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BALLISTIC LÉVY WALK WITH RESTS:
ESCAPE FROM A BOUNDED DOMAIN
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The Lévy walk model that takes into account a waiting of a walker
between consecutive displacements is analysed. The motion is restricted to
a finite region, bounded by two absorbing barriers, and quantities describing
the escape from this region are determined. Simple expression for a mean
first passage time is derived for a ballistic version of the Lévy walk. Two
limits emerge from the model: of short waiting time, that corresponds to
Lévy walks without rests, and long waiting time which exhibits properties
of a Lévy flights model. The analytical results are compared with Monte
Carlo trajectory simulations.
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1. Introduction

The Lévy walk model [1–5] lets a walker move with a finite velocity,
in contrast to a Lévy flights model when displacements are instantaneous
and the moments of a position density distribution are infinite due to long
tails of a jump-size density. More precisely, the latter process consists of
a sequence of jumps with infinite velocity and the walker rests between
consecutive jumps for a random time. The parameter α in a time-of-flight
distribution of the Lévy walk, τ−1−α, singles out two qualitatively different
processes: when 0 < α < 1 and 1 < α < 2. In the first case, the mean
time of flight diverges resulting in a ballistic diffusion: the mean-squared
displacement 〈x2(t)〉 rises with time as t2. The diffusion is weaker for 1 <
α < 2 [4], 〈x2(t)〉 ∼ t3−α, while 〈x2(t)〉 ∼ t ln t for α = 2; for α > 2,
diffusion becomes normal, 〈x2(t)〉 ∼ t. The case of α = 1 is a transition
point between enhanced and ballistic diffusion for which 〈x2(t)〉 ∼ t2/ ln t
holds. In the Lévy walk model, the subsequent time intervals the walker
spends in flight are mutually independent but taking into account that the
time of flight is finite introduces memory; as a consequence, the process is
semi-Markovian [6]. Processes characterised by α from the lower interval are
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discussed in context of such phenomena as some properties of nanocristals [7]
and blinking quantum dots [8]. The Lévy walk model usually assumes that a
new jump takes place immediately after finishing the previous one. However,
it is natural to expect that the walker may rest between consecutive jumps
and then a finite waiting time has to be included in the model [9–12]. Though
this version of the Lévy walk model is highly realistic, it is rarely discussed.
If walker moves in a nonhomogeneous environment, the distribution of the
waiting time may be position-dependent [13, 14].

The aim of this paper is to study one-dimensional ballistic Lévy walks
(α < 1) restricted to a finite interval by two absorbing barriers. The quanti-
ties that characterise the escape from a bounded domain are often discussed
and applied in many physical problems [15]. One asks about a time required
to reach the barrier for the first time (a first passage time) and its mean T
(MFPT) which, if exists, provides a simple estimation of the escape rate.

The first passage time problem is important in the modelling of animal
movements, like search strategies of predators. In this case, the search time
is the time taken for a predator to find a prey and the first passage time
corresponds to arriving at a prey location. Then the equation for mean
first passage time can be interpreted as the average time taken by animals
beginning at the same start location to reach the fixed location [17]. The
process of a mutual interaction between predator and pray, which includes
a local pray density, a consumption rate of predators and a searching time,
was formalised by the functional response method in terms of a Holling
disc equation [18]. The simple random-walk models are unable to take into
account that animal paths involve large spatial or temporal scales that turn
out to be a combination of walk clusters with long travels between them,
whose pattern corresponds to the Lévy walks; they allow a higher efficiency
in random search scenarios possessing such fundamental properties as super-
diffusivity and scale invariance [19].

The properties of the escape process change after substituting instanta-
neous jumps by walks with a finite velocity which effect is especially pro-
nounced if α < 1: the numerical analysis [16], performed for the Lévy walks
without rests, demonstrates, in particular, that MFPT scales with the bar-
rier position as L, while for the Lévy flights, T ∝ Lα holds [16, 20]. In
this paper, we derive expressions for the first passage time characteristics
taking into account a finite and random waiting time between consecutive
displacements. In Section 2, we define the Lévy walk process with rests in
the presence of the absorbing barriers. The density distribution describing
that process is derived and the first passage time statistics is evaluated in
Section 3.
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2. Definition of the process

