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We use freeness assumptions of random matrix theory to analyze the
dynamical behavior of inference algorithms for probabilistic models with
dense coupling matrices in the limit of large systems. For a toy Ising model,
we are able to recover previous results such as the property of vanishing
effective memories and the analytical convergence rate of the algorithm.
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1. Introduction

Probabilistic inference plays an important role in statistics, signal pro-
cessing and machine learning. A major task is to compute statistics of
unobserved random variables using distributions of these variables condi-
tioned on observed data. An exact computation of the corresponding ex-
pectations in the multivariate case is usually not possible except for simple
cases. Hence, one has to resort to methods which approximate the neces-
sary high-dimensional sums or integrals and which are often based on ideas
of statistical physics [1]. A class of such approximation algorithms is of-
ten termed message passing. Prominent examples are belief propagation [2]
which was developed for inference in probabilistic Bayesian networks with
sparse couplings and expectation propagation (EP) which is also applicable
for networks with dense coupling matrices [3]. Both types of algorithms
make assumptions on weak dependencies between random variables which
motivate the approximation of certain expectations by Gaussian random
variables invoking central limit theorem arguments [4]. Using ideas of the
statistical physics of disordered systems, such arguments can be justified for
the fixed points of such algorithms for large network models where couplings
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are drawn from random, rotation-invariant matrix distributions. This ex-
tra assumption of randomness allows for further simplifications of message
passing approaches [5, 6], leading e.g. to the approximate message passing
AMP or VAMP algorithms, see [7–9].

Surprisingly, random matrix assumptions also facilitate the analysis of
the dynamical properties of such algorithms [8–10] allowing e.g. for exact
computations of convergence rates [10, 11]. This result might not be ex-
pected, because, mathematically, the updates of message passing algorithms
somewhat resemble the dynamical equations of spin-glass models or of re-
current neural networks which often show a complex behavior in the large
system limit [12]. This manifests itself e.g. in a slow relaxation towards
equilibrium [13] with a possible long-time memory on initial conditions [14].
Such properties would definitely not be ideal to the design of a numerical
algorithm. So a natural question is: which properties of the dynamics en-
able both their analytical treatment and guarantee fast convergence? In this
paper, we give a partial answer to this question by interpreting recent re-
sults on the dynamics of algorithms for a toy inference problem for an Ising
network. We develop a heuristics based on freeness assumptions on random
matrices which lead to an understanding of the simplifications in the ana-
lytical treatment and provide a simple way for predicting the convergence
rate of the algorithm.

The paper is organized as follows: In Section 2, we introduce the motivat-
ing Ising model and provide a brief presentation on the Thouless–Anderson–
Palmer (TAP) mean-field equations. In Section 3 and Section 4, we present
the message passing algorithm of [10] (to solve the TAP equations), and
provide a brief discussion on its dynamical properties in the thermodynamic
limit, respectively. In Section 5 and Section 6, we recover the property of
vanishing memories and analytical convergence speed of the message pass-
ing algorithm using a free probability heuristic. Comparisons of our results
with simulations are given in Section 7. Section 8 presents a summary and
outlook.

2. Motivation: Ising models with random couplings
and TAP mean field equations

We consider a model of a multivariate distribution of binary units. This
is given by an Ising model with pairwise interactions of the spins s =
(s1, . . . , sN )

> ∈ {−1, 1}N described by the Gibbs distribution

p(s|J, h) .= 1

Z
exp

(
1

2
s>Js+ s>h

)
, (1)

where Z stands for the normalizing partition function. While such models
have been used for data modeling where the couplings J and fields h are
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adapted to data sets [15], we will restrict ourselves to a toy model where all
external fields are equal

hi = h 6= 0 , ∀i . (2)

The coupling matrix J = J> is assumed to be drawn at random from a
rotation invariant matrix ensemble, in order to allow for nontrivial and rich
classes of models. This means that J and V JV > have the same probability
distributions for any orthogonal matrix V independent of J . Equivalently,
J has the spectral decomposition [16]

J = O>DO , (3)

where O is a random Haar (orthogonal) matrix that is independent of a
diagonal matrix D. This class of models generalizes the well-known SK
(Sherrington–Kirkpatrick) model [17] of spin glasses for which J is a sym-
metric Gaussian random matrix.

