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The statistical theory of hot rotating nuclei (STHRN) method was im-
plied to investigate the effect of shape transition in thermodynamical pa-
rameters for the isotopes of tellurium for (mass number) A = 114, 120,
122, 124 and 126. The single particle energy levels and intrinsic spin were
obtained by diagonalizing the triaxial Nilsson Hamiltonian for deforma-
tion parameter ε = 0.0 to 0.6 and shape parameter γ = −120◦ to −180◦.
The calculated statistical parameters such as rotational frequency, spin cut-
off parameter, separation energy and moment of inertia indicate a sudden
change around the angular momentum M = 12 ~ at which the even–even
isotopes of tellurium are found to change their shape from spherical to non-
collective oblate. The results obtained show reasonable agreement with the
experimental data and also with other theoretical models such as Inter-
acting Boson Model-1 (IBM-1). The rotational frequency and moment of
inertia values calculated from the STHRN method give reasonable agree-
ment with the experimental data compared to IBM-1 model.
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1. Introduction

The structure of tellurium isotopes has drawn attention in both the-
oretical [1, 2] and experimental aspects [3–8] owing to its atomic number
Z = 52, with two protons outside the major shell (Z = 50). Several ex-
perimental techniques were implied to explore the structure of Te isotopes.
Generally, doubly even Te isotopes in the mass region of 114 ≤ A ≤ 122 ex-
hibit a vibrational-like structure [9]. However, Saxena et al. [1] found from
the reduced transition probability B(E2) values that tellurium isotopes with
mass number A = 120, 122 and 124 exhibit rotational behavior in contrary
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to a vibrational-like structure. Meanwhile, Fotiades et al. [2] extended the
yrast state of even–even isotopes of 120−124Te for a high spin up to I = 16+.
The results predict that the high-spin state up to 14+ exhibits the character-
istics of favored non-collective oblate structure, whereas at the highest spin
i.e., I = 16+ state, it behaves as a weakly deformed collective structure.
Similar phenomenon was later observed by Astier et al. [10] for 124Te and
126Te nucleus. Moreover, the discussion by Somnath Nag et al. [3] on the
shape change of 120Te with respect to spin explained that this observation
may be due to opposite shape driving tendencies of protons and neutrons at
high orbitals. They concluded that the shape of nucleus changes to oblate
inspite of the continuous alignment of neutrons and protons and it was ob-
served as ε ≈ 0.15 for A = 120 mass region.

Many theoretical approaches [4–8] have been employed to study the
structure of Te isotopes. The structure of 124−127Te isotopes was also dis-
cussed via the shell model theory by incorporating SN100PN interaction [4].
This method was meant to analyze the structure of nucleus from its yrast
states. The statistical theory of hot rotating nuclei (STHRN) method [11–
13] was utilized in perceiving the shape of Te isotopes near the proton drip
line by Mamta Aggarwal [8]. The discussions reveal that proton-rich Te nu-
clei are less deformed with prolate collective or nearly prolate shapes, while
those near the stability valley are well-deformed with oblate non-collective
shape. Based on this prediction, the shape transition phenomenon would be
observed more prominently in Te isotopes near the stability valley.

The rotational behavior of even–even isotopes of Te was also reported by
implying the Interacting Boson Model (IBM-1 and IBM-2) [6]. The obtained
energy states from IBM-2 theory appear to be in good agreement with the
experimental data. However, the moment of inertia calculated from IBM-1
model by Hossain et al. [7] for 120,122,124Te nucleus shows a linear increase
with angular momentum M , whereas the experimental data shows some
sudden steep increase in the moment of inertia value at a certain M . Thus,
an alternate theory is indeed necessary to overcome the linear increase of
moment of inertia as a function of angular momentum in Te isotopes.