The Lévy walk trajectory consists of a sequence of displacements where
the walker moves with a constant velocity v. Before the next jump, a new di-
rection is chosen: walker may depart to the left or to the right with the same
probability. The time of a single flight, τ , is a random variable determined
by a density distribution ψ(τ) which is one-sided and has the asymptotics
τ−1−α, where 0 < α < 1. That power-law tail corresponds to the Laplace
transform

ψ(s) = 1− c1s
α , (1)

where c1 = const. More precisely, we assume the following form of ψ(τ):

ψ(τ) =

{
αεατ−1−α for τ > ε
0 for τ ≤ ε , (2)

where ε = const. means the smallest duration of a single jump. Taking
the Laplace transform from Eq. (2) and comparing the result with Eq. (1)
yields c1

c1 = lim
s→0

[s−α − αεαΓ (−α, εs)] = εαΓ (1− α) , (3)

where we applied the expansion of an incomplete Gamma function, Γ (a, b) =
Γ (a) − ba/a + ba+1/(a + 1) + . . . [21]. Since the travelled distance ξ is de-
termined by τ , both quantities are coupled in the jump density distribution

ψ̄(ξ, τ) = 1
2δ(|ξ| − vτ)ψ(τ) . (4)

After walker ends its jump, and before the next direction and new time τ
are sampled, it remains at rest. The resting time is a random quantity
and follows from the exponential distribution with a rate ν, then the mean
waiting time is 1/ν. Both phases of the motion, namely of particles in flight
and in rest, are quantified by two density distributions: pv(x, t) and pr(x, t),
respectively. The total density, p(x, t) = pr(x, t) + pv(x, t), is normalised to
unity but the contribution of individual phases to the total probability may
change with time: for α < 1, pr(x, t) decays and the flying phase prevails at
long time.

The master equation can be constructed from an infinitesimal transition
probability [13]. Let us assume that the particle rests in x′ at time t. Within
a small time interval ∆t, it may either continue its resting at x = x′ or moves
on performing a flight for t′ which is determined by ψ(t′). Then the transition
probability corresponds to a transition from x′ → x and it is infinitesimal in
respect of waiting time ∆t. The transition probability reads

ptr

(
x, t+ ∆t|x′, t

)
= [1− ν∆t]δ

(
x− x′

)
δ
(
|x− x′| − vt′

)
+ν∆t1

2ψ
(
t′
)
δ
(
|x− x′| − vt′

)
, (5)
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and the density distribution resulting from Eq. (5), pr(x, t), corresponds to
the walks terminating at x. The multiplication of Eq. (5) by a probability
of the condition and integration over all possible x′ and t′ yields

pr(x, t+ ∆t) =

t∫
0

∫
ptr

(
x, t− t′ + ∆t|x′, t− t′

)
pr

(
x′, t− t′

)
dt′dx′ . (6)

Passing to the limit of small ∆t,

∂

∂t
pr(x, t) = lim

∆t→0
[pr(x, t+ ∆t)− pr(x, t)] /∆t (7)

yields the master equation

∂

∂t
pr(x, t) = −νpr(x, t)+ν

t∫
0

∫
pr

(
x′, t− t′

) 1

2
ψ
(
t′
)
δ
(
|x− x′| − vt′

)
dt′dx′ .

(8)
Moreover, we have to take into account the particles that at x are still in

flight. First, let us evaluate a probability density that the particle remains
in flight at t and at a position x under a condition that the latter jump
started at x′ and at a time in the interval (0, t). We divide this interval into
n small subintervals of length ∆t, and assume that particle started at ti.
The probability density that this particle arrives at x still being in flight is
Ψ(t − ti)δ(|x − x′| − v(t − ti)), where Ψ(t) =

∫∞
t ψ(t′)dt′. The summation

over all the time subintervals, multiplication by a probability that particle
remains at any x′ at time ti and taking the limit ∆t→ 0, yields the density
of particles in flight

pv(x, t) = ν

∫ t∫
0

Ψ
(
t′
)
δ
(
|x− x′| − vt′

)
pr

(
x′, t− t′

)
dx′dt′ . (9)

We assume that the motion is restricted to the interval (−L,L) by in-
troducing absorbing barriers at ±L which means boundary conditions

p(±L, t) = 0 . (10)

