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In recent time, an infectious disease spreads by making the contact
with the infected agent in a population. This contact may be affected by
the movement of the infected agents in any geographical region. Most of
the studies are done by considering underlying static network topology.
The movement of agents is important to consider the underlying network
topology, which in this work is assumed random. Therefore, a new model
is desired to analyze the spreading behavior of infected disease due to the
random movement of infected agents. In this paper, we propose a geometric
network with mobile agents by considering the random movement of some
fraction of the nodes, while remaining nodes are stationary. Dynamics
of epidemic spreading is studied using the SIS and SIR models. A rest
time trest of an agent is introduced during its movement, and its effect
on the epidemic is studied. We simulate the modified epidemic model
on underlying network topologies of the geometric network with mobile
agents. It represents the real-world scenario, where agents constantly create
new connections with their movements in their regions. We also evaluate
our model using real dataset from Brightkite. The simulation results are
in accordance with our theoretical findings which show that the random
geometry of the agents, as well as the trest, affect dynamics of epidemic
spreading. The simulation on the dataset also shows the effectiveness of
our proposed framework.
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1. Introduction

As technological development increases, it leads to the new class of prob-
lems for which solutions are thought not trivial due to the complexity of the
system, e.g., complex networks, random geometric network etc. Nowadays
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many phenomena and incidents have been modeled as a network to ana-
lyze the behavior of the system, e.g., rumor spreading, epidemic spreading,
opinion dynamics [1, 2]. In recent time, many phenomena and incidents
are modeled as a network to analyze the behavior of the system [3]. Epi-
demic spreading can also be analyzed by using the concept of a complex
network [4]. The relationship between the dynamics of epidemic spreading
and the structure of the underlying network is crucial in many real cases,
such as the spreading of worms in a computer network, viruses in a human
population, or rumors in a social network [5, 6]. Recently, we have seen a
panic situation due to random virus attack on the technological network,
and Zika and Ebola viruses spread in the human population due to the
human movement from one location to another. In the human population
network, agents may be mobile due to their respective velocities and affect
the epidemic spreading in a given spatial region. The epidemic spreading in
human population may be modeled by considering random geometry of the
nodes in which a change of position is non-uniform as each node moves with
unequal velocity. A human makes connections with another human when
both come under the vicinity of connectivity radius of each other. Most of
the time, infected nodes can be immunized and become susceptible again
and then infected.

One of the important questions that may be raised for the spreading
process of the viruses in the complex network is how epidemics spread in
a random geometric network with mobile nodes. Various researches were
proposed with different facts of the virus spreading problem [7–9]. Human
interactions among individuals determine the properties and the behavior of
a human connection network. These types of interactions give rise to various
ecological networks and their mathematical representations as graphs. We
use the network for epidemic propagation in the human population.

In recent years, a lot of techniques and methods have been developed by
using mean-field theories that show new quantitative understanding of the
dynamics of epidemic processes in networks [7]. Therefore, researchers need
to focus on exploring the geometric network with mobile agents to model
the epidemic spreading in human population.

In this paper, we propose a network model with mobile nodes, based on
random waypoint mobility [10]. In random waypoint mobility, the topology
of the network is updating due to a random change of position of nodes
against the time. Therefore, it may also be called geometric network with
mobile nodes (GNMN) as geometry of the nodes is changing with the random
movement of the nodes. It is also important to study the epidemic spreading
over this GNMN. Here, any infected node should stay for some time to
infect the neighboring nodes in the given connectivity region r. If infected
mobile nodes will not stay for some time, then they may not be affecting
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the neighboring nodes in their connectivity region r. Therefore, an infected
node i affects the susceptible nodes in the given connectivity region r if it
stays for a time, tresti , during its movement. In this work, it is also studied
how this tresti time effects epidemic spreading over the network with moving
nodes. The main contribution of the work may be summarized as:

1. Every node in the population of the network may exist in any of the
states: (a) static, (b) moving with trest = 0, and (c) moving with trest.
The connections between them are established only during the rest
condition of the respective nodes. The mobile nodes cannot establish
connections in any case.

2. trest plays an important role in the epidemic spreading. Structure of
the geometric network depends upon the velocity of a nodes V and its
rest time trest, respectively. Velocity V and trest affect the number of
neighbors of a node with which it will make connections in the given
region and which it may infect as shown in Fig. 1.
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Fig. 1. Mobility and interaction with nodes.
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Time of rest, trest, plays a crucial role in the network formation. The
structure of network depends upon the velocity of the nodes, V , its rest
time, trest, and connectivity region, r, respectively. The velocity V affects
the number of neighbors of a node by which it will make connections with
the other nodes and which it may infect. If trest increases then the average
degree of network is increased. By considering the GNMN, we find out
the various properties of the network as degree distribution, average degree
〈K〉 and clustering coefficient for the proposed model. We also simulate the
epidemic models SIS and SIR for multiple instances of the network to show
the spreading of disease in the human population. The dataset of human
movement is used provided by SNAP [11] to generate a human connection
network in the spatial region. After that epidemic models SIS and SIR are
evaluated on the human connection network to validate our proposed model.

