding all Green’s functions in this equation in terms of spectral
moments, we can express the sequence of double moments in terms of the
single moments

α11 = −α2
1 + α2 ,

α12 = α21 = 2α3
1 − 4α1α2 + 2α3 ,

α22 = −6α4
1 + 16α2

1α2 − 6α2
2 − 8α1α3 + α4 . (9)

Analogically, we can also express generating functions for inverse spectral
moments (dual moments) in terms of standard Green’s functions

GS−1

(
1

z

)
=

〈
1

N
tr

1
1
z1N − S−1

〉

= z

〈
1

N
tr1N

(
1− z

z1N − S

)〉
= z(1− zGS(z)) , (10)

GS−1

(
1

z
,
1

w

)
= z2w2GS(z, w) , (11)

and relate double-dual moments to single-dual moments

α̃11α̃
2
2 = −α̃2

3 + α̃2α̃4 ,

α̃12α̃
3
2 = α̃21α̃

3
2 = 2α̃3

3 − 4α̃2α̃3α̃4 + 2α̃2
2α̃5 ,

α̃22α̃
4
2 = 4α̃3

2α̃6 − 6α̃4
3 + 16α̃2α̃

2
3α̃4 − 8α̃2

2α̃3α̃5 − 6α̃2
2α̃

2
4 ,

(12)

where
α̃i,j ≡ αS

−1

i,j =

〈
1

N
tr
(
S−i

) 1

N
tr
(
S−j

)〉
c

. (13)

Now, we use a unitary transformation to write down the unknown “true”
covariance matrix as block diagonal: Σ = UΛU †, where

∑mmax
i=1 ni = N (we

guess or choose in another way a value for mmax). Now, we write down as
one vector the spectral parameters we seek

Θ = (Λ1, . . . , Λmmax , p1, . . . , pmmax−1) (14)

with pi = ni
N .

There exists a conformal mapping between the generating functions for
the “true” moments of Σ and the measured moments of S, MS(1/x) =∑

i=1 α
S
i x

i,MΣ(1/x) =
∑

i=1 α
Σ
i x

i, namely [9],

MS(z) =MΣ(Z) (15)
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with the arguments related by

Z =
1

1 + rMS(z)
. (16)

By expanding the generating functions in this relation in terms of the mo-
ments,

∞∑
k=1

αSk
zk

=
∞∑
k=1

αΣk
zk

(
1 + r

∞∑
l=1

αSl
zl

)k
, (17)

and then by collecting like terms, we obtain the relations between the mo-
ments themselves

αS1 = αΣ1 ,

αS2 = αΣ2 + r
(
αΣ1
)2
,

αS3 = αΣ3 + 3rαΣ1 α
Σ
2 + r2

(
αΣ1
)3
,

. . . (18)

These can easily be solved for αΣ1 , αΣ2 , αΣ3 to find the reciprocal relations,
which will also be of use.

3. The statistical method for eigeninference

Let us define an infinite-dimensional vector of fluctuations for the en-
semble S

vj = trSj −
〈
trSj

〉
= trSj −NαSj . (19)

Now, we utilize a theorem by Bai and Silverstein [10], which states that the
statistical distribution of νΘ is multidimensional Gaussian with the elements
of the dispersion matrix QΘ given by the double spectral moments

f(vΘ) ∼
1

detQΘ
exp

(
−v†ΘQ

−1
Θ vΘ

)
, (20)

[QΘ]l m = αSlm . (21)

According to the maximum likelihood principle, the desired estimator Θ
maximizes the pdf. This leads to a method for eigeninference, which can be
used in practice in the following way:

— Truncate QΘ and νΘ to a dimension not lower than 2mmax − 1;
— Express the truncated QΘ in terms of αSj ;
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— Express the truncated νΘ in terms of αSj and of the moments of the
measured matrix;

— Express αSj in terms αΣj , and those, in turn, in terms of parameters Θ;
— Find Θ by maximizing f or, equivalently, by minimizing

gΘ = gΘ
(
{Λi, pi}Ki=1, S, r

)
= v†ΘQ

−1
Θ vΘ + ln detQΘ. (22)

The same procedure can be pursued using from the outset the dual moments
αS
−1 instead of αS , which gives rise to the dual statistical method.

