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The production of light nuclei in relativistic heavy-ion collisions is well-
described by both the thermal model, where light nuclei are in equilibrium
with all other hadron species present in a fireball, and by the coalescence
model, where light nuclei are formed due to final-state interactions after
the fireball decays. A method to falsify one of the models is proposed. We
suggest to measure a hadron–deuteron correlation function which carries
information about the source of the deuterons and allows one to determine
whether a deuteron is directly emitted from the fireball or if it is formed
afterwards. The K−–D and p–D correlation functions are computed to
illustrate the statement.
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1. Introduction

Light nuclei are expected to be formed at the latest stage of relativistic
heavy-ion collisions when the fireball decays into hadrons. Nucleons which
are close to each other in phase-space still interact and can fuse into nuclei.
This is the picture behind the coalescence model [1, 2].

The model works well in a broad range of collision energies and, in par-
ticular, properly describes [3–7] production of light (anti-)nuclei at the LHC
[8–10]. However, the yields of light nuclei and hypernuclei [8–11] are also
accurately described by the thermodynamical model [12–14] with a univer-
sal temperature of 156 MeV and vanishing baryon chemical potential for all
hadron species observed at midrapidity at the LHC.

This result, which has attracted a lot of interest [15–24], is truly sur-
prising as it is hard to imagine that nuclei can exist in the hot and dense
environment of the fireball. The inter-particle spacing is smaller than the
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typical size of light nuclei and the temperature is much bigger than nu-
clear binding energies. Light nuclei in a fireball are thus like ‘snowballs in
hell’ [25].

It should be stressed that the thermal and coalescence models were found
long ago to predict similar yields of light nuclei [26], and recently the result
has been verified [5, 16] in the more advanced coalescence model [27–30]
which properly takes into account the quantum-mechanical character of the
process.

One asks whether the final-state formation of light nuclei can be quan-
titatively distinguished from creation in a fireball, that is, whether one of
the two models can be falsified. It was suggested in [16] and worked out in
[17] to compare the yield of 4He to that of exotic nuclide 4Li which decays
into 3He + p with the width of 6 MeV. The alpha particle is well-bound and
compact, while 4Li is weakly bound and loose. Since the masses are simi-
lar, the yield of 4Li is according to the thermal model about 5 times bigger
than that of 4He because of 5 spin states of 4Li, which has spin 2, and only
one of 4He. The coalescence model predicts not only a significantly smaller
yield of 4Li but the yield changes with collision centrality [17]. The yield
of 4Li can be experimentally obtained through a measurement of the 3He–p
correlation function [31, 32]. The function is discussed in detail in the very
recent study [33].

Here, we present another idea how to distinguish the coalescence model
from the thermal one. We suggest to measure a hadron–deuteron correla-
tion function which carries information about the source of the deuterons
and allows one to determine whether a deuteron is directly emitted from the
fireball or if it is formed afterwards. We derive the hadron–deuteron corre-
lation function treating a deuteron in Sec. 3 as in the thermal model, that
is as an elementary particle emitted from a source together with all other
hadrons. In Sec. 4, a deuteron is treated as a neutron–proton bound state
formed at the same time that the hadron–deuteron correlation is generated.

The discussion of correlation functions is preceded in Sec. 2 with a pre-
sentation of the coalescence and thermal models we repeatedly refer to. The
paper is closed with a discussion of our results and conclusions.

2. Coalescence and thermal models

To set the stage for further discussion, we first present the coalescence
and thermal models. Since we are mostly interested in deuterons, we limit
our consideration to the case of the simplest nuclide. We do not consider
deuterons which occur as fragments of colliding nuclei but those genuinely
produced at midrapidity in collider experiments at the RHIC or LHC.
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2.1. Coalescence model

According to the coalescence model [1, 2], production of deuterons is a
two-step process: production of nucleons and formation of deuterons. Since
the characteristic energy of the first step, which is of the order of nucleon
mass, is much bigger than that of the second step, which is of the order of
binding energy, the probability to produce a deuteron with momentum p
is factorized into the probability to (independently) produce a neutron and
proton with momenta p/2, and the formation rate A which corresponds to
a probability that nucleons fuse into the deuteron. So, one writes

dPD
d3p

= A dPn
d3(p/2)

dPp
d3(p/2)

, (1)

where dPi
d3p

with i = D,n, p is the probability density to observe a deuteron,
neutron or proton with momentum p.