The remainder of this paper is organized as follows: Section 2 explains
the related work regarding the traditional disease model and underlying
network topology. Section 3 describes the proposed methodology. This
section explains “how the nodes move from one location to another and make
contacts with others”. Section 4 presents a simulation and result analysis. In
this section, simulations leading to the result for the proposed model for the
number of times are performed. Finally, Section 5 describes the conclusions
and outlines of future work.

2. Background and related work

In this section, we discuss two streams of relevant literature at the in-
tersection of which our work lies. First, we explore the literature of human
movement and their contact network. After that, we describe the epidemic
spreading process by considering different types of underlying networks.

There are many factors that provoke the human movement such as job,
medical facility, outing, etc. This kind of a human movement takes place
in predefined geographical region. Human movements are generally mod-
eled by using random walk or diffusion-based concept [12, 13]. Viswanathan
et al. [14] proposed the model by analyzing the monkeys and marine preda-
tors movement and explained it as a Lévi flight. However, a problem with
this model is that it assumes a human must have long-range connection that
is not true, even some animal movements do not follow the Lévi flight [15].
Bettstetter et al. [10] proposed a random waypoint mobility model for wire-
less ad hoc networks in which human can connect to the nearest sink to
transfer the data. In this model, connections can be established even if hu-
man is moving that also is not true. González et al. [16] proposed a hybrid
model by combining the Lévy flight with random walk to describe the hu-
man movement. Again, this model needs some improvement as connection
establishment cannot take place in moving condition, that will help to find
the epidemic spreading due to a local contact. In the course of research
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and development, Anderson and May, Kermack and McKendrick [8, 17] de-
fined the modern mathematical approach of infectious diseases. In recent
years, researchers and scientists are working on the real-world accuracy of
the models used in epidemiology by the integration of large-scale data sets
and the explicit simulation of entire populations down to the scale of sin-
gle individuals. These models have gained importance in the public health
domain, especially in infectious disease epidemiology. Many researchers are
supporting the use of these models as real-time ones [18, 19]. At the center
of all epidemic, modeling strategies consider the structure of human inter-
actions, mobility, and contact patterns that help to represent it in the form
of network.

The epidemic process is network-driven so it requires the understanding
of the interactions between epidemic processes and networks [20]. Tradi-
tional epidemic disease models are called compartmental models, in which
the population is divided into compartments. Recently, extensive researches
exposed that the most real-world networks are dynamic, self-organized and
heterogeneous. Singh et al. [21] proposed a method to find the influential
nodes in the networks by considering structural centrality. Based on this,
authors studied the robustness of network using targeted attack. Singh et al.
[22] studied the rumor spreading and inoculation strategy in networks. They
derived the critical inoculation value for targeted inoculation and random
inoculation. Kumar et al. [23] presented an immunization technique in which
highly connected neighbors of overlapping nodes are immunized in the net-
work. Arquam et al. [24] propose a delayed SIR model that consider the
delay in the infection process. They derive the critical threshold of infec-
tion using various underlying network structures. Singh et al. [25] studied
the impact of degree–degree correlation on the rumor dynamics and on the
inoculation strategies in the scale-free networks. Authors suggested that a
rumor threshold in random inoculation scheme is greater than the rumor
threshold in the proposed model without any inoculation scheme.

Vespignani et al. [4] proposed the epidemic spreading model on the scale-
free network to analyze the absence of epidemic threshold and its associated
critical behavior. Their proposal was based on computer virus spreading on
communication and social networks. Moreno et al. [2] presented a new epi-
demiological framework characterized by a highly heterogeneous response of
the system to the introduction of infected individuals with different connec-
tivity considering the underlying scale-free network. In this course of devel-
opment, Singh et al. [26] proposed the nonlinear spread of the rumor by in-
troducing two parameters named nonlinear exponent and degree-dependent
tie strength exponent in the SIR model. Arquam et al. [27, 28] presented a
modified SIR model, integrating temperature and considering both types of
network as homogeneous network as well as heterogeneous network. Authors
derived the basic reproduction number for both types of networks.
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Barthélemy et al. [20] presented the model that shows the effect of the
connectivity pattern of complex networks on the propagation dynamics of
epidemics with a network degree fluctuation, signaling that spreading of
epidemics takes place almost instantly in scale-free networks. Mickens et al.
[29] proposed a probabilistic queuing method that explains the spreading of
the virus in the mobile environment in which they consider only the spread-
ing during mobility. There are many types of research done for epidemic
spreading by considering a spatial network with a different measure as a
proximity network [30], while Lang et al. [31] proposed an analytical model
for SIR disease spread on the random spatial network. Buscarino et al. [32]
show the effect of the mobility of node on epidemic spreading by considering
the Lévy flight model for human movement. Therefore, researches on epi-
demic spreading are mostly done on the spatial network by considering only
moving nodes. Blyuss [33] proposed a model considering traveling of a node
between 1-dimensional regions (migrating model) without movement. He
has not considered any underlying network. Enright and Kao [34] studied
the epidemic spreading on dynamic network considering underlying tempo-
ral network, where the underlying networks are formed with the appearing
and disappearing of the link with some rate against the time. They have
not considered any parameters for the network formation.

