
Vol. 51 (2020) Acta Physica Polonica B No 9

ON GENERALIZED FORCES IN
HIGHER DERIVATIVE LAGRANGIAN THEORY

Mathieu R. Beau

Dublin Institute for Advanced Studies, School of Theoretical Physics
Dublin 4, Ireland

and
Department of Physics, University of Massachusetts, Boston, MA 02125, USA

(Received March 26, 2020; accepted July 9, 2020)

In this article, we introduce higher derivative Lagrangians of this form
α1Aµ(x)ẋ

µ, α2Gµ(x)ẍ
µ, α3Bµ(x)

...
xµ, α4Kµ(x)

....
x µ, . . . , that generalize the

electromagnetic interaction to higher order derivatives. We show that odd
order Lagrangians describe interactions analog to electromagnetism, while
even order Lagrangians are similar to gravitational interaction. From this
analogy, we formulate the concept of the generalized induction principle
assuming the coupling between the higher fields U(n),µ(x), n ≥ 1 and the
higher currents j(n)µ = ρ(x)dnxµ/dsn, where ρ(x) is the spatial density
of mass (n even) or of electric charge (n odd). In short, this article is
an invitation to reflect on a generalization of the concept of force and of
inertia. We discuss the implications of these paradigms more in depth in
the last section of the paper.
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1. Introduction

In 1850, Mikhaïl Ostrogradsky introduced the idea of higher deriva-
tive Lagrangians, see [1]. The concept generalizes Newtonian mechanics
to the case of forces that can depend explicitly on velocity, acceleration,
and higher order derivatives, such as jerk, snap, etc. Generalized mechan-
ics with higher derivative Lagrangians has been extensively studied and is
ubiquitous. Some examples include classical mechanics [2–6], quantum me-
chanics [7–9], relativistic mechanics [10, 11], the well-known Pais–Uhlenbeck
oscillator [12, 13] and generalized electrodynamics [14, 15], higher-derivative
scalar field model [16, 17], and classical rigid string [18–20]. Interestingly,
the model is also applied to polymer physics [21], formation of microemul-
sions [22], and membrane biology [23–25]. However, to my knowledge, there
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is no article dealing with relativistic higher derivative Lagrangians of this
form

L̃
(
ẋ, ẍ, . . . , x(n)

)
= α1Aµ(x)ẋ

µ+α2Gµ(x)ẍ
µ+ · · ·+αnU(n)µ(x)x

(n)µ , (1)

where x(n)(s) ≡ dnx(s)/dsn are the n-derivatives of the position (ds = cdτ ,
where τ is the proper time), and U(n)µ(x), n = 1, 2, 3, . . . are the general-
ized vector-fields coupling linearly with the x(n) vectors. Here, we denote
the field U(1)µ(x) = Aµ(x) to refer to the electromagnetic potential and
U(2)µ(x) = Gµ(x) by analogy with the geodesic equations, we obtain in
equation (4). In this article, we first derive the equations of motion of a
massive particle experiencing interactions described by the Lagrangians of
the form of (1) and show that odd and even orders Lagrangians are analo-
gous to the electromagnetic and the gravitational interaction, respectively.
Next, we generalize the concept of electromagnetic induction assuming the
coupling between the higher fields U(n),µ(x), n ≥ 1 with the higher deriva-
tive currents j(n)µ = ρ(x)dnxµ/dsn, where ρ(x) is the spatial density of
mass (n even) or of electric charge (n odd). In the last section, we discuss
the applications of the model to microscopic physics and general relativity.

2. Equations of motion of a massive particle

In this section, we analyze the equations of motion of a massive particle
experiencing the action defined by

S =

∫
dsL0 (ẋ) +

∫
dsL̃

(
ẋ, ẍ, . . . , x(n)

)
,

where L0(ẋ) ≡ mc2

2 ẋµẋ
µ and where the interaction Lagrangian L̃ is given by

equation (1).

