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During the prevention and control of epidemics, both disease-related
awareness diffusion and disease treatment require resources investment, so
it is crucial to investigate the investment and allocation strategy of re-
sources. Here, we propose an epidemiological model in the two-layer multi-
plex networks to study the interplay between disease and awareness under
resource control. In this model, a part of the resources is used for disease
treatment, and the other is used to facilitate the diffusion of awareness,
with an adjustable parameter α setting to allocate the resources. First,
we establish the evolutionary equations for different states and obtain the
epidemic threshold of disease based on the microscopic Markov chain ap-
proach. Then, we conduct numerical simulations and find that stronger
heterogeneity of the two-layer networks results in smaller epidemic thresh-
old. Intriguingly, we find that there are optimal allocation coefficients in
different multiplex networks structures and sizes. Finally, we find that the
optimal allocation coefficient decreases with the increase of the immune
degree.
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1. Introduction

Every large-scale outbreak of an epidemic, such as Ebola [1], SARS [2],
H7N9 [3], HIV [4], etc., severely threatens the lives of people in the outbreak
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areas and causes a serious economic burden [5, 6]. Therefore, the underlying
mechanisms and control strategies of epidemic spreading have become two
main research topics in the field of spreading dynamics [7–14].

In the study of the underlying mechanisms of epidemic spreading, peo-
ple have noticed the interplay between disease and disease-related aware-
ness (disease-related awareness usually refers to some behavioral response
of the disease, such as using vaccines, wearing masks, enhancing physique,
etc. [15]). Funk et al. [15] first studied the impact of awareness diffusion
on disease spreading, and found that the awareness diffusion can result in a
lower size of epidemic outbreak, but does not affect the epidemic threshold in
a well-mixed human population. Sahneh et al. [16] investigated how informa-
tion dissemination can help to enhance the resilience of a population against
epidemic spreading and found the optimal information dissemination net-
work. Granell et al. [17] established a UAU (unaware–aware–unaware)–SIS
(susceptible–infected–susceptible) model to mimic the interaction between
disease and awareness. They analyzed the coupled dynamical process of
awareness and disease, and found a metacritical point, at which the diffu-
sion of awareness is able to control the onset of the epidemics. For a further
research, they studied the impact of mass media on the final outcome of the
epidemic incidence and found that the presence of mass media makes the
metacritical point disappear [18].

In the research on the control strategies of epidemic spreading, some
researchers have studied the effects of resources on disease spreading [19–
21]. Chen et al. [22] explored the interaction between resource allocation in a
social layer and disease spreading in the contact layer of a multiplex network.
They found that when the edge overlap between two layers exceeds a critical
value, the phase transition type transforms from hybrid to continuous. To
investigate the impact of hybrid resource (local resource and global resource)
allocation strategy on disease spreading dynamics, Chen et al. [23] did a
further research. Their results showed that a global resource allocation has
more advantages in suppressing epidemic spreading than local allocation.
Jiang et al. [24] investigated the impact of resource amount on epidemic
control in a two-layer network. They obtained the threshold of resource and
discovered that the connection strength of networks will lead to the change
of the phase transition type.

However, when investigating the interaction among resources, awareness,
and disease spreading, these researchers only consider the effects of awareness
or the impacts of resources on disease spreading. The effect of suppressing
epidemics spreading by promoting the diffusion of disease-related awareness
through investing resource has not been taken into account. To effectively
suppress the spread of epidemic, we hold the opinion that public health re-
sources can be divided into two parts, one for promoting the diffusion of
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disease-related awareness and the other for disease treatment. Hence, to
explore the effective investment of public health resources, we propose an
epidemiological model that couples awareness diffusion and disease spread-
ing under resources control in two-layer multiplex networks. In this model,
a bias parameter α is introduced to regulate the allocation of resources
between disease treatment and awareness diffusion. First, we use the micro-
scopic Markov chain approach (MMCA) [25, 26] to analytically obtain the
epidemic threshold of epidemic outbreak. Then we simulate the spread of
epidemic in two-layer multiplex networks with different structures and find
that the epidemic threshold decreases as the heterogeneity of the networks
increases. More interestingly, optimal resource allocation coefficients are ob-
served under different multiplex networks structures and sizes. On the other
hand, the value of these coefficients suggests that to the maximum control
of the outbreak of epidemic, most of the public health resources should be
allocated to disease treatment. Finally, we find that the value of the op-
timal allocation coefficient decreases as the immune degree increases. Our
work considers the impact of resources and awareness on disease spreading
simultaneously, which may not only shed some light on future theoretical
research on epidemiology, but also provides a reference for policymakers to
formulate public resource allocation schemes.