One usually assumes, as suggested long ago in [2], that nucleons form a
deuteron if they occur in a momentum sphere of a radius p0. Then,

A =
3

4

4πp30
3

, (2)

and the parameter p0, which is roughly a deuteron internal momentum, is
a free parameter of the model to be inferred from experimental data. The
nucleons are assumed to be unpolarized and the spin factor 3/4 takes into
account that there are 3 spin states of a spin-one deuteron and 4 spin states
of a nucleon pair.

It is also often required that nucleons, which fuse into a deuteron, must
be close to each other not only in the momentum space but in the coordinate
space as well, see e.g. [34]. Formula (2) is then modified.

In the relativistically covariant coalescence model, one uses the Lorentz
invariant nucleon momentum distributions in the relation analogous to (1)
and modifies the coalescence rate formula (2) accordingly, see e.g. [27, 29].
To avoid the complication, we consider the deuteron formation in the center-
of-mass frame of the neutron–proton pair, where the process can be treated
non-relativistically even so momenta of nucleons are relativistic in both the
rest frame of the source and in the laboratory frame. The point is that
the formation rate is non-negligible only for small relative momenta of the
nucleons.

It should be stressed that the phenomenological approaches to produc-
tion of light nuclei, which are based on formulas (1) and (2) or their vari-
ations, do not take into account a quantum-mechanical character of the
process of a bound state formation. However, it was discovered by Sato and
Yazaki [27] and discussed later on by several authors, see e.g. [28–30], that
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the formation of a nucleus driven by final-state interactions is fully analo-
gous to the process responsible for short-range correlations observed among
final-state hadrons. Therefore, the quantum-mechanical formula which gives
the deuteron formation rate is almost identical to that of neutron–proton
correlation function [35]. Thus, it reads [27]

A =
3

4
(2π)3

∫
d3rn d3rpD(rp)D(rn)|ψD(rn, rp)|2 , (3)

where the source function D(r) is the normalized probability distribution of
emission points and ψD(rn, rp) is the deuteron wave function.

Formula (3) is written as for the instantaneous emission of the neutron
and proton but the time duration of the emission process can be easily
incorporated [36]. A possible momentum dependence of the source function
and other aspects of formula (3) are discussed in more detail in Sec. 3 in the
context of two-particle correlation function.

We close the presentation of the coalescence model by saying that when-
ever we refer to the model, we keep in mind expression (1) with the formation
rate given by Eq. (3).

2.2. Thermal model

The fundamental postulate of the thermal model is the equipartition of
fireball’s energy among all degrees of freedom of the system. Therefore, light
nuclei are assumed to be populated as all other hadrons and when the fireball
decays, the nuclei show up in a collision final state. Their yield reflects a
thermodynamic state of the fireball at the moment of chemical freeze-out
when inelastic collisions of fireball’s constituents become no longer operative.

A microscopic mechanism responsible for production of light nuclei in the
fireball is unspecified and may be even unknown. Since the temperature is
much bigger than the nuclear binding energies and the inter-particle spacing
is smaller than the typical size of light nuclei, it is hard to imagine that the
nuclei can actually exist in the fireball. Therefore, proponents of the thermal
model argue [14] that the final-state nuclei originate from compact colorless
objects of quarks and gluons with quantum numbers of light nuclei. These
compact objects are suggested to be present in the fireball together with all
other hadrons.

2.3. Do the models differ?

One wonders whether the production mechanisms of light nuclei behind
the coalescence and thermal models are physically different from each other.
The coalescence is a microscopic picture, while the direct thermal production
is a macroscopic description.
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One can argue that instead of the two models, we should rather consider,
as in the study [19], hadron–hadron and hadron–deuteron interactions which
are responsible for a deuteron production and disintegration in a fireball
before its decay. Such an approach is physically sound if a particle source
and an average inter-hadron spacing in the source are both much bigger
than a deuteron size. Additionally, the lifetime of the source should be
much longer than the characteristic time of deuteron formation.

However, the assumptions are rather far from reality of relativistic heavy-
ion collisions. The deuteron radius is about 2 fm and the time of deuteron
formation, which is of the order of the inverse binding energy, is roughly
100 fm/c. The size of the particle source is of the same order as the deuteron
radius, the inter-hadron spacing in the source is smaller than a deuteron, and
the lifetime of the source is significantly shorter than the deuteron formation
time.