2.1. Second and third order Lagrangians

First, we consider the case of n = 2 and n = 3. By integration by parts
for n = 2, we find the following action [4]:

S̃ = α1

∫
dsAµ(x)ẋ

µ − α2

∫
ds (∂νGµ) ẋ

µẋν , (2)

and one can see that the first part of the action S̃ is similar to the elec-
trodynamics action, whereas the second part is similar to the gravitational
action. Indeed, from the generalized Euler–Lagrange equations (see [2–6]),

d2

ds2

(
∂L

∂ẍµ

)
− d

ds

(
∂L

∂ẋµ

)
+

∂L

∂xµ
= 0 , (3)
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with L = L0 + L̃, we obtain

mc2ηµν ẍ
ν − α2εµν ẍ

ν − α2∆µνσẋ
ν ẋσ = −α1Fµν ẋ

ν , (4)

where εµν and ∆µνσ are defined by

εµν ≡ ∂µGν + ∂νGµ , (5a)

∆µνσ ≡ ∂ν∂σGµ =
1

2
(∂νεµσ + ∂σεµν − ∂µενσ) , (5b)

and where Fµν ≡ ∂µAν−∂νAµ has a mathematical form that is similar to the
Faraday tensor. From equations (4) and (5a)–(5b), one can see the analogy
with the equations of motion of a charged particle in a gravitational field
and in an electromagnetic field. However, the fixed metric (or background
metric) is Minkowskian. Then, the quadrivector field Gµ(x) can be seen
as a displacement vector field and εµν can be viewed as a strain tensor by
analogy with the deformation theory of a continuous medium [26, 27].

Now, we take n = 3 and denote U(3)µ ≡ Bµ. From the generalized
Euler–Lagrange equations

− d3

ds3

(
∂L

∂
...
xµ

)
+

d2

ds2

(
∂L

∂ẍµ

)
− d

ds

(
∂L

∂ẋµ

)
+

∂L

∂xµ
= 0 , (6)

we derive the following equations of motion:

mc2ηµν ẍ
ν − α2εµν ẍ

ν − α2∆µνσẋ
ν ẋσ

+α3Hµν
...
x ν − α3Υµνσρẋ

ν ẋσẋρ − 3α3Σµνσẍ
ν ẋσ = −α1Fµν ẋ

ν , (7)

where 
Hµν ≡ ∂µBν − ∂νBµ

Σµνσ ≡ ∂ν∂σBµ

Υµνσρ ≡ ∂ν∂σ∂ρBµ

. (8)

We can see that this field generalizes the idea of the electromagnetic field
since Hµν is antisymmetric. However, in (7), there are some other fields,
similar to ∆µνσ, coupling with the combinations of the odd derivatives of
xµ, i.e. ẍν ẋσ and ẋν ẋσẋρ.

2.2. Higher order Lagrangians

Now, we shall discuss the higher derivative terms. For n = 4, we de-
note the field Kµ(x) ≡ U(4)µ(x). The dynamic equations have a simi-
lar structure to the one we obtained for Gµ(x) (i.e. for n = 2). As it
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has been shown in the non-relativistic theory [4], we notice that the La-
grangian α4xµ

....
x µ is equivalent to the Lagrangian α4ẍµẍ

µ, and the quan-
tity α2ẋ

2 + α4ẍµẍ
µ − 2α4ẋµ

...
xµ could be interpreted as a more general ki-

netic energy [6]. Similarly, the Lagrangian α4Kµ(x)
....
x µ is equivalent to

α4 (∂νKµ) ẍ
µẍν + α4 (∂σ∂νKµ) ẍ

µẋν ẋσ, which has a more complicated ex-
pression than the one we obtained for the special case of Kµ(x) = xµ.

To finish this section, let us now consider the generalized fields U(n)µ(x),
n ≥ 1. From the generalized Euler–Lagrange equations

n∑
k=0

(−1)k
dk

dsk
∂L

∂x(k)µ
= 0 ,

we find terms of the form of ∂µ1 . . . ∂µpU(n), p = 1, . . . , n multiplied by
the combination of the derivatives x(l1)µ1x(l2)µ2 . . . x(lp)µp ,

∑p
j=1 lj = n. The

equations of motion show that the “even” n-fields are analogous to the “grav-
itational field”, while the “odd” n-fields are analogous to the “electromag-
netic field” as the derivatives x(n)µ are multiplied by the symmetric (if n is
even)/antisymmetric (if n is odd) part of the first derivative of the field

(∂µUν + (−1)n∂νUµ)x
(n)ν .