2. Model description

In our model, the two-layer multiplex networks [17] are adopted to de-
scribe two competitive spreading process: the diffusion of disease-related
awareness will inhibit the spread of disease, while the spread of disease may
lead to the emergence of the new infected nodes (aware individuals) and
then promotes the diffusion of disease-related awareness. Therefore, the
two-layer multiplex networks can be built as follows (see Fig. 1): the up-
per layer (physical layer) denotes the network of physical contacts where
the spread of disease happens, and the lower layer (virtual layer) represents
the network of virtual contacts where the disease-related awareness diffusion
happens. In the two-layer networks, each layer has N nodes and the set of
nodes in the physical layer is the same as that in the virtual layer. While the
two layers have different links, the information can be disseminated through
the links in not only physical contacts network but also online social contacts
network (e.g. Facebook, Twitter, Weibo, etc.). Therefore, the structure of
virtual layer can be built by adding some new edges randomly (nonoverlap-
ping with the original ones) on the basis of the structure of physical layer.

On the physical layer, we adopt the classic susceptible–infected–suscep-
tible (SIS) model [27] to mimic the spread of disease. Every node in this
layer can only exist in susceptible state (S) or infected state (I). At each
time step, a susceptible node will be infected by its infected neighbor with a
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Fig. 1. (Color online) Schematic representation of the two-layer multiplex networks
used in this work. The upper layer (physical layer) represents the network of disease
spreading, in which each node can only exist one of two possible states: susceptible
(S, orange nodes) or infected (I, red nodes). The lower layer (virtual layer) means
the network of awareness diffusion, where nodes have two possible states: unaware
(U, green nodes) or aware (A, purple nodes).

probability β. Meanwhile, an infected node will return to susceptible state
with a probability µ. Since the recovery of infected nodes needs to consume
resources (e.g. drug development, medical equipment purchases, etc.), we
set the recovery rate µ as a function of the resource amount. On the virtual
layer, an unaware–aware–unaware (UAU) process [28] is applied to model
the awareness diffusion, which is similar to the SIS epidemiological model.
In this layer, each node is in aware state (A) or unaware state (U). At each
time step, an unaware node will become aware with a probability λ if it
is connected to an aware neighbor. We assume that unaware individuals
will not become aware spontaneously and must be informed by their aware
neighbors before reacting to diseases (e.g. wearing protective mask, using
vaccine, etc.). Since the behavioral response of disease depends on resources,
we also set the awareness diffusion rate λ as a function of the resources
amount. At the same time, we assume that an aware node will become
unaware with a probability δ and denote δ as the awareness forgetting rate.

In this model, we set R as a total amount of resources on the epi-
demic control, which is divided into two parts according to an allocation
coefficient α. One part α × R of resources is used to enhance the rate of
disease-related awareness diffusion in the virtual layer, and the remaining
part (1−α)×R of resources is used to improve the rate of disease recovery in
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the physical layer. In the absence of public resources, nodes have an initial
rate of disease recovery (µ0) [29] and awareness diffusion (λ0). To simplify
the model, we assume µ0 = 0 and λ0 = 0. Based on Refs. [20–23, 30], we
set the disease recovery rate and the awareness diffusion rate as

µ = 1− e−(1−α)R , (1)
λ = 1− e−αR . (2)

It should be noted that µ and λ denote the average disease recovery
rate and the average awareness diffusion rate for all the individuals from
the beginning to the end of the epidemic, respectively. The value of public
resources R can increase the value of µ and λ. If the resources are used
up before the end of epidemic, it means a small value of R. According to
Eqs. (1) and (2), a small value of µ and λ will be for each time step.

Using Refs. [17, 18], we define the infection rate of susceptible node with
and without disease-related awareness as βA and βU (βU = β ), respectively.
Moreover, they satisfy the following equation:

βA = γβU , (3)

where γ (0 ≤ γ < 1) is called immune degree, which denotes the immunity
of aware individuals to epidemic. In the particular case of γ = 0, the aware
individuals are completely immune to the epidemic.