The statistical theory of hot rotating nuclei (STHRN) [14–16] is used
to predict the shape transition behavior from thermodynamical properties.
In STHRN method, the thermodynamical system of fermions is nothing
but the compound nuclei formed through heavy-ion fusion reaction at high-
excitation energy [17–20]. Statistical descriptions of finite nuclear systems
are generally based on grand canonical ensemble averages with a condition
that it conserves energy, particle number, and total angular momentum M
of the system [21–24], and is described in the formalism section. More-
over, the statistical theory incorporates different degrees of freedom such
as deformation parameter, angular momentum and temperature to investi-
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gate thermodynamical parameters which describe the structural properties
of nuclei [21]. The following are some of the parameters that can be studied
on the basis of statistical theory: nuclear level density parameter, entropy,
rotational energy, excitation energy, moment of inertia, level density and
single nucleon separation energy. Moreover, the observation of shape tran-
sition with respect to angular momentum and temperature in the STHRN
method is a remarkable outcome, adopted by Moretto [22]. In the present
work, temperature-dependent rotational properties for Te isotopes such as
114Te, 120Te, 122Te, 124Te and 126Te were studied by the STHRN method.
This method was able to reproduce moment of inertia at high-spin states
which shows a good agreement with the experimental data for the even–even
isotopes of tellurium.

2. Formalism

2.1. Statistical theory of hot rotating nuclei

The grand canonical partition function for the hot rotating nuclei is given
by [21, 22]

lnQ =
∑
i

ln
[
1 + exp

(
αN + λmN

i − βεNi
)]

+
∑
i

ln
[
1 + exp

(
αZ + λmZ

i − βεZi
)]
, (1)

where the Lagrangian multipliers, αN , αZ and λ conserve the number of
neutrons, protons and total angular momentum of the system for a given
temperature T = 1/β. The average number of particles, the average total
energy, and the average total angular momentum are projected out from the
partition function by the following equations:

〈N〉 =
∂ lnQ

∂αN
=
∑
i

[
1 + exp

(
αN + λmN

i − βεNi
)]−1

, (2)

〈Z〉 =
∂ lnQ

∂αZ
=
∑
i

[
1 + exp

(
αZ + λmZ

i − βεZi
)]−1

, (3)

〈E〉 = −∂ lnQ
∂β

=
∑
i

εNi n
N
i +

∑
i

εZi n
Z
i , (4)

〈M〉 =
∂ lnQ

∂λ
=
∑
i

εNi m
N
i +

∑
i

εZi m
Z
i , (5)

where εZi and εNi are the single particle energy levels of protons and neutrons
with spin projection mZ

i and mN
i , and nNi and nZi are occupational prob-

abilities of the ith shell corresponding to neutron and proton, respectively.
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Equations (2), (3) and (5) are solved to determine the Lagrangian multipli-
ers for a given temperature T . The Lagrangian multipliers αZ , αN and λ
conserve the number of protons, neutrons and total angular momentum of
the system and their definitions given in Refs. [22–24] are

αN = βEN
F ; αZ = βEZ

F ; λ = βη ,

where EZ
F and EN

F are the Fermi energy of proton and neutron system and
the total angular momentum is generated from the Lagrangian multiplier η
corresponding to the single particle spins mi [17] at a given temperature
T = 1/β. The entropy is given by

S(M,T ) = −
∑
i

[
nNi lnnNi +

(
1− nNi

)
ln
(
nNi
)]

−
∑
i

[
nZi lnnZi +

(
1− nZi

)
ln
(
nZi
)]
. (6)

The excitation energy E∗(M,T ) is obtained using the following equation:

E∗(M,T ) = E(M,T )− E(0, 0) , (7)

where E(0, 0) is the ground-state energy of the nucleus and is given by

E(0, 0) =
N∑
i=1

εNi +
Z∑
i=1

εZi . (8)

The free energy of the system is given as

F (M,T ) = E(M,T )− TS(M,T ) . (9)

The nucleon separation energy as a function of angular momentum M and
temperature T is calculated using the following expressions:

Sn(M,T ) = TN

[∑
i=1

(
1− nNi

)
nNi

]−1
, (10)

Sz(M,T ) = TZ

[∑
i=1

(
1− nZi

)
nZi

]−1
. (11)

The above formulae for the nucleon separation energy have been used by
us in the framework of the statistical theory and are reported in Ref. [25].
It is obvious from Eqs. (9) and (10) that nucleon separation energy depends
on the single particle level density at the Fermi energy. In this method,
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only Z-component M of the total angular momentum I is considered. As
mentioned by Moretto [22–24], the laboratory fixed z-axis can be made
to coincide with the body-fixed z′-axis, and it is possible to identify and
substitute M for the total angular momentum I within the limit of quan-
tum mechanics, the Z-component M of the total angular momentum is
M →

√
I(I + 1) = I + 1

2 , where I is the total angular momentum of the
system.