We will see the consequences of this remark in the next section.

3. General fields hypothesis

In this section, we propose to formulate a dynamical theory of the gener-
alized vector fields introduced above. We introduce a generalized induction
principle, analogous to the electromagnetic induction.

3.1. Construction of the n =2-field equations by analogy
with the vectorial electromagnetic field

In equation (1) for n = 2, we notice that the field Gµ is coupled with
the acceleration of the particle as the field Aµ is coupled with the velocity of
the particle. By analogy with the construction of the electromagnetic field
theory, we suggest the following field equations:

∂µε
µν(x) = −κj(2)ν(x) , (9)

where the acceleration current density j(2)ν (generally non-conserved) is

j(2)ν(x) ≡ ρm(x)c
2du

ν

ds
, (10)
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where ρm(x) is the density of particles and duν

ds is the 4-acceleration. This
equation is the analog of the Gauss–Ampère law in electrodynamics ∂µFµν =

µ0j
(1)ν , where j(1)ν is the 4-electric current density. Notice that we can

rewrite the coupling constant κ as follows:

κ =
8πGλ2

c4
,

where λ has the dimension of a length.
To complete the system of field equations, we need ten additional equa-

tions
∂σ∂

σεµν + ∂µ∂νε
σ
σ = ∂µ∂

σεσν + ∂ν∂
σεσν . (11)

Equations (11) have the same form as the compatibility equations for the
strain tensor in the three-dimensional non-relativistic theory of deformation
of continuous media [26, 27]. There are also the analog of the Gauss–Faraday
equations ∂µFνσ + ∂νFσµ + ∂σFµν .

After combining the last two groups of equations (9)–(11), we can easily
derive the wave equations

2ενσ(x) + ∂ν∂σε
µ
µ(x) = −κξ(2)νσ (x) , (12)

where ξ(2)νσ (x) ≡ ∂σj
(2)
ν (x) + ∂νj

(2)
σ (x). Moreover, the trace of εµν satisfies

the equation

2εµµ(x) = −κ∂µj(2)µ(x) , (13)

which means that εµµ is a non-massive scalar field. It is worth mentioning
that the trace of the strain tensor is usually interpreted as the contrac-
tion/dilation of the volume of the continuous medium [26]. Hence, from
equation (13), we conclude that the relativistic deformation of the volume
of a four-dimensional continuous medium is related to the non-conservation
of the current j(2).

3.2. Generalization to the n-field equations

Now, we can generalize the construction of the general field theory for
any n ≥ 1. Following the rules mentioned above, we rewrite the constants
in (1) as α2n = mc2(λn)

2n and α2n−1 = q (ξn)
2n−2

c2n−2 , n ≥ 1, where λn and
ξn are fundamental constants that have the dimension of length and G is
the universal gravitational constant. We denote m and q the mass and the
electric charge of the particle, respectively.

It comes naturally that for so-called gravitational-type fields U(2n) ≡
G(n), n ≥ 1, the coupling has the form of

−8πG

c2
(λn)

2n

c2n
G(n)µ(x)j

(2n)µ(x) , (14)
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whereas for the so-called electromagnetic-type fields U(2n−1) ≡ A(n), n ≥ 1,
the coupling reads

µ0
(ξn)

2n−2

c2n−2
A(n)µ(x)j

(2n−1)µ(x) , (15)

where A(n)µ has the dimension of N×A−1 (N is the Newton and A the
Ampère), µ0 is the vacuum permeability (µ0 = 4π × 10−7 N×A−2), and
where G(n)µ has the dimension of a length. The generalized currents for
n = 1, 2, 3, . . . are constructed as follows:

j(n)ν ≡ ρm(x)
dnxν

dτn
, if n is even , (16a)

j(n)ν ≡ ρe(x)
dnxν

dτn
, if n is odd , (16b)

where ρm(x) is the mass density and ρe(x) the electric charge density. Simi-
larly to equation (9), we construct a (2n− 1)-order linear differential theory
to relate the sources and the fields

O(n)
µ (λn)ε

µν
(n)(x) = −8πG

c2
λ2nn
c2n

j(2n)ν(x) , n ≥ 1 , (17a)

Q(n)
µ (ξn)f

µν
(n)(x) = −µ0

ξ2n−2
n

c2n−2
j(2n−1)ν(x) , n ≥ 1 , (17b)

where O(n)
µ (λn) and Q

(n)
µ (ξn) are two (2n − 1)-order differential operators

and where εµν(n)(x) ≡ ∂µGν(n) + ∂νGµ(n) and f
µν
(n)(x) ≡ ∂µAν(n) − ∂νAµ(n).