The simplest goal of probabilistic inference would reduce to the compu-
tation of the magnetizations

m = E[s] , (4)

where the expectation is taken over the Gibbs distribution. For random ma-
trix ensembles, the so-called TAP equations [17] were developed in statistical
physics to provide approximate solutions to m. Moreover, these equations
can be assumed (under certain conditions) to give exact results (for a rigor-
ous analysis in the case of the SK model, see [18]) for the magnetizations in
the thermodynamic limit [12] N → ∞ for models with random couplings.
For general rotation invariant random coupling matrices, the TAP equations
are given by

m = Th(γ) , (5a)
γ = Jm− R(χ)m , (5b)

χ = E
[(

Th′(
√

(1− χ)R′(χ)u
)]

. (5c)

Here, u denotes the normal Gaussian random variable and, for convenience,
we define the function

Th(x)
.
= tanh(h+ x) .

Equation (5) provides corrections to the simpler naive mean field method.
The latter, ignoring statistical dependencies between spins, would retain only
the term Jm as the “mean field” acting on spin i. The so-called Onsager
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reaction term −R(χ)m models the coherent small changes of the magneti-
sations of the other spins due to the presence of spin i. Furthermore, χ coin-
cides with static susceptibility computed by the replica-symmetric Ansatz.
The Onsager term for a Gaussian matrix ensemble was developed in [19] and
later generalized to general ensembles of rotation-invariant coupling matri-
ces in [20] using a free energy approach. For alternative derivations, see [4]
and [6].

The only dependency on the random matrix ensemble in (5) is via the
R-transform R(χ) and its derivative R′(χ). The R-transform is defined
as [21]

R(ω) = G−1(ω)− 1

ω
, (6)

where G−1 is the functional inverse of the Green function

G(z)
.
= Tr

(
(zI − J)−1

)
. (7)

Here, for an N ×N matrix X, we define its limiting (averaged) normalized-
trace by

Tr(X)
.
= lim

N→∞

1

N
EXtr(X) . (8)

From a practical point of view, for a concrete N -dimensional coupling
matrix J , the R-transform term can be approximated using the spectral
decomposition (3). The Green function (7) is then replaced by its empirical
approximation as

G(z) ' 1

N
tr
(
(zI −D)−1

)
. (9)

The R-transform R
.
= R(χ) (for short) and its derivative R′

.
= R′(χ) are

then obtained by solving the fixed-point equations

λ = R+
1

χ
, (10a)

R = λ− 1

G(λ)
, (10b)

R′ =
1

G(λ)2
+

1

G′(λ)
, (10c)

χ = E
[
Th′

(√
(1−G(λ))R′u

)]
. (10d)

3. Approximate message passing algorithm for TAP equations

In this section, we reconsider an iterative algorithm for solving the TAP
equations (5) which was introduced in [10] and was motivated by the so-
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called VAMP algorithms of [8, 9]. We introduce a vector of auxiliary vari-
ables γ(t), where t denotes the discrete time index of the iteration. We then
proceed by iterating a nonlinear dynamics which is of the simple form of

γ(t) = Af(γ(t− 1)) (11)

for t = 1, 2, 3, . . . Here, f is a nonlinear function which is applied component-
wise to the vector γ(t−1) and A is a fixed N×N matrix. Before we specify
the dynamical system (11) for the TAP equations and its parameters, we
should mention that the point-wise nonlinear operation followed by a matrix
multiplication is typical of the dynamics of a (single layer) recurrent neural
network [22]. Hence, the analysis of (11) could also be of interest to these
types of models.

For the current application to the TAP equations, we specialize to the
function

f(x)
.
=

1

χ
Th(x)− x , (12)

where χ was defined in (5c). The time-independent random matrix is given
by

A
.
=

1

χ

[(
1

χ
+R(χ)

)
I − J

]−1
− I . (13)

The initialization of dynamics (11) is given by γ(0) =
√

(1− χ)R′(χ)u
where u is a vector of independent normal Gaussian random variables. It
is easy to see that the fixed points of γ(t) coincide with the solution of the
TAP equations for γ, (5), if we identify the corresponding magnetizations
by m = χ(γ + f(γ)).

We have the following important properties of the dynamics:

Tr(A) = 0 and Tr(E(t)) = 0 with [E(t)]ij
.
= f ′(γi(t))δij , ∀t . (14)

Here, the first and second equalities follow by the constructions of the ran-
dom matrix A and random initialization γ(0), respectively [10]. It is also
worth mentioning that we have the freedom to replace the function f with
an appropriate sequence of functions, say ft, in such a way that the con-
ditions Tr[diag(f ′t(γ(t)))] = 0 and ft → f as t → ∞ are fulfilled, see [10,
Section VIII.B].