Rotational energy Erot and rotational frequency ωrot are expressed as

Erot = E(M,T )− E(0, T ) , (12)

ωrot =
∂Erot

∂M
. (13)

Kinematical moment of inertia j is calculated from rotational energy as

j = ~2M
(
∂Erot

∂M

)−1
, (14)

and spin cut-off parameter [26] is given as

σ2(M,T ) =
∑
i

[
nNi
(
1− nNi

) (
mN

i

)2]
+
∑
i

[
nZi
(
1− nZi

) (
mZ

i

)2]
. (15)

The behavior of rotational states of the highly-excited compound nuclear
system formed in fusion reactions can be studied from the rotational energy
and kinematic moment of inertia. The statistical theory with single particle
level structure as the input can be used to extract information about the
complex phenomena such as phase transitions and shape transitions. The
energy levels and the intrinsic spin for proton and neutron systems were gen-
erated by diagonalising the triaxial Nilsson Hamiltonian for the deformation
parameter (ε) 0.0 to 0.6 insteps of 0.1 and shape parameter (γ) from −120◦
to −180◦ insteps of −20◦.

2.2. Triaxially deformed Nilsson Hamiltonian

The triaxial Nilsson Hamiltonian [27, 28] for a single particle in the non-
rotating system, is given by

Ho =
P 2

2m
+

1

2
m
{
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
}
+ C ~l · ~s+D

(
~l 2 − 2

〈
~l 2
〉)

, (16)

where C = 2κ~ωo and D = κµ~ωo, the values of κ and µ are taken from [27]
and ωo is the harmonic oscillator parameter that involves the principle of
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volume conservation for nuclei that are deformed from spherical shapes.
The symbol ~l represents the orbital angular momentum and ~s represents the
intrinsic nuclear spin. The three oscillator frequencies ωx, ωy and ωz are
expressed as

ωx = ωo

[
1− 2

3
ε cos

(
γ − 2π

3

)]
, (17)

ωy = ωo

[
1− 2

3
ε cos

(
γ +

2π

3

)]
, (18)

ωz = ωo

[
1− 2

3
ε cos(γ)

]
, (19)

where ε is the deformation parameter and γ is the Euler angle which is
together called as shape parameters. Under volume conservation condition,

ωx ωy ωz = ω̇o
3 = constant . (20)

The value of undeformed oscillator spacing is given as

~ωo =
41

(A1/3 + 0.77)
MeV . (21)

The microscopic single particle energies εi and their corresponding spin
projection mi are generated by diagonalizing the triaxial Nilsson Hamilto-
nian for principal quantum number N up to 11 as a function of ε and γ. The
deformation parameter ε range from 0.0 to 0.6 in steps of 0.1 for the shape
parameter γ = −120◦ (collective prolate) to −180◦ (non-collective oblate)
in steps of −20◦.

3. Results and discussion

The present work involves the calculations of excitation energy, neutron
and proton separation energies, spin cut-off parameter, kinematic moment
of inertia and rotational frequency based on the STHRN method for the
tellurium isotopes for A = 114, 120, 122, 124 and 126. The calculations are
done for a temperature range of 0.5 MeV to 3.0 MeV in steps of 0.25 MeV
and for an angular momentum range of 0 ~ to 25 ~ in steps of 1 ~. Cal-
culations have been carried out for the energy eigenvalues obtained from
triaxial Nilsson Hamiltonian for the deformation parameters ε = 0.0 to 0.6
in steps of 0.1 and for the shape parameters γ = −120◦ to −180◦ in steps of
−20◦. Though the investigation of all the parameters have been extended to
the above-mentioned isotopes of Te, discussions on separation energies, ro-
tational frequency, kinematic moment of inertia and spin cut-off parameter
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with respect to angular momentum and temperature has been extended to
certain isotopes based on their availability of experimental data. The other
markable results of the Te isotopes have been tabulated. The equilibrium
shape of the system is attained for minimized free energy with respect to
the deformation parameters ε, γ at finite angular momentum M and tem-
perature T . Thus, the energy level diagram for the nucleus 124Te and 126Te
has been plotted for the available experimental levels [29] in Fig. 1.
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Fig. 1. Excitation energy (E∗) [MeV] [non-yrast states] for 124Te and 126Te as
a function of the angular momentumM at the temperature T = 0.75 MeV. The re-
sults are compared with available experimental data from the ENSDF database [29].