From those rules, we can obtain similar wave equations to (12) and (13)
with higher order differential operators (λn)

2k 22 . . .2︸ ︷︷ ︸
k times

, k = 1, . . . , n. For

example, for n = 4, we can take O(4)
µ (λ) = (λ22+1)∂µ and then we get the

wave equation for the trace of the tensor ζµν ≡ ∂µKν + ∂νKµ(
λ22+ 1

)
2ζµµ (x) = −8πGλ4

c6
∂µj

(4)µ(x) , (18)

and then 2ζµµ is a massive scalar field. Similar equations have been studied
in the context of generalized electrodynamics [14] and of higher derivative
scalar field theories [16, 17]. The difference here is that the source of the
scalar field is related to the fourth-order general current j(4)µ(x), which is
proportional to the fourth order derivative of the position (i.e., to the so-
called snap), see equation (16a).

Notice that for the electromagnetic-type fields, the choice of the field
A(n)µ is not unique because the field fµν(n) is antisymmetric. On the contrary,
all of the components of the gravitational-like fieldG(n)µ are physical because
the tensor ε(n)µν is symmetrical.
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3.3. Unitary fields

Physically, the generalized vector fields can be understood as an (n−1)th

order perturbative correction of the electromagnetic and gravitational vector
theory, i.e. A(2)µ ≡ Bµ(x) is the first order correction of the Minkowskian
theory of electromagnetism field A(1)µ ≡ Aµ. Hence, it becomes natural to
unify the gravity-type fields as well as the electromagnetic-type fields. In or-
der to unify the fields, we construct the dimensionless unification constants:

γjl =
λj
λl
, θjl =

ξj
ξl
, j, l = 1, 2, 3, . . . ,

where the constants λn, n ≥ 1 and ξn, n ≥ 1 were introduced in the previous
section.

For example, if we suppose that Aµ(x) = Bµ(x), we get the coupling

µ0Aµ(x)

(
j(1)µ(x) +

ξ2

c2
j(3)µ(x)

)
,

where we put ξ2 = ξ (we recall that α1 = 1 and α3 = ξ22/c
2). Phenomeno-

logically, this means that for an electric circuit with an intensity of this type
I(t) = I0t

2/τ2, where τ is a time constant, the third order time derivative of
the vector position of the electrons in the current is non-zero (this kinematic
quantity is called the jerk, see [29, 30]) and so the electromagnetic field
would be modified by the jerk current j(3). We mention that in the general-
ized theory of electrodynamics [14], the relation with the higher derivatives
currents (cf. Eqs. (16b) and (17b)) has not been suggested.

Similarly, we can construct the unified coupling for the even fields n = 2
and n = 4

−8πG

c2
λ2

c2
Gµ(x)

(
j(2)µ(x) + γ4

λ2

c2
j(4)µ(x)

)
assuming that Gµ(x)=Kµ(x) ≡ G(2)(x), where we put λ1=λ, γ = γ21, and
where we introduce the effective current j̃(2)µ = j(2)µ + γ4 λ

2

c2
j(4)µ. Conse-

quently, the effective strain tensor εµν that deforms the Minkowski metric is
also induced by the second order derivative of the acceleration (the so-called
snap) of the moving particles.