4. Dynamics in the thermodynamic limit

Dynamical properties of fully connected disordered systems can be ana-
lyzed by a discrete time version of the dynamical functional theory (DFT)
of statistical physics originally developed by Martin, Siggia and Rose [23]
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and later used for the study of spin-glass dynamics, see e.g. [14, 24, 25], and
neural network models [26]. Using this approach, it is possible to perform
the average over the random matrix ensemble of A and initial conditions
for N → ∞, and marginalize out all degrees of freedom γj(t) for j 6= i and
all times t to obtain the statistical properties of trajectories of length T
for an arbitrary single node {γi(t)}Tt=1. Since the nodes are exchangeable
random variables under the random matrix assumption, one can obtain the
convergence properties of the algorithm by studying a single node.

For a rotation-invariant matrix A and an arbitrary function f , the DFT
yields an “effective” stochastic dynamics for γi(t) which is of the universal
form (we skip the index i, since it is the same for all nodes)

γ(t) =
∑
s<t

Ĝ(t, s)f(γ(s− 1)) + φ(t) , t ≤ T . (15)

Here, φ(t) is a colored Gaussian noise term. This dynamics is of a “mean
field” type because the statistics of the noise must be computed from aver-
ages over the process itself which involves the function f and the R trans-
form [25]. In general, the explicit analysis of the single node statistics be-
comes complicated by the presence of the additional memory terms Ĝ(t, s)
which can be explicitly represented as a function of the T × T order param-
eter matrix

G(t, s) .= E
[
∂f(γ(t− 1))

∂φ(s)

]
, t, s ≤ T (16)

which again must be computed from the entire ensemble of trajectories
of γ(t). G(t, s) represents the average (linear) response of the variable
f(γ(t − 1)) to a small perturbation of the driving force φ(s) at previous
times. Hence, by causality, G is an upper triangular matrix (i.e. G(t, s) = 0
for s ≥ t). In addition, the case of zero response matrix G = 0 leads to
Ĝ = 0. The combination of the Gaussian noise and the response function
in the dynamics has an intuitive meaning: The Gaussian can be understood
as a representation of the incoherent addition of random variables arising
from the multiplication of the vector f(γ(t−1)) with the random matrix A.
On the other hand, by treating the typically small matrix elements Aij in
a perturbative way [12, Chapter 6], one can estimate the influence of a
node i (using a linear response argument) on the N − 1 neighboring nodes
j 6= i, which by the symmetry of the matrix, will lead to a coherent, re-
tarded influence of all nodes j back on node i at later times. This explains
why memory terms were found to be absent for neural network dynamics
with i.i.d. nonsymmetric random couplings [26]. This has made a complete
analytical treatment of the effective dynamics in such a case possible.
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Surprisingly, for the nonlinear function f given in Eq. (12) and the sym-
metric matrix A, we have shown in [10] that the response functions (16)
vanish, i.e. G(t, s) = 0 for all t, s. As a result, also the memory terms
vanish; γ(t) in (15) simply becomes a Gaussian field. Hence, an analytical
treatment is possible as was also shown in the previous studies [8, 9]. In
the following section, we will use the freeness argument of random matrix
theory to explain this result.

5. Absence of memory terms and asymptotic freeness

To analyze the average response (16) for a single node, we use the chain
rule in the dynamical susceptibility for the original N node dynamics (see
(11))

Gij(t, s)
.
=
∂f(γi(t−1))
∂γj(s)

= [(E(s)AE(s+1)A · · ·E(t−2)AE(t−1))]ij ,

s < t . (17)

By its construction, we can argue that the derivative w.r.t. γi(s) acts in the
same way as the derivative w.r.t. φ(s) and thus we will have (as N →∞)

E [Gii(t, s)]→ G(t, s) . (18)

Here, {Gii(t, s)}i≤N are random w.r.t. the random matrix A and random
initialization γ(0). By exchangeability Gii(t, s) ∼ Gjj(t, s), j 6= i, the con-
dition Tr(E(t)) = 0 (see (14)) implies vanishing single-step memories, i.e.
E[Gii(t, t− 1)]→ 0. We next argue that for further time-lags, the memories
do vanish in a stronger sense. Specifically, we will show that

ε(t, s)
.
= lim

N→∞
E
[
Gii(t, s)

