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The study of the statistical distribution of the eigenvalues of Wishart
matrices finds application in many fields of physics and engineering. Here,
we consider a special case of finite dimensions correlated complex central
Wishart matrices, characterized by the fact that the covariance matrix has
all eigenvalues equal, except for one which is the largest. Starting from
the knowledge of the joint probability distribution function (p.d.f.) of this
kind of Wishart matrices, we focus on the evaluation of a tractable form for
the distribution of each individual eigenvalue. In particular, we derive an
expression for the p.d.f. of the £t largest eigenvalue as a sum of terms of the
type z%e=% which allows us to write a large class of statistical averages
involving functions of eigenvalues in closed form.
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1. Introduction

The analysis of the distribution of the eigenvalues of random matrices
represents one of the most important fields of research in multivariate statis-
tics, with particular focus on the statistical analysis of large data sets and
on principal component analysis [1-7]. The characteristics of the eigenval-
ues of random matrices play an important role also in several branches of
physics, which include, for instance, the statistical analysis of nuclear spec-
tra, atomic physics, quantum theory, kinetic theory of gases, and cosmol-
ogy [8-11]. Random matrix analysis is also applied in communication the-
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ory for signal processing applications, multiple antenna systems, and com-
pressed sensing [12-24]. Another field of application is the complex system
theory [25, 26]. Among the various kinds of random matrices, Wishart ran-
dom matrices play a very important role in statistics, physics, and engineer-
ing. To give some example, Wishart are considered in Bayesian inference,
as they often represent the prior precision matrix of multivariate Gaussian
data sets. They can also be used to model the propagation channel of
multiple-input—multiple-output systems in wireless communications [12—14].
Wishart matrices have also appeared in several areas of physics: for in-
stance, in nuclear physics, in low energy QCD and gauge theories, quantum
gravity, in statistical physics, including directed polymers in a disordered
medium, nonintersecting Brownian excursions and fluctuating nonintersect-
ing interfaces over a solid substrate [27-36]. For Wishart matrices with
finite dimensions, the derivation of the eigenvalues distribution is generally
not trivial. Expressions for the cumulative distribution function (c.d.f.) of
the £t largest eigenvalue of a complex Wishart matrix have been obtained
in [37, 38|; however, the direct computation of the corresponding probabil-
ity distribution function (p.d.f.) from the cumulative distribution function
(c.d.f.) is rather complicated. The distribution of the largest eigenvalue
and the probability that all eigenvalues are within an interval, as well as re-
cursive methods for their numerical computation, were studied for real and
complex Wishart, multivariate Beta (also known as double Wishart), for the
Gaussian orthogonal ensemble (GOE) and for the Gaussian unitary ensem-
ble (GUE) [39-41]. Expressions for the joint p.d.f. of subsets of unordered
eigenvalues of uncorrelated noncentral Wishart matrices were given in [42].
Closed form expressions for the marginal c.d.f.s and p.d.f.s of some Her-
mitian random matrices, which also include Wishart matrices, were given
in [43]. The moment generating function (MGF) of the largest eigenvalue
for both uncorrelated and correlated central Wishart cases was given in [44].
Expressions for the marginal distribution, joint distribution, and moments
of a subset of eigenvalues have been obtained in [45] for a general class of
random matrices, including GUE and correlated central Wishart.

Among the class of Wishart matrices, a particular importance has the
spiked model, which represents a special case of the Wishart ensemble, and
a natural generalization of the uncorrelated Wishart case. In the spiked
model, the Wishart matrix has a covariance matrix where all eigenvalues are
equal except the largest one |7, 46-48|. In this paper, we focus on Wishart
matrices with spiked covariance matrix and look for tractable expressions for
the distribution of the 1 eigenvalue. In particular, the aim of this paper is
to obtain the expressions for the marginal p.d.f. as a sum of terms taking the
form 2%~ This expression is suited for further uses of the distribution,
such as in the case of evaluation of statistical moments or expectations of
functions of eigenvalues. This work extends the results in [49], valid for the
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uncorrelated Wishart case and for some examples of correlated Wishart, to
the spiked covariance Wishart model with finite size. The results of this
paper can be summarized as follows:

1. We obtain the p.d.f. for the A largest eigenvalue in the form of a sum
of terms zPe~® for the spiked covariance Wishart model.

—xd

2. We derive bounds on the number of terms zfe and on the values

assumed by the coefficients § and 9.

