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We use the Kac–Rice method to analyze statistical features of an “opti-
mization landscape” of the loss function in a random version of the Oblique
Procrustes Problem, one of the simplest optimization problems of the least-
square-type on a sphere.
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1. Introduction

One of the simplest optimization problems of the least-square-type aris-
ing in the Multiple Factor Data Analysis is the following:
Oblique Procrustes Problem [1]: For a given pair ofM×N matricesA andB
find such N ×N matrix X that the equality B = AX holds as close as pos-
sible and columns xi ∈ RN , i = 1, . . . N are all of the same fixed length:
||x||2 :=

√∑
i x

2
i = const.

For M > N , the associated system of linear equations is over-complete and
a solution can be found separately for each column x by minimizing the
loss/cost function

H(x) =
1

2
||Ax−b||2 := 1

2

M∑
k=1

 N∑
j=1

Akjxj − bk

2

, ||x||2 := const . (1)
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The problem was first analysed in that setting by Browne in 1967 [1] and
then independently by numerical mathematicians (see e.g. [2, 3]) who used
the Lagrange multiplier to take care of the spherical constraint. Introducing
the Lagrangian Lλ,s(x) = H(x) − λ

2 (x,x), with real λ being the Lagrange
multiplier, the stationary conditions ∇Lλ,s(x) = 0 yield a linear system

AT [Ax− b] = λx , ⇒ x =
(
ATA− λIN

)−1
ATb . (2)

We find it convenient to use the normalization such that the radius of the
sphere is ||x||2 :=

√
N , with the spherical constraint yielding the equation

for λ in the form of

bTA
1

(ATA− λIN )2
ATb = N , (3)

which is equivalent to a polynomial equation of degree 2N in λ. Each real
solution for the Lagrange multiplier λi corresponds to a stationary point xi
of the loss function H(x) = 1

2 ||Ax− b||
2 on the sphere x2 = N and one can

show that the order λ1 < λ2 < . . . < λN implies H(x1) < H(x2) < . . . <
H (xN ) [1]. Thus, the minimal loss is given by Emin = H (x1).

Actually, the loss function (1) is one of the simplest examples of the “op-
timization landscape”, interest in which governs developing various search
algorithms efficiently converging to the global minimum. To consider a “typ-
ical” landscape, it makes sense to assume that the parameters of the model,
i.e. the matrix A and the vector b, are random. Geometrical and topological
properties of random landscapes have general and intrinsic mathematical in-
terest, see e.g. [4], and have attracted considerable attention in recent years
due to their relevance in the area of “deep learning” and optimization, see e.g.
[5, 6]. Fruitful analogies with spin glasses where “energy landscapes” have
been under intensive investigation for some time, see [7–14], play an impor-
tant role in guiding the intuition in this area. In this context, the goal of the
present research is to investigate the simplest landscape Eq. (1) by counting
the stationary points via the Lagrange multipliers λi, i = 1, . . . ,N ≤ 2N
and eventually find the minimal loss Emin. For concreteness and analytical
tractability, we assume the entries Akj of M × N, M > N matrix A to be
i.i.d. normal real variables such that ATA =W is N ×N Wishart with the
probability density

PN,M (W ) = CN,M e−
N
2
TrW (detW )

M−N−1
2 . (4)

We will also assume for convenience that the vector b is normally distributed:
b = σ ξ with σ > 0 and the components of ξ = (ξ1, . . . , ξM )T are mean zero
standard normals.
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2. Qualitative considerations and the Kac–Rice method

Equation Eq. (3) for the Lagrange multiplier can be conveniently written
in terms of N nonzero eigenvalues s1, . . . , sN ofM×M matrixW (a) = AAT

and the associated eigenvectors vi

N∑
i=1

si

(λ− si)2
(
ξTvi

)2
=
N

σ2
. (5)

The left-hand side is a positive function of λ having a single minimum be-
tween every consecutive pair of eigenvalues of W (a). This implies there
are 0 or 2 solutions of (5) (and 1 solution with probability zero) for λ be-
tween every consecutive pair of eigenvalues, plus two more solutions: one
in λ ∈ (−∞, s1) and another one in λ ∈ (sN ,∞). Note that the latter
two solutions exist for any value of σ ∈ [0,∞], whereas by changing σ, one
changes the number of solutions available between consecutive eigenvalues.
In particular, in the limit of vanishing noise (i.e. σ → 0 hence ||b||2 = 0),
every stationary point solution for the Lagrange multiplier corresponds to
an eigenvalue sn of the Wishart matrix, with, x = ±en being the associated
eigenvectors (hence there are 2N stationary points). On the other hand,
when σ → ∞, the ratio N/σ2 in the right-hand side becomes smaller than
the global minimum of the left-hand side in [s1, sN ]. Then only two sta-
tionary points remain outside that interval. Obviously, in every particular
realization, the number of stationary points will gradually change between
the two limits as a function of growing σ, forming a staircase Nst(σ). Let
us illustrate this on a simple example in the case of small N = 5, see Fig. 1.