3. MMCA theoretical analysis

According to our model, each node i can be in one of the three states at
time t: unaware and susceptible (US), aware and susceptible (AS), or aware
and infected (AI), whose probabilities can be denoted by pUS

i (t), pAS
i (t) and

pAI
i (t), respectively. Note that the state unaware and infected (UI) is not

supposed to exist [17]. The reason is that an individual will be compelled to
respond to epidemic after infected (e.g. receiving treatment, being quaran-
tine, etc.), that is, the infected individual will be in an aware state immedi-
ately. In our model, the normalization condition pUS

i (t)+pAS
i (t)+pAI

i (t) ≡ 1
holds for all time steps. Here, we denote elements in the adjacency matrix
of physical layer (virtual layer) by aij (bij ). If node i is connected to node j,
corresponding element in the adjacency matrix is aij = 1 (bij = 1), otherwise
aij = 0 (bij = 0). After that, on the virtual layer, we define the probability
for an unaware node i not changing the state to aware at time t as ri(t).
On the physical layer, qUi (t) and qAi (t) denote the probability for unaware
and aware susceptible node i not being infected by any infected neighbors
at time t respectively. Assuming the absence of dynamical correlations [31],
we have the following formulae:
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

ri(t) =
∏
j

[
1− bjipAj (t)λ

]
,

qUi (t) =
∏
j

[
1− ajipAI

j (t)βU
]
,

qAi (t) =
∏
j

[
1− ajipAI

j (t)βA
]
,

(4)

where pAj (t) denotes the probability of a node j being in the aware state,
which satisfies pAj (t) = pAS

j (t) + pAI
j (t).

According to Ref. [17], we provide the transition probability trees for the
states of any node i from time t to t + 1, see Fig. 2, where UI state is an
intermediate state which is set in the analysis process of states transition.

Fig. 2. Transition probability trees for different states of the UAU–SIS model per
time step. The states include US (unaware and susceptible), AS (aware and sus-
ceptible), AI (aware and infected). In the transition probability trees, ri represents
the probability not varying from unaware to aware state, δ means the awareness
forgotten (from aware to unaware state) probability, qUi and qAi denote the proba-
bility for unaware and aware susceptible node i not being infected by any infected
neighbors, and µ denotes the probability for an infected node returns to susceptible
state. We assume a node will go through the awareness diffusion process at first.

As shown in Fig. 2, the dynamically evolutionary equations of node i
for each state can be described as follows by using the microscopic Markov
chain approach (MMCA):

pUS
i (t+ 1) = pUS

i (t)ri(t)q
U
i (t) + pAS

i (t)δqUi (t) + pAI
i (t)δµ , (5)

pAS
i (t+ 1) = pUS

i (t)(1− ri(t))qAi (t) + pAS
i (t)(1− δ)qAi (t) + pAI

i (t)(1− δ)µ ,
(6)



Resources Allocation Strategies of Disease Control in Multiplex Networks 1791

pAI
i (t+ 1) = pUS

i (t)
[
ri(t)

(
1− qUi (t)

)
+ (1− ri(t))

(
1− qAi (t)

)]
+pAS

i (t)
[
δ
(
1− qUi (t)

)
+ (1− δ)

(
1− qAi (t)

)]
+pAI

i (t) [δ(1− µ) + (1− δ)(1− µ)] . (7)

When t → +∞, i.e., the epidemic spreading reaches a steady state, we
have pUS

i (t+1) = pUS
i (t) = pUS

i , pAS
i (t+1) = pAS

i (t) = pAS
i , and pAI

i (t+1) =
pAI
i (t) = pAI

i . After that, we compute the epidemic threshold of disease βc
(βc = βUc ).

If β < βc, the disease will not be prevalent. Otherwise, the disease
breaks out and persists in the population. When β approaches the epidemic
threshold, the probability of nodes to be infected is close to zero, namely,
pAI
i = pIi = εi � 1. Accordingly, qUi and qAi are approximated as

qUi ≈ 1− βU
∑
j

ajiεj , (8)

qAi ≈ 1− βA
∑
j

ajiεj . (9)

Furthermore, taking the above approximate equations into Eqs. (5)–(6)
and omitting the o(εi) terms, we get

pUS
i = pUS

i ri + pAS
i δ , (10)

pAS
i = pUS

i (1− ri) + pAS
i (1− δ) . (11)