Figure 1 gives a comparative analysis of excitation energy calculated
by the STHRN method with the available experimental data [29] for 124Te
and 126Te. It is quite obvious that the non-yrast states calculated from the
STHRN method closely match with experimental data. From the excita-
tion energy diagram, it is observed that the energy levels obtained by the
STHRN method for a given angular momentum states give agreement with
the experimental data. The small deviation in the energy levels may be
due to the absence of neutron–neutron, proton–proton and neutron–proton
interactions [4]. This may be rectified by the inclusion of pairing interaction
in the STHRN method. However, the calculation carried out in this article
does not include pairing correlations.

The single neutron (Sn) and proton (Sp) separation energy as functions
of angular momentum for various temperatures for the isotopes 122Te and
126Te are shown in Fig. 2 and Fig. 3. From the figures, it is observed that
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Fig. 2. Neutron separation energy Sn [MeV] as a function of angular momentumM

for (a) 122Te and (b) 126Te for temperatures 1.0 to 3.0 MeV in steps of 0.5 MeV.
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Fig. 3. Proton separation energy Sp [MeV] as a function of angular momentum M

for (a) 122Te and (b) 126Te with the same description as in Fig. 2.

there occurs a sudden change in the separation energy at a certain angular
momentum M . This sudden change was observed for 122Te at M = 10 ~
and 126Te at M = 12 ~, and it corresponds to a shape transition [30] from
spherical (ε = 0.0) to non-collective oblate shape (ε = 0.1, γ = −180◦). This
shape transition phenomenon is observed in all the Te isotopes mentioned in
this article. In the STHRN method, the deformation parameter ε at which
the Te isotopes changes its shape to non-collective oblate is ε = 0.1. This
similar phenomenon was also observed experimentally for 120Te nucleus and
the quadrupole deformation ε at which the oblate shape was observed is
ε = 0.15. Thus, the experimentally obtained deformation value is in good
agreement with the one obtained from the STHRN method. Moreover, the
theoretical study carried out by Sabri et al. [9] by implying transitional
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interacting boson model including both IBM-1 and IBM-2 reported that Te
isotopes change from spherical to deformed shapes which also serve as an
additional reference for the observed shape transition phenomenon by the
STHRN method. It is also reported [25, 26] that separation energy plays
a major role in determining the structural change of a microscopic nuclear
system. From Fig. 2 and Fig. 3, it can be seen that though the shape
transition observed in Sn and Sp occurs at the same M , the Sn increases
for increasing M , while Sp decreases as a function of M . The increase in
Sn indicates a tight binding of neutrons [31], whereas the decrease in Sp
indicates the loosely bound proton system with two protons outside the
closed shell (Z = 50). Thus, from the separation energy plot, it is concluded
that the microscopic system associated with the change in shape of the Te
isotopes is the protons.

Figure 4 illustrates the spin cut-off parameter σ2 as a function of temper-
ature T and angular momentumM for the system 122Te and 126Te. The spin
cut-off parameter plays a major role in determining the nuclear level density
[32] and it can be derived by both semi-classical and quantum mechanical
approach. In the present work, σ2 is evaluated as a function of M and T by
quantum mechanical approach i.e. σ2 = n〈m2〉, where 〈m2〉 is the average
angular momentum projection squared on z-axis. The value of σ2 tends to
decrease for closed shell and then it increases [33]. Moreover, from Fig. 4, it
is also observed that σ2 increases with increasing temperature because the
shell effect vanishes at higher temperature [34]. The expression of σ2 given in
Eq. (15) also known as microscopic expression for spin cut-off parameter, re-
flects the structural effect near the Fermi energy. This effect is not observed
in either macroscopic approach of σ2, probably known as rigid body value
expression [σ2 = 0.0138A2/3