3. As an example, we explicitly write for some small matrices the p.d.f.
of the eigenvalues as a mixture of gamma distributions.

Throughout the paper we indicate with I'(-) the gamma function, with
I'(a,x) = fxoo t2~te~tdt the upper incomplete gamma function [50, Ch. 6],
with ()t transposition and complex conjugation, and with | - | or det(-) the
determinant. When possible, we use capital letters for random variables,
and bold for vectors and matrices. We say that a random variable Z has
a standard complex Gaussian distribution (denoted CN(0,1)) if Z = Z; +
iZ9, where Z; and Zy are independent, identically distributed (i.i.d.) real
Gaussian N (0,1/2). A complex random vector X is Gaussian circularly
symmetric if its p.d.f. has the form f(x) o< exp (—iBTE_lm), where X' is the
covariance matrix. When X' = I the entries of X are i.i.d. CN(0,1).

2. Joint p.d.f. of the eigenvalues of Wishart matrices
with spiked covariance matrix

To obtain the expression for the joint p.d.f. of the eigenvalues of complex
central Wishart matrices we can use the following Lemma, which has been
proved in [51].

Lemma 1. Denote by X a (p X n) random matriz with complex Gaussian,
zero mean, unit variance, i.i.d. entries, and by X an (n xn) positive definite
matriz. The joint p.d.f. of the (real) nonzero ordered eigenvalues A\; > Ay >
... > Ay >0, with M = min(n,p), of the (p X p) quadratic form W =
XXX is

M
£ @y, ay) = K|V ()] |G, o) [] ) (1)
=1

where &(x) = :Upr, and V(x) is the (M x M) Vandermonde matriz with
elements v; j = l';_l. The constant K 1is given by

K - (_1)p(n7M) L HiL:l ¢Z;L)1p m;m; (2)
Fan®) Ty Ty (ma) Tlie; (¢6) — ¢) ™™
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where I, (n) £ 1% (n —i)! and b1y > Py > ¢y are the L dis-
tinct eigenvalues of X1, with associated multiplicities my, . .., my, such that

25:1 m; =n.
The (n x n) matriz G(x,¢) has elements

(3)

n—j—d(z)

i = gi(z;) = (—z))Dedeon®  j=1,... M,
h g =l —dlawdeqy o T=MALon,

where [a], 2 a(a —1)---(a —n + 1), e(i) denotes the unique integer such
that
mi+ ..o+ Mey—1 <TSMp+ .o+ Mgy

and
e(i)
d(i) = my —i.
k=1

We remark that the distribution depends only on the eigenvalues of X.
A very interesting special case is when X' has a spiked shape, i.e., when
its eigenvalues are 01 > 09 = 03 = 04 = --- = 0,. For this particular
correlation model, i.e. the spiked correlated Wishart case, we obtain the
following result [51].

Lemma 2. Let W ~ CWys(n, X) be a complex Wishart matriz, n > M.
Denote o1 > 09 = ... = op > 0 the ordered eigenvalues of X (spiked
covariance matriz). Then, the joint p.d.f. of the ordered eigenvalues of W is

M
f>(\ordered) (z1,...,zy) = K|Y (x)| - |E (x,0))| - Hx?—M ; (4)
=1

where T (x) = {vi(x;)}
E (x,0) has elements

B T
J g Iemmiloz G =9 M

= {—:1;;_1}‘ Cforid,j = 1,...,M, the matrix

/[:7j Z,‘]

and the normalization constant is
_ -1

M M—-2
K = [a{l_MHUén_l)(M_l)(al —og)M~1 H(n —1)! H !
i=1 =2

Proof. This is a particular case of Lemma 1 [45]. O
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3. Individual eigenvalues distribution

An expression for the p.d.f. of the /2 largest eigenvalue of a Wishart
matrix with spiked covariance matrix has been obtained in [45] in terms of
the pseudo-determinant of a rank 3 tensor. That expression is very compact
but not easy to use for further processing, e.g., to perform averages with
respect to the distribution of one eigenvalue. To obtain a friendly expression
for the p.d.f. of the largest eigenvalue of W we start by the following lemma.