The coalescence mechanisms of deuteron formation and direct thermal
production are physically different in relativistic heavy-ion collisions because
the particle source is small and dense when compared to a deuteron and the
source lifetime is shorter than the deuteron formation time. According to the
coalescence model, light nuclei are formed long after nucleons are emitted
from the source. The thermal model assumes that light nuclei are emitted
directly from the source.

3. Hadron–proton correlation function

We start a discussion of correlation functions with the hadron–proton
correlation function. The hadron will be identified with either a negative
kaon or a proton. The h–p correlation function R is defined as

dPhp
d3phd3pp

= R
(
ph,pp

) dPh
d3ph

dPp
d3pp

, (4)

where dPh
d3ph

, dPp

d3pp
and dPhp

d3phd3pp
are probability densities to observe h, p and

h–p pairs with momenta ph, pp and (ph,pp). If the correlation results from
quantum statistics and/or final-state interactions, the correlation function
is known to be [36, 37]

R(ph,pp) =

∫
d3rh d3rpD(rh)D(rp)|ψ(rh, rp)|2 , (5)

where the source function D(r) is, as previously, the probability distribution
of emission points and ψ(rh, rp) is the wave function of the hadron and
proton in a scattering state.
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Before we discuss the femtoscopic formula (5) in more detail, let us elim-
inate the center-of-mass motion of the h–p pair in a non-relativistic manner.
We introduce the center-of-mass variables

R ≡ mhrh +mprp
M

, rhp ≡ rh − rp , (6)

where M ≡ mh +mp, and we write down the wave function as ψq(rh, rp) =
eiRPφ(rhp) with P and q being the momentum of the center of mass and
the momentum in the center-of-mass frame of the hadron–proton system.
The correlation function (5) is then found to be

R(q) =

∫
d3rhpDr(rhp)|φq(rhp)|2 , (7)

where the ‘relative’ source is

Dr(rhp) ≡
∫

d3RD
(
R +

mp

M
rhp

)
D
(
R− mh

M
rhp

)
. (8)

Let us discuss formula (7) which will be used to compute correlation
functions.

3.1. Reference frame

We consider the h–p correlations, as the deuteron formation, in the
center-of-mass frame of the pair and we treat formula (5), similarly as (3),
as non-relativistic even though the hadron and proton momenta are typi-
cally relativistic in both the rest frame of the source and in the laboratory
frame. A relativistic description of strongly interacting particles faces dif-
ficulties particularly severe when bound states like deuterons are involved.
The correlation function, however, significantly differs from unity only for
small relative momenta. Therefore, the relative motion can be treated as
non-relativistic and the corresponding wave function is a solution of the
Schrödinger equation. The source function, which is usually defined in the
source rest frame, needs to be transformed to the center-of-mass frame of
the pair as discussed in great detail in [38].

3.2. Source function

We assume that the source function is time-independent and, conse-
quently, formula (5) is written as for the instantaneous emission of the two
particles. The time duration of the emission process can be easily taken into
account [36] but if one uses an isotropic Gaussian source, as we do for the
reasons explained below, the time duration τ simply enlarges the effective
radius of the source from Rs to

√
R2

s + v2τ2, where v is the velocity of the
particle pair relative to the source.
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In general, a single-particle source function is time-dependent and aniso-
tropic [43], and to disentangle temporal and different spatial sizes of the
source, one needs a precise measurement of correlation functions. This is
easily achieved in the case of pions or kaons, but is difficult for particles
which are not so abundantly produced. In this case, one uses, see e.g. [42],
the isotropic Gaussian source

D(r) =

(
1

2πR2
s

)3/2

e
− r2

2R2
s , (9)

with
√

3Rs being the root-mean-square effective radius of the source.
As already mentioned, the source function (9) should be transformed

to the rest frame of the h–p pair. This transformation makes the source
anisotropic because the effective radius along the pair velocity is elongated,
not contracted, as one can naively expect, see [38] for details. However, if
the correlation function is averaged over the direction of q, as done when the
statistics of correlated pairs is not high enough, we deal with the isotropic
source with Rs being the effective radius which combines the temporal and
spatial sizes of the source.

The Gaussian parametrization of the source function (9) is not only
convenient for analytical calculations but there is an empirical argument
in favor of this choice. The imaging technique [44] allows one to infer the
source function from a two-particle correlation function provided the inter-
particle interaction is known. The technique applied to experimental data
from relativistic heavy-ion collisions showed that non-Gaussian contributions
to the source functions are rather small and do not much influence the
correlation functions [45].