The first passage time density distribution is defined as a probability that
the time needed to reach the barrier for the first time lies within the interval
(t, t + dt) [15]. The survival probability, namely the probability that the
particle never reached those barriers up to time t, is given by

S(t) =

L∫
−L

p(x, t)dx . (11)
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The first passage time density distribution reflects the change of the survival
probability with time

℘(t) = −dS(t)/dt , (12)

and MFPT is given by the integral

T =

∞∫
0

t℘(t)dt =

∞∫
0

S(t)dt . (13)

3. Fractional equations and mean first passage time

The analysis of the first passage time characteristics requires a differen-
tial equation, instead of the integral equation (8), for which the boundary
conditions (10) can be applied. The derivation of such an equation is only
possible in a limit of small arguments of the Fourier and Laplace transform,
k and s. However, the limit {k, s} → {0, 0} is not unique and the order
of taking the limit over k and s may influence the final density distribu-
tion and fluctuations. In particular, the proper asymptotics of the density
distributions in the Lévy walk model (without rests) is achieved when the
limits s → 0 and k → 0 are taken simultaneously [22] but this procedure
does not apply for our case characterised by the divergent mean time of
flight. Alternatively, passing k → 0 for a given (small) s, one can repro-
duce the behaviour of the density close to the origin [4]; this procedure does
not lead to a diffusion equation and a mean square displacement cannot be
determined. They can be determined if one first assumes a given (small)
value of k and next takes the limit s→ 0. Though the density distributions
obtained by taking a specific limit for s and k may not coincide with ex-
act solutions of the master equation, the agreement for MFPT may still be
achieved since it is only sensitive on the Laplace transform from ℘(t) near
s = 0: T = − d

ds℘(s = 0). In the following, we apply the latter procedure for
the limit {k, s} → {0, 0} and demonstrate that then the resulting MFPT is
consistent with numerical simulations.

Accordingly, after taking the Fourier and Laplace transform from (8) and
keeping the lowest terms in the expansion in powers of k and s, the equation
for pr(x, t) reads [14]

spr(k, s)− P0(k) = −c1ν
[
sα +Bv2k2sα−2

]
pr(k, s) , (14)

where B = α(1 − α)/2 and P0(x) stands for an initial condition. The
expression determining the density of particles in flight follows from Eq. (9);
the application of the Laplace transform yields

pv(k, s) = c1ν
[
sα−1 − sα−3 1

2(1− α)(2− α)v2k2
]
pr(k, s) . (15)
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The inversion of Eq. (15) reads

pv(x, t) = c1ν

[
0D

α−1
t +

v2

2
(1− α)(2− α)0D

α−3
t

∂2

∂x2

]
pr(x, t) , (16)

which is a fractional equation [23] and involves a fractional Riemann–Liouville
integral defined as [24]

0D
−β
t f(t) =

1

Γ (β)

t∫
0

dt′
f (t′)

(t− t′)1−β , (17)

where β > 0. Note that the superscript in the above operator is negative
which differentiates this definition from a fractional differential operator.
Since δ′(x) is an odd function, the time derivative from pv(x, t) can be
evaluated from Eq. (9)

∂pv(x, t)

∂t
= ν

∫ t∫
0

Ψ
(
t′
)
δ′
(
|x− x′| − vt′

)
pr

(
x′, t− t′

)
dx′dt′

= −ν
∫ t∫

0

Ψ
(
t′
)
δ
(
|x− x′| − vt′

)
∂pr

(
x′, t− t′

)
/∂t′dx′dt′ . (18)

Passing to the limit of small s yields a Poisson equation

∂pv(x, t)

∂t
= −c1ν

[
∂2

∂t2
+
v2

2
(1− α)(2− α)

∂2

∂x2

]
0D

α−2
t pr(x, t) , (19)

for an unknown function 0D
α−2
t pr(x, t) where l.h.s. is regarded as a source.