Due to stochastic, the connecting process of the nodes shows the large-
scale variations, clustering, and communities, characterizing the connectivity
patterns of real-world systems [35, 36]. Hence, intensive research is required
for these stochastic processes on the network by considering the mathemat-
ical and computational model [37]. There are two most studied network
models named random graph and random geometric graph.

I. Random graph: Classical random graph was proposed by Erdős and
Rényi [38]. A random graph is created when a node is connected with
another node with connecting probability. It is represented byG(N, p),
where N is the number of nodes and p is connection probability.

II. Random geometric graph: A random geometric graph (RGG) is
created by randomly distributed nodes in the space and two nodes are
connected if the distance between two nodes is in a given range, called
connectivity region. A random geometric graph (RGG) [39], denoted
G(N, r), is an undirected graph created by randomly distributed N
nodes in the space and two nodes are connected if the distance between
two nodes is in a given range r.
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3. Proposed methodology

The random geometric graph is not able to explain how the positions
of nodes are changing randomly and a change of positions may be uniform
or non-uniform. Based on this assumption, Bettstetter et al. [10] proposed
random waypoint mobility model in which each node of the network may
exist in any of the following three categories in the population: (a) static, (b)
moving, and (c) rest during movement. This model was used mainly in wire-
less routing, in which cellular node changes its position due to its mobility.
On the other hand, static components are also connected with each other
in human mobility — the connection cannot be established between moving
nodes. Therefore, it is proposed that connections are established between
nodes when they are in a static state or in the rest position during movement
as mentioned in Fig. 1. Here, the node is not making any connection with
other nodes while it is moving. Topology changes when a node moves to
other geometric location and makes contact with other neighboring nodes
within connectivity region r of each other and within a given time interval.

3.1. Node distribution of GNMN

Let us consider N nodes uniformly distributed over a two-dimensional
space/region [0, a] ∈ R2. Some nodes in this region may choose a new des-
tination point during the course of movement with velocity V . The velocity
is random for every moving node, and a node moves in any direction. The
node moves from one random point to another in a given spatial region. Let
two random points (X1, Y1) and (X2, Y2) be i.i.d. in the region [0, a] and
their difference be also i.i.d. Therefore, the expected distance between two
random points is derived as [10, 40]

E[d] =

a∫

0

a∫

0

a∫

0

a∫

0

√
(X1 −X2)2 + (Y1 − Y2)2dX1dX2dY1dY2 . (1)

The expected distance is the quadruple integral of the distance formula.
It is nontrivial to find. First, we simplify it into two random variables by
focusing on a variable for the x-distance as |∆X| and a separate one for the
y-distance as |∆Y |, where |∆X| = X1−X2 and |∆Y | = Y1−Y2 [41] (Fig. 2).
Therefore, the pdf of |∆X| and |∆Y | is defined as

f∆X(x) =

{
2(a− x) , 0 ≤ x ≤ a
0 otherwise , (2)

f∆Y (y) =

{
2(a− y) , 0 ≤ y ≤ a
0 otherwise . (3)
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(a, 0)

(0, a)

(X1, Y1)

(X2, Y2)
|∆X| = X1 −X2

√
(∆X2 + ∆Y 2)

|∆Y | = Y1 − Y2

Fig. 2. Distance between the points (X1, Y1) and (X2, Y2) is given by√
(X1 −X2)2 + (Y1 − Y2)2.

The expected distance between two random points is calculated by multi-
plying pdfs mentioned in Eq. (3), and the integral becomes the following [42]:

E[d] =

a∫

0

a∫

0

4(a− x)(a− y)
√
x2 + y2dxdy . (4)

Therefore, the expected distance E[d] between any two random points
in two-dimensional area [0, a] ∈ R2 is given by 0.521 × a [10]. When any
node reaches the destination point, then there is a chance that it will rest
for a certain time, trest, and again start moving (Fig. 3). The transmission
of epidemic takes place through an infected moving node, when it will stay
for some time, trest.

X1,Y1
X2,Y2 X3,Y3

X4,Y4
X5,Y5

tmove3

trest2 trest3

trest4

trest1

tmove1

tmove2

tmove4

A B

r

Node are connected when they overlap

A B

Node A is moving
towards node B

(a) Random movement and rest time of a node (b) Connection between nodes when
two nodes A and B come under con-
nectivity region(r) of each other

Fig. 3. Mobility and connectivity pattern of a node in geometric space in the
Random Mobile Network Model.
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A node may remain in the stationary state with a probability, pstat.
Therefore, (1− pstat) is the probability of a node to be in the mobile state.
An example is when some fraction of humans is spread in a given geo-
graphical region by using some communicating mediums or stays at a fixed
location. It is important to define the spatial distribution of the nodes in a
network. In the proposed model, the movement of nodes is considered to be
Brownian [43]. In the Brownian motion, a particle moves in any direction
with random velocity, likewise, human mobility is also in any direction with
random velocity. In this mobility model, the mobility of each node is inde-
pendent of the others, and nodes move with the random velocity V . The
duration of the movement time of the node, represented by tmove, depends
on the distance between the starting and ending point of the movement and
the velocity of a moving node, as shown in Fig. 4.

tmove1 tmove2
tmove3 tmove4

time = 0 time = t

tmovejt

trest1 trest2
trest3 trest4

Fig. 4. Movement of a node from a source to destination and how a node changes
from the moving state to rest state.