Then, substituting Eqs. (8)–(11) into Eq. (7), a simple formula is ob-
tained

µεi = pUS
i

riβU∑
j

ajiεj + (1− ri)βA
∑
j

ajiεj


+pAS

i

δβU∑
j

ajiεj + (1− δ)βA
∑
j

ajiεj


=
(
pAS
i βA + pUS

i βU
)∑

j

ajiεj . (12)

Note that pAS
i +pAI

i +pUS
i = 1 , where pAS

i +pAI
i = pAi . Since p

AI
i = εi � 1,

we can get pAS
i ≈ pAi and pUS

i = 1− pAS
i − pAI

i = 1− pAi . Therefore, Eq. (12)
can be further simplified as∑

j

{[
1− (1− γ)pAi

]
aji −

µ

βU
δji

}
εj = 0 , (13)
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where δji is the element of the identity matrix I. We introduce a new
matrix H whose elements fulfill

hji =
[
1− (1− γ)pAi

]
aji . (14)

Thus, Eq. (13) can also be expressed as(
H − µ

βU
I

)
ε = 0 , (15)

where ε = (ε1, ε2, . . . , εN )
T .

The nontrivial solutions of Eq. (15) are eigenvectors of H, whose eigen-
values are equal to µ/βU. Accordingly, the epidemic threshold is equal to the
minimum value of βU satisfying Eq. (15). Let Λmax(H) denote the largest
eigenvalue of H, and substitute Eq. (2) into Eq. (15). Then, the epidemic
threshold is described as

βUc =
1− e−(1−α)R

Λmax(H)
. (16)

According to Eqs. (14) and (16), βUc depends on the allocation coeffi-
cient (α), the amount of resources (R), the structure of physical layer (aij),
the immune degree (γ), and the spreading dynamics on the virtual layer
(pAi ). The value of p

A
i is further determined by the structure of virtual layer

and the parameter δ.

4. Numerical results

To examine how resource allocation strategies affect epidemic spread-
ing, we perform extensive numerical simulations in the two-layer multiplex
networks. Due to the limitation of the computer storage level, in our exper-
iments, the network sizes range from N = 1000 to N = 10 000. To build
the Erdős–Rényi random network (ER network) of two-layer multiplex net-
works, we adopt the method described in Ref. [32], that is, the edges among
nodes are added with probability p = 〈k〉

N−1 . Among these, 〈k〉 is the average
degree of ER network which is set artificial. To build the scale-free network
(SF network) of two-layer multiplex networks, we use an uncorrelated config-
uration model (UCM) [33] with a given degree distribution P (k) ∼ k−γs , in
which γs is the degree exponent. The degree exponent γs here is usually set
between 2 and 3, and a smaller γs implies a stronger degree heterogeneity of
network [34]. In the construction of scale-free network, the maximum degree
is determined by the structural cut-off kmax ∼

√
N [35] and the minimum

degree is set as kmin = 3. In our experiments, the total amount of resources
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is set as 1 unit, which indicates the overall resources invested by the gov-
ernment on disease prevention and control. The initial density of infected
nodes in the physical layer is set as ρI0 = 0.01, and the initial density of
aware nodes in the virtual layer is set as ρA0 = 0.01. To ensure the reliability
of the experimental results, each final experimental data is obtained from
the average result of 50 experiments under the same conditions.

4.1. Comparisons between MMCA analytical results and MC simulations

To verify the validity of theoretical analysis based on MMCA, we conduct
Monte Carlo (MC) simulations and numerical iterations in the two-layer ER
networks and the two-layer scale-free networks, respectively. The sizes of
multiplex networks are both set as N = 5000. For ER networks, we use
〈k〉 = 7 and for SF networks, γs = 2.4. To construct the virtual layer, we
first set that this layer has the same adjacency matrix as the physical layer,
and then we add randomly 2000 links in the virtual layer. We assume that
the resource allocation coefficient α = 0.5. Using the research method of
Ref. [17], it is assumed that γ = 0 for the simplicity of study and then
obtained βA = 0 according to Eq. (3). Under these assumptions, pAi and
pIi are obtained at the stationary state by iterating Eqs. (5) to (7), and
ρA = 1

N

∑
i p

A
i and ρI = 1

N

∑
i p

I
i represent the density of infected nodes and

the density of aware nodes in MMCA, respectively.
Figure 3 (a) and (b) shows the results of disease spread and awareness dif-

fusion in multiplex networks, respectively. Comparing the curves obtained
by the two methods, we find good agreement between MMCA iterations
and MC simulations in calculating the epidemic and awareness prevalence,
no matter in the two-layer ER networks or the two-layer scale-free networks.