Then Eq. (19) is a partial differential equation, which will be solved with
given initial and boundary conditions, and the time evolution of the total
density p(x, t) can be determined from the expression

∂p(x, t)

∂t
= c1v

2ν(1− α)
∂2

∂x2 0D
α−2
t pr(x, t) (20)

that results from the combining (14) with (19).
Equation (19) will be solved by a variable separation and evaluating

eigenfunctions corresponding to both variables. The expansion of the den-
sities reads

pr(x, t) =

∞∑
n=0

Xn(x)Tn(t) (21)
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and

pv(x, t) =
∞∑
n=0

X(v)
n (x)T (v)

n (t) . (22)

Inserting (21) and (22) into (19) yields for each n

−dT
(v)
n (t)

dt
X(v)
n (x) = νc1

[
∂2

∂t2
+

1

2
(2−α)(1−α)v2 ∂

2

∂x2

]
0D

α−2
t [Xn(x)Tn(t)] ,

(23)
and the separation of variables produces an equation that determines the
eigenfunctions Xn(x)

d2

dx2
Xn(x) + λnXn(x) = 0 . (24)

Equation (19) can only be solved if the eigenfunctions Xn(x) are of the same
form as those corresponding to the term of nonhomogeneity that contains
the functions X(v)

n (x). More precisely, there are two possibilities: either (a)
X

(v)
n (x) = −Xn(x) or (b) X(v)

n (x) = Xn(x) and, for version (a), Eq. (19)
yields

dT
(v)
n (t)

dt
= νc1

[
d2

dt2
− 1

2
(2− α)(1− α)v2λn

]
0D

α−2
t Tn(t) . (25)

Next, we evaluate the intensities of both phases of the motion, φr(t) =∫
pr(x, t)dx and φv(t) =

∫
pv(x, t)dx, from Eq. (8) and Eq. (18) by the in-

tegration over x of the convolutions in those equations. Taking the Laplace
transform and dropping higher terms in the expansion in the fractional pow-
ers of s yields expressions which, after inverting the transforms, read

φ′r(t) = φ′v(t) = −νc10D
α
t φr(t) . (26)

The inserting into Eq. (25) produces the equation

∞∑
n=0

φn
dT

(v)
n (t)

dt
= −νc10D

α
t

∞∑
n=0

φnTn(t) , (27)

where φn = −
∫
Xn(x)dx. Finally, we insert Eq. (25) into the above equation

and, since it has to be satisfied for any choice of the basis functions Xn(x),
we obtain for any n

d2

dt2
0D

α−2
t Tn(t)− C2λn0D

α−2
t Tn(t) = 0 , (28)

where C = v
√

(1− α)(2− α)/2.



1780 A. Kamińska, T. Srokowski

Version (b) does not apply since it leads to unphysical results. Indeed,
the counterpart of Eq. (25) reads

−∂T
(v)
n (t)

∂t
= νc1

[
d2

dt2
− 1

2
(2− α)(1− α)v2λn

]
0D

α−2
t Tn(t) , (29)

and then λn0D
α−2
t Tn(t) = 0 which, according to Eq. (20), would mean a

stationary state. Therefore, we continue with version (a).
We solve Eq. (24) with the boundary conditions (10). They imply

Xn(−L) = Xn(L) = 0 yielding the solution in the form of

Xn(x) = cos
(√

λnx
)
, (30)

where the eigenvalues λn = π2n2/4L2 (n = 1, 3, 5, . . .). Inserting these
eigenvalues into Eq. (28) and solving the equation yields

0D
α−2
t Tn(t) = ane−C

√
λnt + bneC

√
λnt , (31)

and the solution of Eq. (23) is

0D
α−2
t [Xn(x)Tn(t)] =

[
a2n+1 exp

(
−Cπ(2n+ 1)t

2L

)
+b2n+1 exp

(
Cπ(2n+ 1)t

2L

)]
cos

π(2n+ 1)x

2L
. (32)

To evaluate the total density p(x, t), we sum the above result over n and
insert into Eq. (20)

p(x, t) = −c1ν

2

√
1− α
2− α

∞∑
n=0

[
a′2n+1 exp

(
−Cπ(2n+ 1)t

2L

)
+b′2n+1 exp

(
Cπ(2n+ 1)t

2L

)]
cos

π(2n+ 1)x

2L
, (33)

where the new coefficients a′2n+1 and b′2n+1 can be determined from the
following conditions: p(x,∞) = 0, which implies b′2n+1 = 0, and the initial
condition p(x, 0) = δ(x), which, after taking into account the orthonormality
of the cosine function, implies a′2n+1 = − 4

Lc1ν

√
2−α
1−α . The final expression

for the total density reads

p(x, t) =
1

L

∞∑
n=0

exp

(
−Cπ(2n+ 1)t

2L

)
cos

π(2n+ 1)x

2L
. (34)
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The survival probability follows from a direct integration of p(x, t) over x