2
]
= 0 , s < t− 1 . (19)

To this end, we introduce an auxiliary random diagonal N × N matrix Z
which is independent of A and {E(t)}. The diagonal entries of Z are inde-
pendent and composed of ±1 with equal probabilities. Note that E[ZnnZkk]
= δnk. Hence, we can write

1

N
E
[
tr
(
(ZG(t, s))2

)]
=

1

N

∑
i,j≤N

E[ZiiZjj ]E[Gij(t, s)Gji(t, s)] (20)

=
1

N

∑
j≤N

E
[
Gjj(t, s)

2
]
= E

[
Gii(t, s)

2
]
. (21)

Then, we have

ε(t, s) = Tr(ZE(s)AE(s+1) · · ·AE(t−1)ZE(s)AE(s+1) · · ·AE(t−1))
= Tr(EZ(t, s)AE(s+ 1) · · ·AEZ(t, s)AE(s+ 1) · · ·A) . (22)
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Here, we have defined the diagonal matrix EZ(t, s)
.
= E(t − 1)ZE(s). To

simplify (22), we will make use of the concept of asymptotic freeness of
random matrices.

Definition 1 [21] For the two families of matrices A .
= {A1,A2, . . . ,Aa}

and E .
= {E1,E2, . . . ,Ee}, let P i(A) and Qi(E) stand for (noncommuta-

tive) polynomials of the matrices in A and the matrices in E, respectively.
Then, we say the families A and E are asymptotically free if for all i ∈ [1,K]
and for all polynomials P i(A) and Qi(E), we have

Tr(P 1(A)Q1(E)P 2(Q)Q2(E) · · ·PK(A)QK(E)) = 0 (23)

given that all polynomials in (23) are centered around their limiting normal-
ized traces, i.e.

Tr(P i(A)) = Tr(Qi(E)) = 0 , ∀i .

Namely, the limiting normalized trace of any adjacent product of powers of
matrices — which belong to different free families and are centered around
their limiting normalized traces — vanishes.

In product (22), the matrices belong to two families: rotation-invariant
and diagonal. Under certain technical conditions — which includes the in-
dependence of matrix families — these two matrix families can be treated as
asymptotically free [21]. E.g. A is asymptotically free of Z. Our heuristic
assumption is that A is also free of the diagonals {E(t)}. A subtle point
should be noted here: Being outcomes of the dynamical system, the diagonal
matrices {E(t)} are not independent of A. Nevertheless, since we expect
that the diagonals E(t) have limiting spectral distributions, we consider that
asymptotic freeness is a fair heuristic here.

Result (19) follows immediately from the asymptotic freeness assump-
tion: we have that all adjacent factors in product (22) are polynomials
belonging to the different free families and all matrices in the product are
centered around their limiting normalized-traces.

6. Asymptotic of the local convergence

We will analyze the convergence rate of dynamics (11) in terms of the
following measure:

µγ
.
= lim

t→∞
lim
N→∞

E‖γ(t+ 1)− γ(t)‖2

E‖γ(t)− γ(t− 1)‖2
. (24)

To this end, we will assume that one starts the iterations at a point which
is close enough to the fixed point of γ(t), denoted by γ∗ such that a lineari-
sation of the dynamics is justified. We conjecture (in accordance with our



Understanding the Dynamics of Message Passing Algorithms . . . 1681

simulations) that the initialization does not affect the asymptotic rates. This
means that we can substitute γ(t) by the following “effective” dynamics:

γ(t) = γ∗ + ε(t) (25)

with ε(t) small enough to justify the linearised dynamics

ε(t) ' AEε(t− 1) = (AE)tε(0) with [E]ij
.
= f ′(γ∗i )δij . (26)

Moreover, we consider a random initialization ε(0) with E[ε(0)ε(0)>] = σ2I.
Then, one can write

µγ = lim
t→∞

Tr
[
(EA− I)(EA)t(AE − I)(AE)t

]
Tr [(EA− I)(EA)t−1(AE − I)(AE)t−1]

. (27)

Similar to the response function, we encounter the same product of two
(asymptotic) trace free matrices. We then assume that A and E can be
treated as free matrices. Doing so leads to

Tr
[
(EA)t∓1(AE)t

]
= 0 and Tr

[
(EA)t(AE)t

]
= Tr

(
A2
)t
Tr
(
E2
)t
.