With the Gaussian single-particle source function (9), the relative source
(8) equals

Dr(r) =

(
1

4πR2
s

)3/2

e
− r2

4R2
s , (10)

which is independent of particle masses even so the variable R given by
Eq. (6) depends on mh and mp.

The single-particle source function (9) is assumed to be independent of
particle’s momentum and particle’s mass. This is not quite right as, in
general, a source radius depends on both particle’s mass m and momen-
tum. More precisely, it scales with the particle’s transverse mass m⊥ ≡√
m2 + p2⊥. For the case of one-dimensional analysis relevant for our study,

the effect is well-seen in Fig. 8 of Ref. [40], where experimental data on
Pb–Pb collisions at the LHC, which are of particular interest for us, are
presented. The dependence of the source radius on m⊥ is evident when we
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deal with pions andm⊥ . 0.9 GeV. However, the dependence becomes much
weaker for protons when m⊥ & 1.0 GeV. The figure shows that the radius of
proton source tends to decrease in central Pb–Pb collisions when m⊥ grows
from 1.1 GeV to 1.7 GeV but the decrease is not seen for the collision cen-
trality 10–30% nor 30–50%. The behavior is well-understood as the decrease
of the source radius with growing m⊥ is caused by the collective radial flow
which is stronger in central than in peripheral collisions.

In the case of proton–deuteron correlations, which are discussed Sec. 4.2
and play a key role in our proposal, the interval of m⊥ from 1 to 2 GeV is
of crucial importance. The experimental data from non-central collisions,
which are presented in Fig. 8 of Ref. [40], show no dependence of the source
radius on m⊥ in the interval. Since we are interested in rather peripheral
collisions, where the source radii are sufficiently small and the effect we
suggest to measure is significant, it is legitimate to assume that the source
radius is independent of particle’s transverse mass.

The assumption can be relaxed but the relative source function (8) be-
comes rather complicated. We intend to quantitatively study the effect of
transverse-mass dependence of source radii in future but for now we keep
the source function (9) independent of the mass. Therefore, it is the same
for protons, kaons and deuterons. In the case of kaons, the assumption is
not fulfilled but, as we show in Sec. 4.1, the kaons are anyway not useful for
our proposal.

3.3. Wave function and Coulomb interaction

If the Coulomb interaction is absent but there is a short-range strong
interaction, the wave function can be chosen, as proposed in [37], in the
asymptotic scattering form

φq(r) = eiqz + f(q)
eiqr

r
, (11)

where q ≡ |q| and f(q) is the s-wave (isotropic) scattering amplitude.
With the source function (10) and the wave function (11), the correlation

function (7) equals

R(q) = 1 +
1

2R2
s

|f(q)|2 − 1− e−4R
2
s q

2

2R2
s q

=f(q)

+
1

2π1/2R3
s q
<f(q)

∞∫
0

dr e
− r2

4R2
s sin(2qr) . (12)
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The remaining integral needs to be taken numerically. Formula (12) has
been repeatedly used to compute correlation functions of various two-particle
systems.

When one deals with charged particles, formula (11) needs to be modified
because the long-range electrostatic interaction influences both the incoming
and outgoing waves. However, the Coulomb effect can be approximately
taken into account [46] by multiplying the correlation function by the Gamow
factor that equals

G(q) = ± 2π

aBq

1

exp
(
± 2π
aBq

)
− 1

, (13)

where the sign + (−) is for the repelling (attracting) particles and aB is the
Bohr radius of the pair.

If we treat a deuteron as an elementary particle, formula (12) with the
Gamow factor (13) can be used to compute the h–D correlation function.

3.4. Reliability of femtoscopic formula

The femtoscopic formula (5), which is critically discussed in the review
article [39], is simple but it is well-justified in a midrapidity domain of heavy-
ion collisions at the RHIC or LHC. First of all, a momentum scale of hadron
production is much bigger than a characteristic momentum scale of inter-
hadron femtoscopic correlation. Consequently, the cross section to produce
a pair of correlated particles can be factorized into the cross section to pro-
duce a pair of mutually-independent particles and the correlation function
of the two particles determined by quantum statistics and/or final-state in-
teractions of particles of interest.