Lemma 3. Let X1, Xo, ..., X be i.i.d. or exchangeable r.v.s, then the mar-
ginal p.d.f. of the {2 largest r.v. can be written as [52, pag. 99, Eq. (5.3.1)]

76 =0 (37 () ). 6)

s=/{
where fumin:s:n(x) denotes the p.d.f. of the smallest r.v. considered in any ar-
bitrary subset of s random variables (r.v.s) over the set of M r.v.s X1,..., Xr.

Using Lemma 3 the problem of the evaluation of the f;(x) translates
into the computation of fiin.s:as(x), which can be obtained by means of the
following Theorem.

Theorem 1. Let A, Xo,..., Ay be the nonzero ordered eigenvalues of a
Wishart matriz with spiked covariance matriz, whose joint p.d.f. is described
by (4). Then, the p.d.f. of the smallest eigenvalue of a subset of s unordered
eigenvalues, fumin:s:p(x), can be written as

fmin:S:M(x)
K - ai+n—a;—1 as_1+n—as—1—1
TR S S S
oL t1=0 ts—1=0
s—1 Aak—l-n—ak—tk o o |
% :ans—l—ﬁ-n—as-l—zz;i tr H Oy (O;k '+ n—ag 1) ’ (6)
k=1 ke
where a, w are permutations of the integers 1,2,..., M and
M
Clav, 1) 2 sgn(a)sgn(p) [ (—1)™ 160" % (o +n—ap— 1! (7)
k=s+1
with
~ D 01, Hi = 1 )
O-Z_{O-27 ,U’l>17 (8)
and

lI>

M pi =1
) ) 9
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Proof. The proof is in Appendix. O

4. The p.d.f. of the ¢t} largest eigenvalue as a mixture of Gamma

The results of Lemma 3 and Theorem 1 allow us to obtain an expression

for the p.d.f. of the /' largest eigenvalue of a Wishart matrix with spiked

covariance matrix as the sum of terms having the form zfe=%9, i.e., as a

mixture of Gamma r.v.s. We can also derive the following propositions.

Proposition 1. The expression for the p.d.f. of the /% largest eigenvalue of
a Wishart matriz with spiked covariance matriz can be written in compact

form as
- K Z (v)e PW) W) (10)

where the sum in (10) is defined as

IRSHHH DN (11)

ts—1
and IC, p(v), B(v) and §(v) are given by
sK
k= (12)

o) = st - (37 ) ()

M
> ( H (_1)as+ak*2&?k+n—(lk(ak+n_ak _ 1)!>

k=s+1
s—1 ~apt+n—ap—tg
G (o +n —a —1)!
g a , (13)
k!
k=1
S
ov) =) o, (14)
k=1
s—1
Bw) = ag—l+n—as+ Y . (15)
k=1
Proof. By direct substitution of (5) and (6) in (10). O

Proposition 2. The number of terms e 20 pAW) p (10) is upperbounded
by sM +2M! + (s — 1)(n — 2).

Proof. By examination of (10). O
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Proposition 3. The coefficients §(v) in (10) can take only two values

1 -1
5(u)e{+3 ,S}.
o1 o9 09
Proof. For the proof we recall that 6 = o1 only if ur = 1 and, therefore,

we have only two cases: (1) one coefficient 6y is 01 and the remaining are
o2; (2) all the coefficients g are o9. O

Proposition 4. The coefficient 5(v) in (10) is bounded as follows:
oM +2n — s — 1)
5 .

Proof. For the proof of the upper bound, we start from the r.h.s. of (15)
and rewrite it as

s2+3(n—M—2)+1§6(l/)§8( (16)

s—1 s

a5—1+n—a5+2(ak+n—ak—1):Z(ak—ak)+s(n—1). (17)
k=1 k=1

To obtain an upper bound for §(v), we recall that both «; and aj range
from 1,..., M and, therefore,

iak < M-F(M—l)—l-‘--—i—(M—s{-l):(W;l_s)? (18)
k=1
iak21+2+---+s:8(5;1) (19)
k=1
and .
> (ak —ay) < 5(2MQ_S) (20)

k=1
By applying inequality (20) in (17), we obtain the upper bound in (16). To
prove the lower bound, we start from (17) and recall that p is a permutation
of the set {1,2,..., M}, therefore,

S
1
Zak21+2+---+s:s(s+ ). (21)

2
k=1

Furthermore, the values assumed by aj are given by (9) and, as a conse-
quence,

s
Zakg(M*8+2)+(M*S+3)+...+M+M (22)
k=1

M(M+1)_1_ (M—s+1)(M—-s+2)
2 2

- M+ —1]. (23
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By substituting (21) and (22) in (17), we finally get the lower bound in
(16). O