4. Discussion

4.1. Microscopic physics and generalized currents

The effect of gravitation at the microscopic scale is not yet well known.
It is also clear that the geometrical description of gravity fails at the Planck
scale [20]. Therefore, it is fair to ask whether the current density of acceler-
ated masses j(2) plays a significant role at this scale.
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Theoretically, it could be interesting to investigate the effect of the gen-
eralized currents j(n) on the electromagnetic and gravitational fields. We
can assume that the values of the parameters ξ and λ introduced in Sec-
tion 3.3 are very small as the physical effects of generalized currents have
never been observed. However, higher order derivatives should play a role at
the Planck scale [20, 31]. Hence, our theory of generalized fields and forces
could be relevant in high-energy particle physics. Formulating a generalized
quantum field theory is a challenging problem for future investigations.

4.2. Strain and stress tensor in general relativity

The special case of n = 2 (we consider αn≥3 = 0) has been recently
discussed in [27, 28]. It consists of a modification of the Einstein general
relativity theory (GR) that deserves to be mentioned in this paper. In this
section, we introduce the idea of a covariant strain/stress field theory in the
framework of GR.

Similarly to (5a), it is clear that the strain tensor in Riemann spaces
is given by εµν = DµGν + DνGµ, where the operator D is the covariant
derivative. We construct a stress tensor

σµν(x) = αgµνε
γ
γ + 2βεµν , (19)

where α and β are the Lamé coefficients, and where the trace εγγ corresponds
to the relative variation of the four-dimensional volume δV/V of the space-
time continuum. If one considers a hydrostatic fluid without shear stress
(i.e., β = 0), the modulus α corresponds to the bulk modulus of the medium.

In this framework, the cosmological term Λgµν in the Standard Model of
cosmology can be interpreted as a deformation of a 4-dimensional medium,
where B = −ρGc2 = Λc4

8πG corresponds to the bulk modulus for an isotropic
medium. The stress tensor (19) is then added to the Einstein field equations
of gravity

Rµν −Rgµν =
8πG

c4
(Tµν + σµν) (20)

and, subsequently, we obtain the relations

Dµσ
µν(x) +DµT

µν(x) = 0 , (21)

where Tµν is the energy-momentum tensor in the Einstein field equation.
This equation means that the total energy in the universe is conserved but
the ordinary matter–energy can be accelerated. Notice that for a general
stress tensor σµν ≡ Cµνγδε

γδ, equation (21) generalizes (12) (where for the
sake of simplicity we put α = 0 and 2β = κ−1). Gathering (20) and (21)
with the equation of fields in Tµν , we obtain an incomplete set of equations.
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Thus, there must exist an additional coupling between the matter–energy
Tµν and the strain field εµν . The construction of this coupling has been
discussed for Minkowski space in the previous sections and generalized for
GR in [27] and [28]. The idea is the following: the effective strain tensor
εµν deforms (linearly) the Lagrangian in such a way that it introduces a
coupling εµνTµν as in (2). Hence, the effect of this additional term is to
modify the standard field equations by modifying the covariant derivative D
by a linear deformation similar to the one obtained in equations (4), (7)
(deformations of η by ε). To conclude, the variation of inertia of the or-
dinary matter–energy (21) is compensated by the divergence of the stress
energy of the continuous medium. Somehow, this extension of GR revisits
Mach’s principle as the inertia (of the matter–energy) also depends on the
deformation of the curved space-time that is induced by the matter–energy
contained therein. We refer the reader to the paper of Einstein on a related
topic [32]. The relativistic theory of Aether was discussed several times, see
for e.g. [33, 34]. In the present article, our hypothesis is different and gives
a relativistic theory of the deformation of continuous media, for which the
geometry is still described by the metric field, whereas the strain tensor is
an additional field.

Beyond n = 2, the strain/stress interpretation is no longer valid and
requires an other kind of generalization of the theory of relativity. This
generalization should revisit the concept of inertia by including higher order
derivatives of the vector position, as shown in Section 2. It should also
include sources with higher derivatives, as shown in Section 3. For instance,
the energy-momentum tensor of a distribution of massive particle at the
order of λ2 should read

1

2
ρλ2

Duµ

Ds

Duν

Ds
,

where ρ is the density of mass, uµ is the covariant velocity andDuµ/Ds is the
covariant acceleration (this is the covariant version of the acceleration energy
term (mλ2/2)ẍ2 in the Pais–Uhlenbeck oscillator [12, 13]). This is beyond
the scope of this article, however, we hope this novel way of generalizing
relativity will inspire future research.
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