Hence, expected movement time is E[tmove] = E[d]
E[V ] . Let m(t) denote the

total number of movement completed just before time t, where t is very large,
and tmovej denotes the duration of jth movement of a node with velocity V ,
therefore, probability that any node is resting at time trest is given by

prest = lim
t→∞

∑m(t)
j=1

trest
trest+tmovej

m(t)
. (5)

By the law of large numbers,

presti = lim
t→∞

trest
∑m(t)

j=1
1

trest+tmovej

m(t)

= lim
t→∞

trest

((
1

trest+tmove1

)
+
(

1
trest+tmove2

)
+ . . .+

(
1

trest+tmovem(t)

))

m(t)

= lim
t→∞

trestm(t) 1
tresti+E[tmove]

m(t)

=
trest

trest + E[tmove]
,
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prest = trest
tresti+

E[d]
E[V ]

, where, E[tmove] = E[d]
E[V ] . Hence, spatial distribution of

nodes moving in R2 with a parameter pstat, trest and velocity Vi is given by
random waypoint mobility model [10].

The node may be in any state either in static or in moving state. Initially,
all nodes are static as geometric locations are assigned to nodes. After that,
certain nodes start moving. Hence, the node distribution in geometrical
region has three components: static, rest and mobile. The static component
fstat can be determined from the initial uniform distribution by observing
that a node remains static with probability pstat. Thus, we have fstat(x, y) =
pstat × f(X,Y )(x, y) independent of the time t at which the node is static. If
pstat is the probability of a node to be static, then probability of a node to
be in rest during movement will be (1 − pstat)prest. Hence, probability of
the moving node is (1− pstat)(1− prest). Then distribution of a node to be
mobile is dependent on probability of a moving node. Hence, the combined
node distribution is given as

fX,Y (x, y) =





pstat × f(X,Y )(x, y)
︸ ︷︷ ︸

fstat

+ (1− pstat)prest︸ ︷︷ ︸
frest

X,Y ∈ [0, a]

+

(1− pstat)(1− prest) 36
xy

a4

(
1− x

a

)(
1− y

a

)

︸ ︷︷ ︸
f(X,Y )move(x,y)︸ ︷︷ ︸

fmove

0 otherwise .
(6)

The component fstat gives the pdf of the stationary component, while
the component fmove gives the pdf of the mobile component. The pdf de-
fined in Eq. (6) reflects the spatial structure of the real-world problem of
human movement. We assume that during the movement any node cannot
spread the epidemic while it comes within a connectivity region (r) of other
nodes also called connecting radius. Therefore, we are not considering any
connection during the movement of nodes. The probability of a node to
be within the connectivity region, r, with respect to another random node
during movement, when any node i is at location (xi, yi) is

PrM(xi, yi) =

yi+r∫

yi−r

xi+
√

r2−(y−yi)2∫

xi−
√

r2−(y−yi)2

fX,Y move
(x, y)dxdy . (7)

We are not considering the edges created during movement of nodes. Hence,
the probability of a node to be within connectivity region, r, with respect
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to another random node when node is static is

PrS((xi, yi)) = 1− PrM(xi, yi) . (8)

The probability of having k neighbors of a node at location (xi, yi) is
calculated as

Pr(xi, yi, k) =

(
N − 1
k

)
(PrS(xi, yi))

k (1− PrS(xi, yi))
N−k−1 , (9)

where k is the degree of a node while a node is in static or in rest during
the movement of a node with random geometry, where k ∈ [0, N − 1]. If a
node is moving for a time span, its degree is kept changing with its motion.
The average probability of a node over the entire area that a node has k
neighbors is

Pr(k) =

∫ a
0

∫ a
0 Pr(xi, yi, k))dxdy

A
, (10)

where area A = a2. Only those nodes participate in creating network that
are either in rest or in the static state within a given time interval. Hence,
the topology of network existing in the given spatial region keeps changing
against the time. The method to create GNMN is given in Algorithm 1,
in which we choose N nodes uniformly distributed in the two-dimensional
geometrical region (a × a). Certain nodes are static with probability pstat.
Contacts are created when a node is in a static state and other nodes are in
the connectivity region of the static node. The geometry of nodes is changed
by the movement of nodes from one location to another.