The second key circumstance is that the hadronic matter of the fireball
at freeze-out is in a thermodynamic equilibrium as it follows from an evident
success of the thermal and hydrodynamic models in describing experimental
data, see e.g. [14]. Therefore, a density matrix of the system is essentially
diagonal or, equivalently, the random phase approximation is applicable.
Consequently, the system can be described in terms of probabilities not
amplitudes.

Further on, the thermal model shows that the hadron gas in thermal
equilibrium can be treated as a mixture of classical ideal gases of hadrons of
different species. Therefore, inter-hadron correlations in a fireball are rather
weak and the many-body density matrix can be factorized into a product of
single-particle matrices. For this reason, the single-particle source functions
enter the femtoscopic formula (5).
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Although the femtoscopic formula is well-justified, as explained above, it
is still phenomenological and it is difficult to quantify its accuracy. However,
there were performed some consistency tests which show that the formula
is indeed accurate. In particular, the source parameters obtained for pairs
of identical charged kaons and of neutral kaons agree very well with each
other even so the inter-particle interactions are rather different [40]. It was
also shown [41] that the parameters of antiproton–antiproton scattering ex-
tracted for the p̄–p̄ correlation function agree with the well-known parame-
ters of the proton–proton scattering. This must be the case as long as the
matter–antimatter symmetry holds.

4. Hadron–deuteron correlation function

We derive here the h–D correlation function treating the deuteron as a
neutron–proton bound state created due to final-state interactions similarly
to the h–D correlation. Then, the correlation function is defined as

dPhD
d3ph d3pD

= R(ph,pD)A dPh
d3ph

dPn
d3pn

dPp
d3pp

, (14)

where pn = pp = pD/2. The deuteron formation rate A, which is defined
by Eq. (1), is given by formula (3).

The correlation function multiplied by the deuteron formation rate equals

R(ph,pD)A =
3

4
(2π)3

∫
d3rh d3rn d3rpD(rn)D(rp)

×D(rh)|ψhnp(rh, rn, rp)|2 , (15)

where ψhnp(rh, rn, rp) is the wave function of a h–D system. The spin factor
3/4 has the same origin as that in Eq. (3).

Using the center-of-mass variables analogous to (6), the deuteron forma-
tion rate (3) is found as

A =
3

4
(2π)3

∫
d3rnpDr(rnp)|ϕD(rnp)|2 , (16)

where Dr(rnp) is the ‘relative’ source (8) and ϕD(rnp) is the deuteron wave
function of relative motion.

To compute the correlation function (15), we introduce the Jacobi vari-
ables of a three-particle system

R ≡ mnrn+mprp+mhrh

M ,

rnp ≡ rn − rp ,

rhD ≡ rh − mnrn+mprp

mD
,

(17)
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with M ≡ mn + mp + mh, mD ≡ mn + mp, and we write down the wave
function as

ψhnp (rh, rn, rp) = eiPR ψq
hD(rhD)ϕD(rnp) . (18)

Using the Gaussian source (9), the integral over the center-of-mass po-
sition R in Eq. (15) gives∫

d3RD(rn)D(rp)D(rh) = Dr(rnp)D3r(rhD) , (19)

where Dr(r) is again given by Eq. (10) and the normalized function D3r(r)
equals

D3r(r) =

(
1

3πR2
s

)3/2

e
− r2

3R2
s . (20)

As a result of the integration overR in the right-hand side of Eq. (15), the
formation rate (16) factors out. Consequently, the rate, which is also present
in the left-hand side of Eq. (15), drops out and the correlation function equals

R(q) =

∫
d3rhDD3r(rhD) |ψq

hD(rhD)|2 . (21)

Formula (21) has the same form as (7) but the source function differs.
When deuterons are directly emitted from the fireball as ‘elementary’ parti-
cles, the radius of deuteron source is the same as the radius of proton source.
When deuterons are formed only after emission of nucleons from the fireball,
the source becomes bigger because the deuteron formation is a process of
spatial extent. More quantitatively, the source radius of deuterons treated as
bound states is bigger by the factor

√
4/3 ≈ 1.15 than that of ‘elementary’

deuterons.

4.1. K−–D correlation function

To see how sensitive the correlation functions (7) and (21) are to the
source radius, we first consider the K−–D system which is under study by
the ALICE Collaboration [47]. The s-wave amplitude is taken as

f(q) = − a

1 + iqa
, (22)

where the scattering length a is (1.46–1.08i) fm [48]. The length is complex
because there are open inelastic channels of K−–D scattering even at q = 0.
The K−–D correlation function, which is computed using formula (7) to-
gether with the Gamow factor (13), is shown in Fig. 1 for three values of Rs

such that Rs = 2.00 fm =
√

4
3 × 1.73 fm = 4

3 × 1.50 fm.
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Fig. 1. K−–D correlation function.