4. The analytical method for eigeninference

By definition,

GΣ(z) =

mmax∑
i=1

pi
z − Λi

=
1

z

1 +

2mmax−1∑
j=1

αΣj
zj

 =
R(z)

P (z)
,

with R and P being polynomials whose coefficients are functions of {Λj}
and {pj}. Let us write those polynomials explicitly and rearrange the terms

1 +
R1

z
+
R2

z2
+ . . .+

Rmmax−1
zmmax−1 =

(
1 +

P1

z
+
P2

z2
+ . . .+

Pmmax

zmmax

)

×

1 +

2mmax−1∑
j=1

αΣj
zj

 . (23)

Now, a comparison of coefficients next to each power of z leads to a set of
2mmax − 1 linear equations for Pj and Rj . We also have to rephrase αΣj in
terms of measured moments αSj .

Eigenvalues of Σ correspond to zeroes of P (z), and their degeneracies
are pi =

R(Λi)
P ′(Λi)

.

5. Tests of the methods

Both the methods were implemented and then tested on samples of ran-
dom matrices. Some results are presented in Fig. 1. For more tests (including
the dual methods and the statistical method with truncation of QΘ to size
4× 4 or 5× 5) and tables with detailed comparison of results, see [7].

Figure 1 shows that the analytical method performed better for small r,
as expected, since the covariance matrices were built of longer series of data.
It was moreover very fast and robust. The statistical method, however,
yielded similar results to the analytical one for large r = N

T , but its perfor-
mance deteriorated with decreasing r, which seems counter-intuitive. This is
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(a) r = 0.8, analytical method (b) r = 0.8, statistical method
(3× 3 truncation of QΘ)
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(c) r = 0.02, analytical method (d) r = 0.02, statistical method
(3× 3 truncation of QΘ)

Fig. 1. Estimated spectrum of the covariance matrix. The underlying exact covari-
ance matrix has eigenvalues µ1 = 1/3, µ2 = 1 (shown as the dashed lines) with
degeneracies p1 = 1/2, p2 = 1/2. The samples consisted of 100 covariance matri-
ces built out of empirical matrices of size either 80 × 100 (r = 0.8) or 80 × 4000

(r = 0.02).

explained by the fact that a truncated matrix QΘ may cease to be positive-
definite for small r, and then the minimization problem is no longer well-
defined.

The expressions for the determinant of the matrix QΘ are homogeneous
in the eigenvalues. Rescaling the eigenvalues by a constant factor so as
to set the larger of the two eigenvalues Λlarge to 1 reduces the dimension-
ality of the problem by 1, thus making the two-eigenvalue problem two-
dimensional. The only independent variables that remain in this case are
the ratio Λlarge/Λsmall (where Λsmall is the smaller eigenvalue) and degener-
acy plarge of the larger eigenvalue.
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In the plots of Fig. 2 the sign of detQΘ truncated to size 3×3 is plotted
for several values of r. It can be seen that as r decreases, the regions of
non-positive detQΘ become larger, filling most of the space for very small r.
This causes the statistical method to be usable only if r is large (so that
there is no region of non-positivity of detQΘ in the plot).
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(a) r = 0.8 (b) r = 0.2
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(c) r = 0.02 (d) r = 0.002

Fig. 2. For λ = Λsmall/Λlarge and p = plarge in the meshed region, the determinant
of the matrix QΘ truncated to size 3× 3 is non-positive.

6. Conclusion

Both the methods are best suited to problems with a low number of
distinct eigenvalues, whose degeneracies are of the same order.

The analytical method performed well in all the test cases and is very
fast. The statistical method gives about as good results as the analytical
one for large r = N

T but may break down for small r because of the lack
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of positive definiteness of truncated matrix QΘ appearing in a minimization
problem, which is an inherent part of the method. This fact and the overall
faster performance of the analytical method makes the application of the
analytical method preferable.
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