3.2. Epidemic spreading in GNMN

The spread of infectious disease is a complex phenomenon depending on
various interacting factors such as environment in which the pathogen and
hosts are living that may help in growth of pathogens, population density
exposed that may have high probability to get infected, inter- and intra-
dynamics of the population that causes the spread of disease from one to
other location. The two most widely studied models are: (i) susceptible–
infected–recovered (SIR) [17] and (ii) susceptible–infected–susceptible (SIS)
models [44]. The theoretical approach of the epidemiological model is based
on the compartmental concept, in which the whole population is categorized
into compartments. In SIR model, there are three compartments: (i) Sus-
ceptible (S), (ii) Infected (I), and (iii) Recovered (R), while in SIS there
are only two compartments — Susceptible (S) and Infected (I). Individuals
in the susceptible compartment represent the group of healthy persons that
can be infected when getting in contact with infected persons. If a person
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Algorithm 1: Algorithm to create GNMN

Input: Number of nodes (N), velocity (V ), time of rest (trest),
connectivity region (r), pstat, time of movement (tmove),
dimensions (a× a) ∈ R2, d is the travel distance of a node
when it is moving

Output: Network (G) is created
Method:
two_dim = len(dimensions), positions = empty(N, two_dim)) ;
u = empty(N, two_dim);

while (True) do
while (i ≤ N ) do

X1, Y1 = Current position of nodes ;
X2, Y2 = Next position of nodes ;
d = 0.521 ∗ a ;
tmove = d

V ;
prest = trest

trest+tmove
;

q0 = prest ;
if (d 6= 0 && q0 = 0) then

Node is moving ;
break ;

else
positions[i] = X1, Y1;
New_positions[i] = X2, Y2;
if a node stays at any position during movement from
(X1, Y1) to (X2, Y2) ;
u = rand(∗positions.shape);
u is the position of a node during movement between
(X1, Y1) and (X2, Y2) ;
positions = u ∗ positions+ (1− u) ∗New_positions;
To find contacts: ;
while (j ≤ length(positions)) do

l =
√

((y − y[j])2 + (x− x[j])2) ;
l is the distance between position of two nodes ;
if (l ≤ r) then

contacts is created ;
j + +
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gets infected, it is transferred into the infected compartment. Finally, after
recovery, an infected person is moved into the recovered compartment, which
cannot be further moved into another compartment. Susceptible nodes may
be infected with the rate of β, while infected nodes become recovered with
the rate of µ, where β, µ ∈ [0, 1]. Human’s behavior, e.g., mobility pattern
and their social interactions, cannot be captured by the available classical
epidemiological models alone. We are using the SIS and SIR models to
generalize the epidemic spreading in the human population considering the
GNMN. As already explained in the available literature, epidemic outbreak
happens when the infection rate, β, exceeds the recovery rate µ [4].
3.2.1. SIS model

The rate equation for the basic SIS model without considering the net-
work topology, if the number of nodes in population is N , then the fraction
of susceptible is represented by S and the fraction of infected node by I
[44] reads

∂S

∂t
= −βSI + µI , (11)

∂I

∂t
= βSI− µI . (12)

Let us consider a node is moving in a region where many other nodes
exist. Any node i takes rest for trest time during its movement from the
source to next points during tmove time. A node will transmit the infection
to its neighbors created during trest time in the course of the movement.
Moving nodes cannot make interactions with other nodes. Therefore, infec-
tion rate of a node at trest time will be βkPr(k)trest. Let N1 nodes be in
rest during movement, where N1 = N(1 − pstat)prest. Total infection rate
will be

∑N1−1
k=1 βkPr(k)trest. Based on these assumptions, epidemic spread,

if the following condition occurs, is given as
N1−1∑

k=1

βkPr(k)trest > µtrest .

In this duration, infected nodes will come out with their infectious con-
tact. Applying the network parameter into equations (11), (12), we obtain

∂S

∂t
= −βkPr(k)trestSI + µItrest , (13)

∂I

∂t
= βkPr(k)trestSI− µItrest . (14)

Equations (13) and (14) give the rate of change in susceptible and in-
fected populations respectively. Based on this model, simulation has been
done and the result is concluded.
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3.2.2. SIR model

The rate equation for the SIR model without considering the network
topology, if the number of nodes in population is N , then S + I + R = 1,
where S, I, and R are the fraction of susceptible, infected and recovered
population, respectively, is as follows:

∂S

∂t
= −βS(t)I(t) , (15)

∂I

∂t
= βS(t)I(t)− µI(t) , (16)

∂R

∂t
= µI(t) , (17)

∂S

∂t
= −βkPr(k)trestSI , (18)

∂I

∂t
= βkPr(k)trestSI− µItrest , (19)

∂R

∂t
= µItrest . (20)

Equations (18), (19) and (20) give the rate of change in susceptible,
infected and recovered populations, respectively. Based on this model, sim-
ulation has been done and the result is concluded.

4. Simulation and results

To study the dynamics of epidemics in GNMN, modified SIS and SIR
models are used. First, we simulate the proposed model by considering the
mobility and epidemic parameters. After that, we analyze the dataset of
human movement to validate our proposed model.

4.1. Simulation setup

Simulations for the proposed model are done in a 2-D region of 2500
meter square. Nodes movement is guided by the GNMN based on the ran-
dom waypoint model [10]. To emphasize the impact of mobility on network
modeling, we typically use rest times, trest, of a node; connectivity region, r,
for each node is taken 2m.