Fig. 3. Comparisons between MMCA analytical results and MC simulations. (a)
and (b) represent ρI as a function of β, and ρA as a function of β in multiplex
networks, respectively. The rest of the values of parameters are δ = 0.3, γ = 0,
α = 0.5, R = 1.
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We also conduct corresponding numerical simulations for different values of
α (not shown in the paper), and find that the MMCA iterative method can
well agree with MC simulations whatever α is. Our results show that the
MMCA method has good accuracy in solving the proposed coupling dynam-
ics problem. In addition, a slight discrepancy between MMCA iterations
and MC simulations is observed, which may be caused by the hypothesis of
the absence of dynamical correlations in the MMCA method.

4.2. Effects of network topology

To investigate the effects of network topology on epidemic spreading
dynamics under our model, we explore the density of infected individuals
ρI as a function of disease transmission rate β in different topological struc-
tures. When we investigate the impact of topological structure on the disease
spreading, without loss of generality, the resource allocation coefficient is set
as α = 0.5, and the forgetting rate of awareness is set as δ = 0.3. At the
same time, for the sake of simplicity, if a node is aware of the disease, we
assume that the node will not get infected, that is, γ = 0, and such a setting
will not affect our exploration of the essence of the problem.

Figure 4 shows the disease spreading results in the two-layer ER networks
with average degree 〈k〉 = 7 (black squares) and the two-layer SF networks
with different degree exponents using MC simulations. Observing Fig. 4,
we see that the epidemic thresholds of disease in the two-layer scale-free
networks are smaller than that in the two-layer ER networks under our
model. On the other hand, note that the smaller the degree exponent of the
two-layer scale-free networks is, the lower the epidemic threshold is, which

Fig. 4. The effects of network topology on epidemic spreading. The curves show
the density of infected nodes ρI as a function of β in the two-layer ER networks
and the two-layer SF networks with different degree exponents. Other parameters
are set to be δ = 0.3, γ = 0, α = 0.5, R = 1.
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is qualitatively the same as in single networks [8, 36]. This may be due to
the fact that the scale-free network is heterogeneous, and when the degree
exponent of the network decreases, the heterogeneity of network increases,
and more hub nodes emerges. In this model, each susceptible individual will
be in full contact with his or her infected neighbors, which means that the
hub nodes will get infected with a greater probability than other small-degree
nodes. If a hub node is infected, the infection risk of the susceptible nodes
around it will increase. More hub nodes will further increase the infection
probabilities of other nodes. Therefore, in our model, disease spreads more
easily in a network with strong degree heterogeneity. This indicates that
epidemic spreading in a strong heterogeneity of scale-free network requires
more control.

4.3. Effects of resource allocation coefficient

In this section, we investigate the impact of resource allocation coeffi-
cient α on disease spreading. In the numerical experiments, we adopt the
network setup and parameter settings (except for α) of Fig. 3 to examine
the density of infected individuals ρI as a function of β and α in two-layer
ER networks and two-layer scale-free networks. Figure 5 shows the phase
diagrams of the relation among them.

Fig. 5. Dependence of infection density ρI on parameters β and α. (a) and (b)
represent the experiments in the two-layer ER networks and two-layer SF networks,
respectively. Other parameters are set to be δ = 0.3, γ = 0, R = 1.