S(t) =
4

π

∞∑
n=0

(−1)n

2n+ 1
exp

(
−Cπ(2n+ 1)t

2L

)
= 1− 4

π
arctan

[
tanh

(
Cπt

4L

)]
, (35)

and we conclude from the series in Eq. (35) that the decay pattern at large
time is exponential. This form of relaxation may be attributed to the semi-
Markovian property, which is characterised by a fast memory loss [6], of the
Lévy walk process. The integration of S(t) yields MFPT

T =
8L

Cπ2

∞∑
n=0

(−1)n

(2n+ 1)2
=

16L

vπ2

G√
(1− α)(2− α)

, (36)

where G = 0.916 . . . is a Catalan constant [21].
On the other hand, the density distributions can be obtained from a

numerical simulation of individual trajectories by sampling the waiting time
from the exponential distribution with the rate ν and the time of flight from
the power-law distribution, according to Eq. (2). The analytically evaluated
MFPT, Eq. (36), is compared with those calculations in Fig. 1 where the
dependence T ∝ L, well-known for the Lévy walk process without rests [16],
is illustrated. Both results perfectly agree if α is small but for α = 0.8, the
curves are mutually shifted. The discrepancies at small L are natural since
then the condition s→ 0 is not satisfied. Moreover, they can be attributed
to a relatively short time the walker spends in flight whose effect depends
on α: for large α, the steps are short and the number of rests becomes
large. Therefore, Eq. (36) better corresponds to numerical simulations if one
reduces the waiting time compared to the time of flight by increasing the
parameter ν; Fig. 1 shows that a reasonable agreement has been achieved for
ν = 100 (α = 0.8). On the other hand, Fig. 1 shows that one observes scaling
T ∝ Lα the case of which corresponds to the Lévy flight process [20, 25].
Then the resting phase, which is characterised by different scaling pattern
than the flying phase, becomes essential for the process properties. The
limit ν → 0 means a long waiting time compared to the time of flight. The
relation T ∝ L still holds for small ν but this requires much larger values
of L than those in the figure.

MFPT as a function of α is presented in Fig. 2. For ν = 1, Eq. (36) agrees
with simulations at small α, while in the region close to α = 1 substantial
discrepancies emerge. They diminish after taking the limit ν →∞, similarly
to the dependence presented in Fig. 1. Note that this limit corresponds to
the Lévy walk process without rests.
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Fig. 1. (Colour on-line) MFPT as a function of barrier position for α=0.2, 0.5 and
0.8, calculated from trajectory simulations with ν = 1 (black points from bottom
to top, respectively). Blue stars correspond to the case of α=0.8 and ν=100. The
red solid lines mark the result calculated from Eq. (36). Curve presented as green
triangles was obtained from simulations with ν=10−3; it has a shape cLLα, marked
by the upper red solid line, where a constant cL was adjusted to fit simulation data.
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Fig. 2. (Colour on-line) MFPT as a function of α for ν = 1 (black points) and
ν = 100 (blue stars). Solid red lines mark the dependence (36). The barrier
position L is indicated for each bunch of the curves.
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4. Summary and conclusions

We have discussed the Lévy walk model that includes finite and ran-
dom waiting times between consecutive velocity renewals. The motion is
restricted to a finite interval by two absorbing barriers; we have derived
time characteristics of the escape process from that interval. The combined
density distribution for flights and rests, satisfying boundary conditions at
barrier positions ±L, has been evaluated by using an auxiliary equation in
the form of the Poisson equation. The simple expression for MFPT has been
obtained and dependences on L and α established. The mean waiting time,
1/ν, that enters the model as a parameter, establishes the relative duration
of resting and moving. Therefore, we may observe, as limiting cases, both
the Lévy walks without rests (large ν) and the Lévy flights (ν → 0) when
the time of flight needed to reach the barrier becomes negligible compared to
the resting time. In contrast to Eq. (36) that predicts the proportionality of
MFPT to L, the latter case is characterised by the dependence MFPT ∝ Lα
which is a well-known feature of Lévy flights and also emerges in our numer-
ical simulations; if ν is small, Eq. (36) can only be valid for very large L. In
the limit of large ν, Eq. (36) agrees with the simulations.
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