The simulations done in paper are categorized as follows:

1. RGG model and proposed GNMN.
2. SIS and SIR models on proposed GNMN.
3. SIS and SIR models using real dataset which support human network

with mobile human network created from dataset.
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The list of parameters taken in the simulations is presented in Table I.

TABLE I

Simulation parameters for GNMN.

Name of parameter Value

Nodes 2000
Simulation area (a× a) 2500 m× 2500m
Square length (a) 2500m
Connectivity region (r) 2m
Spreading rate (β) 0.8
Recovery rate (µ) 1
Time of rest (trest) Random (3,50) s
Threshold time for connectivity (tthreshold) 3 s
pstat 0.2
Expected length between two random points 0.521× a
Velocity (V ) Random (1.0)m/s

Initially, a GNMN is generated by using parameters mentioned in Table I.
We run the simulation for 1000 time steps for 100 network configurations
for a single experiment, where the average degree and clustering coefficient
of each configuration is recorded after each 10-time steps. We performed
50 independent experiments and analyzed the average degree and clustering
coefficient of each experiment.

4.2. Result and analysis of proposed model

In simulations, it is found that geometric positions of nodes are changing
due to the random mobility of the nodes with random velocity V . The
connectivity between nodes changes due to nodes’ movement. Time of rest
(trest) during movement is also randomly selected for every mobile node.
Due to the randomness in V , the structure of the network changes. The
reason for changing the network is that a geometry of each node is changing
with random velocity. It is similar to the position of a node in a random
geometric graph, where geometry of a node is random. Here, the network
with mobile nodes becomes equivalent to random geometric graph at any
instant of time. The mobility of a node with random velocity is the reason for
a node’s random geometry. Hence, the proposed model is named a geometric
network with mobile nodes (GNMN). It creates the perturbation in the
degree distributions of the network, which is calculated at different times.
Degree distribution (DD) for GNMN for two different time instances at
3rd and 7th instances is plotted to show the effect of random movement
of the nodes and trest on the network structure. It looks like a Poisson
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distribution with perturbations. In Fig. 5 (a), a degree distribution is shown
when velocity is 21m/s and trest is 15 s, while, in Fig. 5 (b), the degree
distribution is shown when velocity is 10m/s and trest is 45 s. It seems that
patterns of degree distribution of GNMN are not similar and always change
due to different velocities and trest. A change in the velocity and time of rest
affects the average degree of the network. However, the degree distribution
remains the same. If the value of trest is high, then the number of connection
increases, as shown in Fig. 5 (a) and (b).
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(a) DD of GNMN at 3rd time instances
with velocity 21m/s with trest = 15 s

(b) DD of GNMN at 7th time instances
with velocity 10m/s with trest = 45 s

Fig. 5. Degree distribution (DD) of GNMN at different time instances.

The simulations are performed for 100 instances of random movement
of nodes to generate the network topology at each instance and to see the
effects of mobility and time of rest on network properties. Average degree,
〈K〉, of the network is plotted against the velocity, V , of nodes and parameter
trest in Fig. 6. It is observed that 〈K〉 increases with the increase of time
of rest as more nodes come in contact with the resting nodes within that
time. Velocity helps to change the position of nodes resulting in the change
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Fig. 6. 〈K〉 with respect to V and trest at each time instance.
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of the network structure. Hence, 〈K〉 is also affected by velocity. trest is
responsible for the network to be dense or sparse. A node resting for longer
trest has more acquaintances than a node resting for smaller trest.

Further, simulations are performed for 50 times by considering 100 in-
stances of random movement to find the ensemble results. In Fig. 7, we
plot two properties of the formed network with mobile agents: average de-
gree 〈K〉 and the clustering coefficient, which is stochastic with respect to
the network structure that changes with the change in V and trest. 〈K〉 for
GNMN vary with high variance with time instances. At some time instances,
〈K〉 is low and at some instances, 〈K〉 is high due to the high density of the
nodes present in connectivity region r due to random movement of nodes as
well as trest which ranges from 33 to 43. The average degree, 〈K〉 of each
experiment is plotted in Fig. 7 (a). The clustering coefficient of a node is
defined as a measure of the degree to which nodes form tightly knit groups.
The clustering coefficient of the network is also changing with respect to the
network structure in GNMN, due to variation in average degree as clustering
coefficient is inversely proportional to the average degree [45]. The average
clustering coefficient of each experiment is plotted in Fig. 7 (b). It ranges
from 0.52 to 0.54.
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Fig. 7. Network characteristics of GNMN after 50 experiments.

In Fig. 8 (a), error bars are plotted to show the variance in degree of
geometric network with mobile nodes. The variance in average degree is
very high at some time instance and sometimes it is low due to a random
movement and time of rest of nodes. Error bars are also plotted in Fig. 8 (b)
to show the effect of mobility on the clustering coefficient.