√
U/a ] and in the Gilbert–Cameron expression

[σ2 = 0.0138A2/3
√
a(U − Eo) ], where a is the level density parameter, U is

the excitation energy and Eo is the back shift energy [35]. It is also obvious
that the value of σ2 is constant for increasing angular momentum, but a
sudden change is observed at a certain angular momentum. This sudden
increase in the σ2 implies a sharp spin distribution function and it is an in-
dication of shape transition behavior. Moreover, all the parameters such as
excitation energy, separation energy, spin cut-off parameter are plotted for
free energy minimized equilibrium system, the value of σ2 up to M = 10 ~
in 122Te corresponds to spherical shape with deformation ε = 0.0, while
above M = 10 ~, the value of σ2 corresponds to non-collective oblate shape
(ε = 0.1, γ = −180◦). Thus, the shape of tellurium isotopes 114Te, 120Te,
122Te, 124Te and 126Te is found to change its shape from spherical to oblate
non-collective as a function of angular momentum. The separation energy
and spin cut-off parameter for 114Te and 124Te isotopes for temperature 1.0
and 3.0 MeV have been tabulated in Table I.
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Fig. 4. Spin cut-off parameter σ2 as a function of angular momentum M for (a)
122Te and (b) 126Te. The temperatures mentioned are in MeV.

In Fig. 5 (a)–(d), angular momentum M as a function of rotational fre-
quency ωrot also known as back bending phenomenon [36, 37] is plotted for
120Te, 122Te, 124Te and 126Te, and the results are compared with available
experimental values [2, 10]. The rotational frequency calculated from the
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Fig. 5. (Color online) Angular momentum M as a function of rotational frequency
ω~/MeV for (a) 120Te (b) 122Te, (c) 124Te and, (d) 126Te at T = 3.0 MeV. The
solid black line represent the moment of inertia value calculated from the STHRN
method, the dashed red line corresponds to experimental data [2, 10] and the dash-
dotted blue line represents the IBM-1 data [7].
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STHRN method gives comparable result with the experimental data. As
discussed earlier in Introduction, the Interacting Boson Model (IBM-1) has
been applied for the study of rotational behavior in Te isotopes [7], the
moment of inertia plot increases linearly for increasing angular momentum,
while a slight deviation is observed in the experimental value. This discrep-
ancy is surpassed in the STHRN method because the results are reasonably
comparable with the experimental data and follows almost the same pattern
as that of the experimental data. This similar behavior has been observed in
the moment of inertia plot which is shown in Fig. 6. The sudden deviation
in the linear pattern of rotational frequency at certain angular momentum
states corresponds to band crossing. For the even–even isotopes of Te, a sin-
gle band crossing around 12 ~ is observed. Significant deviation of rotational
levels at a particular angular momentum is due to both the single particle
alignment and collective rotation contributing to the structural change.
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Fig. 6. (Color online) Moment of inertia j [~2/MeV] as a function of angular mo-
mentum ~ for (a) 120Te, (b) 122Te (c), 124Te, and (d) 126Te with the same descrip-
tion as in Fig. 5.

In Fig. 6, the kinematic moment of inertia as a function of angular mo-
mentum is shown for 120Te, 122Te, 124Te and 126Te. The dashed red lines
correspond to the experimental values while the solid black lines correspond
to the moment of inertia calculated from the STHRN method. At low- and
high-angular momentum, the calculated moment of inertia is compared with
the experimental values. The kinematical moment of inertia changes around
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M = 12 ~ for the even–even isotopes of Te. This change in the moment of in-
ertia corresponds to the shape transition phenomenon due to band crossing
and these are compared with experimental data [2, 10, 29].

TABLE II

Comparison of rotational frequency as a function of angular momentum calculated
from STHRN method with the available IBM-1 model [7] and experimental data
[2, 10] for the isotopes 120Te, 122Te and 124Te for temperature 3.0 MeV respectively.