(28)
So that we get the simple expression for the convergence rate as

µγ = Tr
(
A2
)
Tr
(
E2
)
. (29)

This shows that when Tr(A2)Tr(E2) < 1, we obtain local convergence of the
algorithm towards the fixed point. Moreover, a straightforward calculation
shows that

Tr
(
A2
)
Tr
(
E2
)
= 1−

1− Tr
(
E2
)
R′(χ)

1− χ2R′(χ)
(30)

which exactly agrees with the result of the more complex DFT calcula-
tion [10]. In the following section, we will support our heuristics by simula-
tions on two instances of random matrices.

7. Simulations

In the sequel, we illustrate the results of the free probability heuristics,
i.e. (19) and (29). Since we expect that these results are self-averaging in
the large-system limit, our simulations are based on single instances of a
large random matrix A and random initialization γ(0). In particular, we
consider the empirical approximation of the limit (19) as

εN (t, s)
.
=

1

N

N∑
i=1

Gii(t, s)
2 . (31)
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In Fig. 1 (a) and (b), we illustrate the vanishing memory property and
the convergence rate of dynamics (11) for the SK model

J = βG , (32)

where Gij , 1 ≤ i < j ≤ N , are i.i.d. centered Gaussian random variables
with variance 1/N .
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Fig. 1. SK model with the model parameters h = 1 and β = 1: (a) Illustration of
vanishing memories (w.r.t. εN (t, s) in (31)) for different time lags; (b) Asymptotic
of the algorithm with N = 104 (where the flat line around 10−30 is the consequence
of the machine precision of the computer which was used).

Second, motivated by a recent study [27] in random matrix theory, we
consider a nonrotation invariant random coupling matrix model. The model
is related to the random orthogonal model discussed by Parisi and Pot-
ters [20] which is defined as

J = βO>DO , (33)

where O is a Haar matrix and D = diag(d1, · · · , dN ) has random binary
elements di = ∓1 with |{di = 1}| = N/2. Specifically, we substitute the
Haar basis of the random orthogonal model with a randomly-signed DCT
(discrete-cosine-transform) matrix as

J = βÕ
>
DÕ with Õ

.
= ΘNZ . (34)

Here, Z is an N×N diagonal matrix whose diagonal entries are independent
and composed of binary ∓1 random variables with equal probabilities and
Θ is N × N (deterministic) DCT matrix. The simulation results for the
latter model are illustrated in Fig. 2.
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Fig. 2. Randomly signed DCT model with the model parameters h = 2 and β = 2:
(a) Illustration of vanishing memories for different time lags; (b) Asymptotic of the
algorithm with N = 104.

They indicate that the free probability heuristics are also very accurate
for randomly signed (deterministic) DCT matrix (which contains consider-
ably less randomness compared to the rotation invariant case). As a mater of
fact, this is not surprising because for a random permutation matrix P and
diagonal matrices D1 and D2 such that all matrices are mutually indepen-
dent, it is proved that the matrices P>Õ

>
D1ÕP andD2 are asymptotically

free [27].

8. Summary and outlook

In this paper, we have presented a free probability heuristics for un-
derstanding and recovering analytical results for the dynamical behavior of
so-called message passing algorithms for probabilistic inference. Such algo-
rithms have the form of a discrete time, recurrent neural network dynamics.
We were able to show for a toy Ising model with random couplings that parts
of previous results which were obtained by more complicated techniques can
be understood and re-derived under the heuristic hypothesis of asymptotic
freeness of two matrix families. Under this assumption together with the
condition that the matrices are (asymptotically) trace-free, the diagonal ele-
ments of the response function which determine the effective memories in the
dynamics vanish. This property also yields an analytical result for the expo-
nential convergence of the algorithm towards its fixed point. We have tested
these predictions successfully on two types of random matrix ensembles.

We expect that similar arguments can be applied to the analysis of more
general types of inference algorithms of the expectation propagation type.
It would also be interesting to design novel algorithms that can be analyzed
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assuming the freeness heuristics. Of course, the heuristics should eventually
be replaced by more rigorous arguments. While our results indicate that
message passing algorithms could be analyzed under somewhat weaker con-
ditions on random matrices (compared to explicit assumptions on rotational
invariant ensembles), the applicability of these concepts to real data needs
to be shown.

The authors would like to thank Yue M. Lu for inspiring discussions.
This work was supported by the German Research Foundation, Deutsche
Forschungsgemeinschaft (DFG), under grant No. OP 45/9-1 and BMBF
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