Figure 5 (a) and (b) shows that in our model, there is a peak in the
phase diagram of both the two-layer ER networks and the two-layer scale-
free networks. Interestingly, the peak is between 0.2 and 0.3 in both mul-
tiplex networks. We define the resource allocation coefficient correspond-
ing to the peak position as the optimal resource allocation coefficient αopt.
When α = αopt, the epidemic threshold of disease reaches the maximum
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value, which means that such a resource allocation strategy can suppress
the spread of epidemics to the greatest extent. By further observation in
Fig. 5 (a) and (b), we see that when α < αopt, the density of infected in-
dividuals ρI is significantly lower than that of α > αopt. Such experimental
results indicate that when the resource allocation coefficient cannot reach
αopt, it is a better allocation strategy to suppress the spread of epidemics by
investing most of the resources for patients’ recovery while a small amount of
resources for improvement of susceptible individuals’ awareness. It can also
be seen from the figure that when α > αopt, the larger α is, the more likely
disease outbreaks. Especially, when α → 1, a small disease transmission
rate β will lead to a large-scale outbreak of disease on the network. This
phenomenon shows that, if the public resources completely focus on raising
awareness, it cannot achieve the goal of suppressing epidemics spreading and
may even cause a waste of resources in disease prevention and control. A
possible reason for this phenomenon is that when the value of α is too large,
almost all resources are devoted to improve disease-related awareness, re-
sulting in the public resources on the treatment of disease not being able to
meet the recovery needs of patients. Therefore, even a small disease trans-
mission rate can lead to a large-scale outbreak of disease on the network.
Meanwhile, we also notice a certain difference of the optimal resource al-
location coefficient between the two-layer ER networks and the two-layer
scale-free networks. However, the difference is unobvious, and both of op-
timal allocation coefficients are relatively small. This indicates that for no
matter what kind of network structure, in the disease control, we cannot
neglect to improve individuals’ awareness of disease as has been proved in
the previous study [15, 17] that awareness has an important influence on
epidemic spreading. Therefore, it is necessary to invest a certain amount
of resources to facilitate awareness diffusion. On the other hand, to sup-
press the outbreak of disease as a whole, we must focus on the treatment of
patients and increase the investment in disease treatment.

To prove the robustness of the above results, we first explore how net-
work structure affects the resource allocation strategy. In the numerical
experiments, we adopt the network construction mode and parameter set-
tings (except for α) of Fig. 3 (b) to explore the epidemic threshold βc as a
function of α in the two-layer scale-free networks with different degree ex-
ponents. The epidemic thresholds βc are calculated by using Eq. (16), and
Fig. 6 shows the relation curves between βc and α. As can be seen from
the figure, there is always a peak in the two-layer scale-free networks with
different degree exponents, which means that optimal resource allocation
coefficient exists in different network structures under our model. More-
over, we notice that in Fig. 6 the stronger the heterogeneity of the two-layer
scale-free networks, the smaller the value of the optimal resource allocation
coefficient, which indicates that we should allocate more public resources
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Fig. 6. The impact of network structure on the resource allocation strategy. The
curves show the epidemic threshold βc as a function of α in two-layer scale-free
networks with different degree exponents. Other parameters are set to be δ = 0.3,
γ = 0, R = 1.

on disease treatment in a more heterogeneous network. A possible reason
for this phenomenon is that the stronger the heterogeneity of network, the
more hub nodes will emerge. In our model, the hub nodes are more likely to
be infected or gain disease-related awareness than other small-degree nodes,
thus the increase of hub nodes further increases the probabilities of other
nodes getting infected and gaining disease-related awareness. Therefore, the
density of infected individuals and the density of aware individuals are rel-
atively large in the network with strong heterogeneity. As a result, to hold
back the spread of epidemics, we should allocate more resources on disease
treatment to reduce the scale of disease infection. At the same time, by
comparing Fig. 5 and Fig. 6, we find that the values of optimal resource
allocation coefficients in different network structures are all relatively small,
which leads to the same conclusion as above.

We next investigate how the size of network influences the resource al-
location strategy. We perform numerical experiments in multiplex networks
with network sizes N = 1000, N = 2000, N = 5000, and N = 10 000,
respectively. In our experiments, the average degree of physical layer in
two-layer ER networks are set as 〈k〉 = 7, the degree exponents of physical
layer in two-layer scale-free networks are set as γs = 2.4, and the structures
of virtual layer are set to randomly add 400, 800, 2000, and 4000 new edges
on the basis of the structure of physical layer. The parameter settings (ex-
cept for α) are the same as in Fig. 3. Figure 7 shows the curves of epidemic
threshold βc as a function of α, and the epidemic threshold βc is calculated
by using Eq. (16). From Fig. 7 (a) and (b), there are peaks in curves of
different network sizes, which indicates that the optimal resource allocation
coefficient exists in different sizes of network in our model. In addition, we
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Fig. 7. The impact of network size on the resource allocation strategy in different
multiplex networks. The curves of (a) and (b) show the epidemic threshold βc as
a function of α in two-layer ER networks and two-layer scale-free networks with
different network size, respectively. Other parameters are set to be δ = 0.3, γ = 0,
R = 1.

find that the values of the optimal resource allocation coefficients in both the
two-layer ER networks and the two-layer SF networks are close to the above
experiments, all of which are relatively small. Such results show that our
conclusion is valid at different network sizes. Moreover, we investigate the
impact of resource allocation coefficient on disease spreading when values
of δ are different, see Fig. 8. The theoretical result shows that the optimal
resource allocation coefficient exists in different values of δ. It should be
pointed out that when δ = 0, all individuals will become aware as time goes
on. According to our model and parameter settings, we obtained βA = 0,
which means all individuals with awareness will not infect. Therefore, the
optimal resource allocation coefficient does not exist.