Proposition 5. The expression for fe(x) can be reorganized as

M ﬁs,max 1 s—1 M /BS,IIIEIX s
IEES S S A G FIES S I/ LatFUNcY)

s={ kzﬁs,min s={ k:ﬁ?s,min

) )

where l[ls(lk and Ws(zk are suitable constants, and

Bsmin = s? + s(n—M—-2)+1 (25)

with (20 + 2 0
S +2n—s—
Bs,max = 9 . (26)

The number of distinct terms of fo(x) does not exceed (—M—1)(£2—M (1+
M) -2+ M)).

Proof. The proof of (24) is a straigthforward applications of Propositions 2
and 3. The second proof comes from the fact that the number of the inner
sums in (24) is

(3+4M)s —3s%2 -2
2

/Bs,max - /Bs7min +1= +1 (27)

and

M
> 2(Bomax— Bomin+1) = (=M —1) (2 = M(1+ M) — £(2+ M)) . (28)
s=/L

O]
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Proposition 6. For M = n the distribution of the smallest eigenvalue be-

comes ) Mt
fulz) = (1 L M= 1> o2 (Gt (29)

01 02

Proof. Can be obtained by following the proof in Appendix for M =n. 0O

Note that this is also the specialization to the spiked case of the result
given in |53, Th. 2].

The previous propositions prove that the eigenvalues can be interpreted
as mixture of gamma distributions, which can be evaluated numerically or
symbolically. Some explicit examples of p.d.f.s are shown in Table I for
M =2 and M = 3.

5. Expectation of functions of the eigenvalues

From (10), we can easily evaluate closed-form expressions for the follow-
ing cases of interest.

— Mean value of A/

(v)+ 1)!

E{Ae} = ICZ‘P (u)g(’/

— Mean value of 1/),
1] _ 3 (B(r) —1)!

Mean value of ATEN

Y, Aﬁ V)+1 eIt
E
{A—i—)\gB} Z(’D ”
dA
I (1 BWw). B) Bo)+1 (32
Note that, to derive (32), we used the following identity [54, Eq.
(3.383.10)]
T —le—da: y
L _ a—-1l.c 1\ -
/ P de =" (a—1)! I'(1 —a,cd) (33)

valid for a,c,d € R with a,c,d > 0.
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— Mean value of In (1 + A)\)

E{ln(1+A\)} =K ¢<y)weé<u>/A
B(V)+1

S () (o)

To derive (34), we have used the following identity |55, Eq. (78)]:

(34)

/ln1+x al_dmdx—(al'edzw (35)

valid for a,d € R with a,d > 0.

6. Numerical examples

In this section, we present some numerical examples obtained using the
expressions derived previously. More specifically, we will show the p.d.f.
behavior of all the eigenvalues of a complex Wishart matrix with spiked
covariance matrix for different dimensions and values of the coefficients o
and oo. Figure 1 shows the p.d.f. of the four eigenvalues for the case of
n = M = 4 with oo = 1, and for three different values o1 = 2,01 = 5,
and o1 = 10. The comparison between the three figures shows that the
variation of o7 has a negligible impact on the smallest eigenvalues A3 and
A2 but has a considerable impact on the distribution of A;; in particular,
the distribution of A tends to widen as the value of o1 increases. The same
behaviour can be observed for the cases n = M = 5 shown in Fig. 2. As
expected, the comparison between Fig. 1 and Fig. 2 reveals that the effect of
widening of the distribution is emphasized by the size of the matrix. Finally,
we report in Fig. 3 the p.d.f. of the eigenvalues for n = 10 and M = 5, for
the same values of o1 and o9 as in the previous figures. By comparison with
Fig. 2, we can see that here the distribution of A; has a larger mean value.
These distributions can be used for designing tests on the parameters of the
Wishart matrix.
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(c)or1=2,00=1

Fig. 1. p.d.f. of the eigenvalues \;, it =1,...,4 for n = M = 4.
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Fig.2. p.d.f. of the eigenvalues A\;, i =1,...,5 for n = M = 5.
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(a) 01 =10,02 =1
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0 h L L L L L L
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(c)o1=2,00=1

Fig.3. p.d.f. of the eigenvalues A\;, i =1,...,5 for n =10, M = 5.
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7. Conclusions

In this paper, we have considered the problem of the evaluation of the
p.d.f. of the eigenvalues of complex central Wishart matrices with spiked
covariance matrix. We have provided a formula for the p.d.f. of the ¢t
eigenvalue which is expressed as a sum of terms of the form z%e~*%. This
form is particularly useful to calculate a large variety of statistical averages
without the need for numerical integration. To this aim, expressions for some
expectations of functions of eigenvalues, which find applications in several
fields, have been also derived.