M Rotational frequency [ω~/MeV]

[~] 120Te 122Te 124Te

STHRN Exp IBM-1 STHRN Exp IBM-1 STHRN Exp IBM-1

2 0.11157 0.0523 0.0784 0.10791 0.0530 0.0784 0.10693 0.0605 0.0908
4 0.18201 0.0882 0.0951 0.18018 0.0931 0.0946 0.18164 0.1020 0.0951
6 0.25586 0.0936 0.1132 0.25586 0.0805 0.1083 0.25391 0.0604 0.0995
8 0.32800 0.1913 0.1329 0.32837 0.2099 0.1243 0.32666 0.2095 0.1039
10 0.35079 0.1263 0.1542 0.39917 0.0962 0.1414 0.34862 0.0622 0.1086
12 0.39966 0.1325 0.1777 0.24438 0.1241 — 0.39966 0.1207 0.1133
14 0.22922 0.1315 — 0.29932 0.1174 — 0.26587 0.1382 —
16 0.30188 0.0692 — 0.33643 0.1317 — 0.29126 0.1947 —

TABLE III

Comparison of moment of inertia j as a function of angular momentum calculated
from the STHRNmethod with the available IBM-1 model [7] and experimental data
[2, 10] for the isotopes 120Te, 122Te and 124Te for temperature 3.0 MeV respectively.

M Moment of inertia [~2 MeV]

[~] 120Te 122Te 124Te

STHRN Exp IBM-1 STHRN Exp IBM-1 STHRN Exp IBM-1

2 17.9256 10.7066 10.707 18.5339 10.6366 10.713 18.7032 9.5554 9.956
4 21.9772 23.3061 22.701 22.2005 22.6847 22.760 22.0215 21.6768 22.698
6 23.4504 35.7956 32.699 23.4504 38.5918 33.424 23.6307 44.1430 34.871
8 24.3900 34.2192 41.147 24.3628 32.6637 42.541 24.4903 30.4985 46.529
10 24.5510 53.3782 48.392 25.0519 61.1768 50.518 25.0214 77.5305 57.654
12 25.0214 63.1339 54.658 49.1029 65.2223 57.522 45.1350 66.1271 68.341
14 52.3450 74.3996 — 46.7732 78.8321 — 48.0671 72.5803 —
16 46.3760 117.781 — 47.5588 85.3642 — 48.3304 70.2154 —
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The rotational frequency and kinematic moment of inertia as a func-
tion of angular momentum have been calculated by the STHRN method for
120Te, 122Te and 124Te, and compared with the experimental [2, 10, 29] and
other theoretical model such as IBM-1 [7], and are tabulated in Table II
and Table III, respectively. The results show comparable agreement with
the available experimental data, and the STHRN method follows the same
pattern as that of experimental value instead of a linear pattern obtained in
the IBM-1 model.

4. Summary and conclusion

Depending upon the thermodynamic parameters such as excitation en-
ergy, separation energy for protons and neutrons, rotational frequency, kine-
matic moment of inertia and spin cut-off parameter, shape transition behav-
ior has been investigated for tellurium isotopes. The equilibrium shape for a
non-zero temperature is found by minimizing free energy function. From the
thermodynamical parameters, it is observed that the isotopes 114,120,122Te
are found to be spherical for ε = 0.0 at the angular momentum rangeM = 0–
9 ~ and finally reaches the deformed non-collective oblate shape for ε = 0.1
and γ = −180◦ at M = 10–25 ~. The nucleus 124,126Te remains of spheri-
cal shape with ε = 0.0 for the angular momentum range M = 0–12 ~ and
becomes of oblate shape with ε = 0.1 and γ = −180◦ for above M ≥ 13 ~.
The observed oblate shape with deformation ε = 0.1 is found to be in good
agreement with the experimentally obtained deformation ε = 0.15.

A sudden change arises in the spin cut-off parameter and separation
energy of neutron and proton at the angular momentum M = 12 ~ for the
tellurium isotopes which confirms that the shape transition behavior has
made an impact on all the thermodynamical parameters. The non-yrast
states or the energy level diagram in Fig. 1 gives a comparable agreement
with the experimental data. The moment of inertia and rotational frequency
describes the spin distribution of nuclear levels. The calculated results are
comparable with the experimental data and it overcomes the linear pattern
obtained by IBM-1 model. Thus, using the triaxial Nilsson model, the shape
transition phenomenon was discussed for the even–even isotopes of Te. From
the results obtained, the STHRN method is found to be the most suitable
method to study the even–even isotopes of tellurium nucleus at high-spin
states compared to IBM-1 model. However, the small deviations can be
overthrown by the inclusion of pairing interactions in the STHRN method.
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