Average degree 〈K〉 and clustering coefficient of RGG for 50 independent
experiments are plotted in Fig. 9 for the same number of nodes. Average
degree of RGG ranges from 204 to 215, while clustering coefficient ranges
from 0.650 to 0.658. It is observed that average degree and clustering coeffi-
cient of RGG are greater than GNMN since in RGG, all nodes are statically
positioned at geometric location, while in GNMN, some nodes are mobile.
Therefore, remaining static nodes participate in creating the network in
GNMN.
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Fig. 8. Error bars showing the fluctuation on network characteristics of GNMN
after 50 experiments.
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Fig. 9. Network characteristics of RGG after 50 experiments.

We list the result of RGG and GNMN in Table II. The table shows that
the average degree of RGG is 210, while the average degree of GNMN is 38.
It is found that GNMN is more sparse than RGG in nature as the number of
connections in GNMN is less than RGG. The average clustering coefficient
of GNMN is also less than RGG as it is 0.654 in the case of RGG, while
ensemble clustering coefficient of GNMN is 0.533.

TABLE II

Average degree and clustering coefficient of RGG and GNMN.

Name of parameter RGG GNMN

Average degree 210 38
Clustering coefficient 0.654 0.533
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4.3. Analysis of real-world dataset

To validate this proposed work, dataset named Brightkite is taken from
the Stanford Large Network Dataset Collection — SNAP: Stanford [11].
This data allows for studying human mobility. In the broader context, mod-
eling the human movement based on geographic location has many applica-
tions such as urban planning, understanding human migration patterns and
the spread of diseases. Total human movement data is for 2 years and 58 228
number of person. They provide data in the format shown in Table III.

TABLE III

Brightkite dataset details.

user check_in time latitude longitude location_id

58186 2008-12-03T21:09:14Z 39.633321 −105.317215 ee8b88dea22411
58186 2008-11-30T22:30:12Z 39.633321 −105.317215 ee8b88dea22411
58186 2008-11-28T17:55:04Z −13.158333 −72.531389 e6e86be2a22411
58186 2008-11-26T17:08:25Z 39.633321 −105.317215 ee8b88dea22411
58187 2008-08-14T21:23:55Z 41.257924 −95.938081 4c2af967eb5df8
58187 2008-08-14T07:09:38Z 41.257924 −95.938081 4c2af967eb5df8
58187 2008-08-14T07:08:59Z 41.295474 −95.999814 f3bb9560a2532e
58187 2008-08-14T06:54:21Z 41.295474 −95.999814 f3bb9560a2532e
58188 2010-04-06T06:45:19Z 46.521389 14.854444 ddaa40aaa22411

...
...

...
...

...

We process this dataset according to check-in behavior of users. We are
interested in understanding how people move from one to another location
and how much time they rest during the movement. The dataset is divided
into 10 parts based on the check-in times. Data is further processed by
splitting the region based on the area of 25 000 m × 25 000m. We are not
considering such a type of nodes in network formation which belongs to two
regions simultaneously. This creates 7 network structures in a given spatial
region. According to the dataset, we infer the information listed in Table IV.

When we analyze the dataset, a node is considered in rest if its velocity is
less than 1 km/h. After analysis of rest time trest during the movement, we
find that trest ranges from 2 days to 115 days. That is randomly distributed
as shown in Fig. 10 (a). Most of the nodes are in rest with rest time 12
days. Distribution of velocity of nodes is shown in Fig. 10 (b). The velocity
of nodes (V ) lies between 3 km/h to 200 km/h that is similar to proposed
quantitative analysis. Very few nodes are moving with a velocity of more
than 100 km/h. Most nodes are moving with a velocity ranging from 3 to
50 km/h.
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TABLE IV

Brightkite dataset statistics after processing.

Name of parameter Value

Total nodes 58228
Time of rest (trest) (2–115) days
Velocity (V ) (3–200) km/h
Connected nodes in each network 570, 483, 328, 184, 149, 165, 144
Edges in each network 3282, 2166, 1083, 736, 894, 656, 574
Spatial region taken (a× a) 25 000 m× 25 000m
Connectivity region r 20m
Average degree 〈K〉 in each region 6, 5, 3, 4, 6, 4, 4

(a) Average trest time of each node
in dataset

(b) Average velocity of each node
in dataset

Fig. 10. Average trest time and velocity V of nodes extracted from Brightkite
dataset.

The network is created by using the proposed model within a spatial
region and taking the value of connectivity region, r, and time of rest, trest,
from Table IV. The degree distribution of the 6-network topology of a given
spatial region defined in Table IV is plotted in Fig. 11. The degree distri-
bution of each network structure is not fixed due to mobility of nodes with
random velocity V and random trest time. Hence, each plot is different. It is
also found that the number of nodes in each network is different. Therefore,
the average degree 〈K〉 also varies as listed in Table IV. We, moreover, claim
that due to the movement of nodes with random velocity and smaller trest

time in a given spatial region, the network will be sparse and degree distri-
bution will vary in each network. Since the density of nodes depends upon
the trest time when a node is staying for longer trest, then at the same time,
other nodes from other locations move to the locations that come under the
connectivity region of the respective node.
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Fig. 11. Degree distribution (DD) of 6-human connection network created using
Brightkite dataset.