This is exactly the “gradual topology trivialization” phenomenon dis-
cussed (as the function of magnetic field) for the standard GOE-based spher-
ical model in [15] (see also [11, 12]) by adopting formulas derived in the gen-
eral case by Auffinger et al. [7, 8]. It is quite easy to see from (5) that the
trivialization happens on the scale σ2 ∼ 1/N as only for such values the left-
hand side is of the same order as the right-hand side for a generic λ ∈ [sl, sl+1]
(in our normalization, the typical distance |sl− sl+1| = O(1/N)). When av-
eraged over the realizations, the staircase is replaced by smoothly decreasing
function 〈Nst(σ)〉 which we will find explicitly using the Kac–Rice approach,
and investigate its asymptotics as N →∞.

The number Nst[a, b] of real solutions of the Lagrange equation (2), i.e.
AT [Ax− b]− λx = 0 on the sphere x2 = N such that λ ∈ [a, b] can be
counted by employing the Kac–Rice-type formula
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Fig. 1. Graphical representation of Eq. (5) for N = 5.

Nst[a, b] =

b∫
a

dλ

∫
δ
[
AT (Ax− b)− λx

]
δ
(
x2 −N

)
×
∣∣∣∣det( ATA− λIN x

−2xT 0

)∣∣∣∣ dx . (6)

Using Gaussianity of both the matrix entries Aij ∼ N (0, 1) and the
vector components b ∼ NM (0, IMσ

2) and introducing the parameter δ =
1
2 ln (1 + σ2), one can eventually find the mean number of solutions as

E {Nst[a, b]} =
b∫
a

p(λ) dλ

with the density p(λ) for λ > 0 given by

p(λ ≥ 0) = 2

√
N

π

e−
M+N−1

2
δ

√
sinh δ

KM−N
2

(
Nλ

2 sinh δ

)
e
Nλ
2

coth δ 〈ρN (λ)〉
√
λ , (7)
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where Kν(z) is the Bessel–Macdonald function, and 〈ρN (λ)〉 stands for the
mean eigenvalue density of N × N real Wishart matrices W distributed
according Eq. (4). Such a density for any values M ≥ N can be found
in [16]. For negative values of the Lagrange multiplier λ, we have instead

p(λ < 0) =
N !N (M−N)/2

2(M+N−3)/2
1

Γ
(
N
2

)
Γ
(
M
2

)
×e−(M+N−1)δ/2

√
sinh δ

e−
1
2
N |λ|(coth δ−1)|λ|(M−N)/2

×

N−1∑
j=0

(
M − 1

N − 1− j

)
1

j!
(N |λ|)j

KM−N
2

(
N |λ|

2 sinh δ

)
. (8)

These formulas are exact, and we can compare them with the direct
numerical simulations in Fig. 2 for moderate matrix sizes.
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Fig. 2. (Color online) Evolution of the density p(λ) for N = 20 , M = 30 as the
function of variance σ2 = 0.005; 0.25; 0.70. The gray/blue histograms correspond
to 10 000 realizations.

Our next goal is to investigate the limit N and M →∞.
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2.1. Asymptotic analysis
2.1.1. “Bulk” scaling regime: extensive number of stationary points

As N and M →∞ in such a way that 1 < µ =M/N <∞, the number
of stationary points in the loss function landscapes shows three different
regimes depending on the magnitude of the parameter δ = 1

2 ln (1 + σ2).
The first regime is associated with the “bulk scaling” corresponding to small
enough δ ∼ 1/N , so that γ = δN

4 < ∞. For such a regime, one finds that
the total number of solutions N is extensive, namely

lim
N→∞

E{N}
N

=

s+∫
s−

pB(λ) dλ > 0 , s± = (
√
µ± 1)2 , (9)

where the density function pB(λ) is expressed via the Marchenko–Pastur [17]
limiting eigenvalue density pMP(λ) for the Wishart ensemble as (see Fig. 3
below)

pB(λ) = 2 pMP(λ) exp
[
−γ
λ
(λ− s−)(s+ − λ)

]
,

pMP(λ) =
1

2πλ

√
(λ− s−)(s+ − λ) . (10)

For γ = 0, we obviously have E{N} = 2N , whereas for γ � 1, we have
asymptotically

lim
N→∞

E{N}
N

∣∣∣
γ�1
≈ 1

4
√
π

1

γ3/2
� 1 .