The scenario of deuterons directly emitted from the fireball and that
of deuterons formed due to final-state interactions correspond to the two
neighboring curves in Fig. 1. The curves are close to each other and thus
it would be very difficult to distinguish the two scenarios because of both
experimental and theoretical uncertainties. The K−–D system is not well-
suited for the purpose because it is not very sensitive toRs and the sensitivity
even drops when Rs grows.

The h–D correlation function is shaped by Coulomb and strong interac-
tions. The effect of Coulomb interaction is almost independent of the source
radius, as long as the radius is much smaller than the Bohr radius. If the
Gamow factor is applied to take into account the Coulomb interaction, the
effect is fully independent of Rs. Since aB � Rs in high-energy nucleus–
nucleus collisions, the correlation function dominated by the Coulomb inter-
action only weakly depends on Rs. The h–D correlation function depends on
Rs mostly due to strong interactions. Therefore, one should choose a system
where the strong interaction is truly strong to get a correlation function sen-
sitive to the source radius. The best choice seems to be a proton–deuteron
pair.

4.2. p–D correlation function

In the case of p–D system, the Coulomb effect is of opposite sign to
that in K−–D and the effect of strong interactions is stronger. Since the
p–D pair can have spin 1/2 or 3/2, there are two interaction channels. The
s-wave scattering lengths of p–D scattering in the spin 1/2 and 3/2 channels
are, respectively, 4.0 fm and 11.0 fm [49]. Since nucleons are assumed to be



Hadron–Deuteron Correlations and Production of Light Nuclei . . . 1751

unpolarized, the p–D correlation function is computed as the average

R(q) = 1
3 R

1/2(q) + 2
3 R

3/2(q) , (23)

where the weights factors 1/3 and 2/3 reflect the numbers of spin states in
the two channels.

The average p–D correlation function is shown in Fig. 2 for three values
of the source radius. As previously, the values are such that Rs = 2.00 fm =√

4
3 × 1.73 fm = 4

3 × 1.50 fm. The function strongly depends on Rs. There-
fore, it should be possible to infer the source radius from experimentally
measured p–D function and compare it to Rs obtained from the p–p corre-
lation function. If deuterons are directly emitted from the fireball, the radii
of proton and deuteron sources are the same. If deuterons are formed due to
final-state interactions, the radius of deuteron source is bigger by the factor√

4/3.
The dependence of the p–D correlation function on Rs becomes weaker as

Rs grows. Consequently, the analysis of higher pT particles from non-central
events, when the sources are relatively small, is preferred.

Fig. 2. p–D correlation function.

5. Discussion and conclusions

Our proposal to distinguish the scenario of deuterons directly emitted
from the fireball from that of deuterons formed due to final-state interac-
tions does not relay on an absolute value of the source size inferred from
the p–D correlation function but on a comparison of source size parameters
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inferred from the p–D and p–p correlation functions. Therefore, systematic
uncertainties of the femtoscopic method, both experimental and theoretical,
are not of crucial importance here, as they are expected to influence in a sim-
ilar way the source parameters inferred from the p–D and p–p correlation
functions.

We note that the size of the proton source in pp collisions at the LHC
was measured with an experimental accuracy of 7% where the statistical
error is only 2% [50]. Our proposal requires an accuracy better than 15%
which, however, does not include systematic experimental and theoretical
uncertainties. Therefore, the required accuracy of the measurement seems
achievable.

We have shown that a hadron–deuteron correlation function carries in-
formation about the source of the deuterons and allows one to determine
whether a deuteron is directly emitted from the fireball or if it is formed af-
terwards. The K−–D correlation function is not well-suited for our purpose
because it weakly depends on the source radius. The p–D correlation func-
tion is a better choice as the effect of strong interactions in the p–D system
is more pronounced and the correlation function is more sensitive to Rs.

We recommend a simultaneous measurement of p–p and p–D correlation
functions. The former, which has been repeatedly measured, can be used to
obtain the radius of the nucleon source and the latter would determine a size
of the source of deuterons. The measurement is difficult but possible [47].
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