Fig. 8. The impact of awareness forgetting rate on the resource allocation strategy.
The curves show the epidemic threshold βc as a function of α in two-layer scale-free
networks with different δ. Other parameters are set to be γ = 0, R = 1.
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4.4. Effects of immune degree γ

It is worth mentioning that the above experiments have always set the
individuals with awareness completely immune to the epidemic (i.e. γ = 0),
which is obviously a very idealized setting. However, in real life, for almost
all diseases, the individual can still get infected even if he or she has disease-
related awareness. Therefore, in this section, we further investigate the
spread of disease at different immune degrees. In our experiments of this
part, the network setup and parameter settings (except for γ) are consistent
with Fig. 3 (b).

Figure 9 (a)–(d) shows the phase diagram of the infection density ρI as
a function of the two-parameter (β, α) space using MC simulations when
γ = 0.25, γ = 0.5, γ = 0.75, and γ = 0.9, respectively. Note that there
are peaks of the phase diagrams in Fig. 9 (a)–(d) that is similar to Fig. 5,
and the resource allocation coefficient corresponding to the peak position
decreases with the increase of immune degree γ. The results show that the

Fig. 9. Dependence of infection density ρI on parameters β and α. (a), (b), (c),
and (d) represent the phase diagrams of γ = 0.25, γ = 0.5, γ = 0.75, and γ = 0.9

in the two-layer SF networks, respectively. Other parameters are set to be δ = 0.3,
R = 1.
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optimal allocation coefficient of resources still exists in the case of γ 6= 0,
and the value of the coefficient is still relatively small. On the other hand,
the weaker the immunity of disease-related awareness to the epidemic is, the
more resources we should allocate to the disease treatment. In particular,
when γ ≈ 1 in Fig. 9 (d), i.e., there is no effect of disease-related awareness
on disease spreading, the optimal allocation coefficient of resources is zero.

5. Discussion and conclusions

In this paper, we propose a UAU–SIS model in the two-layer multiplex
networks to simulate the coupled dynamical process of disease and awareness
under resource control. In our model, both the recovery rate of disease and
the diffusion rate of disease-related awareness are related to the amount of
public resources, and a parameter α is introduced to adjust the allocation of
resources between them. Based on the microscopic Markov chain approach,
we have established the dynamically evolutionary equations for different
states and analytically derived the expression of the epidemic threshold of
disease. The results of theoretical iterations are in good agreement with
the results of Monte Carlo simulations when performing verification in net-
work with different structures. From extensive numerical simulations, the
epidemic threshold decreases gradually with the increasing of the hetero-
geneity of the two-layer networks. In particular, we have obtained optimal
allocation coefficients αopt in the two-layer ER networks and the two-layer
scale-free networks. Besides, the values of αopt are relatively small, which
means that we should allocate more resources on disease treatment. More-
over, we have demonstrated the robustness of αopt in two-layer scale-free
networks with different heterogeneities and sizes. Finally, in our model, the
larger the value of immune degree γ is, the smaller the value of the optimal
allocation coefficient is.

Our findings reveal that the allocation of public resources between disease
treatment and awareness diffusion plays a crucial role in suppressing the
spread of epidemics. Therefore, when formulating disease prevention and
control strategies, policymakers must consider the important influence of
disease-related awareness on epidemic spreading, and a part of the resources
should be invested to promote awareness diffusion. In addition, to suppress
the outbreak of disease as a whole, it is necessary to give priority to the
disease treatment, that is, most of the resources should be used to help
patients recover.

In our study, the effects of public resources on disease treatment and
awareness diffusion are considered, but in reality, social support from fam-
ily and friends [22] also affects patients’ recovery and awareness diffusion.
Therefore, it will be an interesting topic to study the allocation strategies of
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a hybrid resource between disease and awareness. In addition, our research is
based on the SIS model, and the SIR (susceptible–infected–recovered) model
[37] and other epidemiological models can be considered in future work.
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