Evaluating the above for γ ∼ N2/3 (i.e. δ ∼ N−1/3 � 1/N) indicates that
the mean number of stationary points for such a γ becomes of the order of
unity as N � 1 defining a different scaling regime, cf. [15].
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Fig. 3. Evolution of the density pB(λ) in the “bulk scaling” regime.
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2.1.2. “Edge” scaling regime: finite number of stationary points

The density of Lagrange multipliers for δ ∼ N−1/3 is dominated by the
vicinities of the spectral edges

|λ− s±| ∼ N−2/3
(

4s2±
s+ − s−

)1/3

ξ ,

where the Marchenko–Pastur law is no longer valid and has to be replaced
by a more precise “edge density” given by [18]

pMP(λ) −→
(
s+ − s−
4Ns2±

)1/3

ρedge(ξ) , (11)

with

ρedge(ζ) =
[
Ai′(ζ)

]2 − ζ [Ai(ζ)]2 + 1

2
Ai(ζ)

1−
∞∫
ζ

Ai(η) dη

 , (12)

where Ai(ζ) = 1
2πi

∫
Γ e

v3

3
−vζ is the Airy function solving Ai′′(ζ)−ζAi(ζ) = 0.

Introducing the scaling parameter ω = N1/3δ
(
s+−s−

4

)
, one then finds

that the total number of stationary points in this regime is finite as N →∞

lim
N→∞

E{N}=2

∞∫
−∞

[
exp

(
− ω3

3s−
+
ωζ

s
1/3
−

)
+exp

(
− ω3

3s+
+

ωζ

s
1/3
+

)]
ρedge(ζ) dζ .

(13)
In particular, that number tends to just limN→∞ E{N} = 2 as long as
ω → ∞, indicating that for any fixed and finite variance 0 < σ2 < ∞,
only two stationary points typically exist: one maximum and one minimum,
cf. [15].

Comparison with results numerical simulations is shown in Fig. 4.

2.2. Large Deviations for the smallest Lagrange multiplier

For large N →∞, fixed 1 < µ =M/N <∞ and fixed finite σ2 > 0, the
probability density for the smallest Lagrange multiplier λmin has the Large
Deviation form

p(λmin < s−) ∼ e−
N
2
Φ(λmin) , Φ(λ) = L1(λ)+L2(λ)+

(µ+ 1)

2
ln
(
1+σ2

)
,

(14)
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edge formula
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Fig. 4. Counting stationary points in the edge regime.

where s− = (
√
µ−1)2 is the Marchenko–Pastur left edge and for κ = (µ−1)σ2

2
√
1+σ2

,
we defined

L1(λ) = (µ− 1)

{√
λ2 + κ2

κ
− ln

(
κ+

√
λ2 + κ2

)
− λ

√
(µ− 1)2 + κ2

(µ− 1)κ

}
and

L2(λ) = −
√

(λ− s−)(λ− s+)− 2 ln

(
µ+ 1− λ+

√
(λ− s−)(λ− s+)

)
2
√
µ

+2(µ− 1) ln

(
µ− 1 + λ+

√
(λ− s−)(λ− s+)

)
2
√
µ

. (15)

Comparison with the probability density of the smallest solution of
Eq. (5) found numerically is shown in Fig. 5.

One then finds that Φ(λ) is minimized for

λ = λ∗ =
(√

µ−
√

1 + σ2
)(√

µ− 1√
1 + σ2

)
(16)

providing the most probable/typical value of the smallest Lagrange multi-
plier. Substituting this value to Eq. (2) and then to Eq. (1) gives eventually
the most probable value of the minimal loss/error

lim
N→∞

Emin

N
=

1

2

[√
µ (1 + σ2)− 1

]2
. (17)
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Fig. 5. The Large Deviation function for the smallest Lagrange multiplier vs. sim-
ulations for different matrix sizes N and different number of samples.

2.3. Open questions

In conclusion, we counted the mean number of stationary points of the
simplest “least-square” optimization problem on a sphere via the Lagrange
multipliers in various scaling regimes, and found the typical minimal loss
Emin. The following questions remain open: (i) fluctuations of the counting
function, (ii) large/small deviations of the minimal loss Emin, (iii) gradient
search dynamics on the sphere, (iv) understanding the landscapes for “least-
square” optimization of more general type, e.g. involving nonlinearities etc.,
cf. [19]. We hope to address some of these issues in future publications.
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