Appendix: Proof of Theorem 1

We start the proof from the expression for the joint p.d.f. of the ordered
eigenvalues for the spiked covariance case given by (4) and recall that the
unordered distribution can be simply written as

1 raer
S @, ). (36)

Furthermore, we can obtain the joint p.d.f. of a subset of s unordered eigen-
values by integrating out the remaining M — s eigenvalues. For instance, if
we consider the subset Aq,..., As (since they are unordered, the index of the
eigenvalues does not have any impact), we get

f)\(xla"'va) -

flx1,20,..., s //|r )| E(x |ka Mdgyyy ... dxpr. (37)

Using the Leibniz formula for the determinants, we obtain
K oo o0 M
f(f]?l, .’1}'2, e 71,8) - M Z Z Sgn(a)sgn(“) / T / H UOék (zk)euk,k
Ta op 0 0 k=1

M
X H ch*deHl Lo dxpy
k=1

[o.¢] oo M
K —
= 37 2 > sen(a)sen(p) / E / 1T ver (@r)ep (zr)
Ta p 0 o k=1
X H foMd:L"sH codxpy

= >l T e den ey ™, 39)
o, k=1
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where we have exploited the fact that

o0 oo

M
/- : / H Vo (Th) €1y (xk)xszdazs_l eodxpy
M [o.¢]
= H /va,C (x)ep, (z)z" Mdz
k=s+17],
(o]
M J gk —Itn=Me=z/o1qy e =1,
ST b
k=s+1 [ wor— A=tk o=/ 02 e > 1,
0
—M
= ﬁ (—1)o—t o M (g +n— M — 1) p =1,
k=511 oy T (g — g — 1) g > 1,
(39)
where
_ _ A eij/o'l ) 1=1 5
&j = eilzj) = PMiemifor s, (40)
and ., ,C(a, p) is defined in (7).
Once f(x1,x9,...,xs) has been derived, to obtain fiin.s:ar(x), we start
with (38) by recalling that
oo o
frinzs:n (Ts) = / e f(ordered) (1,2, ..., w5)dwy ... das

Ts xTo
T 77
:(8_1)'/.../f(Ordered)(xhx%“_’xs)dxl.“dxs_l
Ts Ts

(o) o0
:s/-"/f(xl,xg,...,xs)dxl...dxs_l
Ts Ts
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and, consequently,

fmlnsM ZC « N Uas )eus( )$ oM

M
/ /1—‘[1104,c xg)ey, (vp)x,y Vdry .. desy
s—1

ZC (o, p)va, (x)ey, (z)z" MH/U% e )y Mdy . (42)

By using (40) in (42), the integral in (42) can be written as

o0

/ Ve () E (y)dy = Gk <ak +n—a, x) L)

Ok

xT

where I'(+, ) is the upper incomplete Gamma function, 6 and ay are defined
in (8) and (9), respectively.
By substituting (43) in (42) we get

fmmsM _ E :C a /1’ océ—lxocs—l—&-n—ase—cc/as

[H ~Qp+n— % <ak+n—ak,?>] . (44)
O
The product in (44) can be further manipulated by recalling that

I'(s,z)=(s—1)! iﬂli
k=0

so that the product becomes

s—1 s—lagtn—agp—1 N
~a n—a —x/6 (:B/Uk)tk
<||akk+ (o +n—ap —1)e ’C) |:k|| E - =
=1

k=1 tp=0

s—1 ar+n—a;—1 ag_1+tn—ag_1—1s5— x/o’
— <H &ngr"*a"'(akJrn*ak _ 1)| e—z/o'k) Z Z H k

k=1 t1=0 te_1=0
aj+n—ag—1 as_1tn—ag_1—-1 s—1 japtn—ag—tg |
—eeSini S ) oTiciu T 2 (g +n—ar—1)!
£1=0 to_1=0 k=1 ti!

(45)
and we finally obtain (6).
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