4.4. Analysis of SIS and SIR epidemic models on GNMN

The simulations are performed for epidemic spreading by using the SIS
model considering GNMN for human interaction. It clearly shows that epi-
demic spreading is greatly affected by trest time as shown in Fig. 12. The
value of trest is chosen as 5, 10, 15, 20 seconds to see the effect of increasing
value of trest. As trest increases, the epidemic spreads much faster. It is due
to staying of an infected person for trest longer then it is necessary to make
connections with the persons who are existing under connectivity region.
In the meantime, some more nodes move and come closer to the proximity
of infected person and catch the infection. It means that if in the human
population an infected person gets in more contacts with the susceptible
person for the longer trest time, it increases the epidemic spread at large
scale instantly. To analyze the impact of mobility on epidemic spreading,
we typically used equal rest times, trest, for all nodes.
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Fig. 12. Effect of trest time in epidemic spreading (SIS model).

Mobile nodes do not play any role in connectivity because during move-
ment nodes cannot make contact with other nodes. Mobility just changes
the positions of nodes. Therefore, nodes get connected with other nodes
only after being stationary for at least trest time. We take the value of ve-
locity V from 1m/s to 30m/s and simulate the result until the steady state
of S∞ and I∞ for 20 network structures in given spatial region. We found
that mobility and trest also affect S∞ and I∞ as shown in Fig. 13. It means
that an infected person cannot spread the epidemic during movement. The
healthy person will be affected by an infected person when they both get in
contact in the trest time.

The simulation of SIS epidemic model is performed by considering 20
network structures in a given geometric region as topology is stochastic
with respect to time due to the movement of nodes with random velocity.
In mobility mode, at t = 0, nodes are static in a given spatial distribution.
After that, some nodes start moving with velocity, V . Here, to get the final
spread over the network, multiple network structure of GNMN is considered.

We show the effect of the mobility of nodes on the susceptible popula-
tion and infected population in each topology in Fig. 13 (a) and (b). For
the first network topology at t = 1, the value of saturation state of S∞ is
0.0582, while I∞ is 0.9418. It suddenly changes at t = 2 in the next network
topology, i.e., the second, as the infected population increases to 0.9614 and
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Fig. 13. Effect of mobility in epidemic spreading (SIS model).

healthy population decreases to 0.0386 due to the mobility of nodes, as the
degree of nodes varies. For the third network topology at t = 3, the infected
and susceptible population again changes. In this way, we plot the saturated
value of infected and susceptible population for 20 network topology. For the
network topology at t = 12, 13, 14 and 15, the change in saturated value of
infected and susceptible population is low and equals 0.0463, 0.0437,0.0477
and 0.05 for susceptible population, and 0.9537, 0.9563, 0.9523 and 0.95 for
infected population respectively. The error bars are plotted to show the vari-
ation in the susceptible population and infected population from the mean
value on a different network topology of GNMN in a given spatial region.
The length of an error bar explains the uncertainty of the value from the
mean value. If the length of the error bar is longer then the mean collection
of values is low of which mean value is calculated. A small error bar shows
the certainty of mean value as the concentration of values is high. Therefore,
it should be advised from the error bars plot that immunization should be
taken immediately to cure the epidemic. Otherwise, in GNMN, epidemic
spreads out more quickly at certain time instances as shown in Fig. 13 (a).
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Figure shows that at the 9th network structure, when the epidemic is not
controlled on time, spreading will increase in 12th network structure in a
given region.

Further, the simulations are performed for epidemic spreading by using
the SIR model considering GNMN for human interactions. This model also
shows that epidemic spreading is greatly affected by trest time as shown
in Fig. 14. The value of trest is taken as 3, 6, 10, 15 seconds to see the
effect of increasing value of trest. As trest increases, the epidemic spreads
quickly. It is due to residing of an infected person for trest longer, then it
will make connections with the persons who are existing under connectivity
region. In the meantime, some more nodes move and come closer to the
vicinity of infected person and catch the infection. The increasing value of
trest decreases the steady state time as well as increases the value of Imax.
The values of Imax are 0.72, 0.78, 0.82 and 0.86 for the value of trest 3, 6,
10, 14, respectively. The steady state time values are 3, 1.2, 0.7 and 0.6
for the corresponding trest time. It means that in the human population, if
an infected person gets in more contacts with the susceptible person for the
longer trest time, it increases the epidemic spread at large scale instantly.
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Fig. 14. Effect of trest time in epidemic spreading (SIR model).
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Mobile nodes only change its position, hence topology changes respec-
tively. These nodes do not play any role in connectivity. Therefore, nodes get
connected with other nodes only after being stationary for at least tthreshold

time. The value of velocity V is taken from 1m/s to 30m/s and we simulate
the result until the steady state of Imax for 20 network instances. We found
that mobility as well as trest affect Imax as shown in Fig. 15. It means that an
infected person cannot spread the epidemic during movement. The healthy
person will be affected by an infected person when both get in contact in
the trest time.
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Fig. 15. Effect of mobility in epidemic spreading (SIR model).

We perform the simulation using SIR epidemic model by considering
20 different networks as topologies changing randomly with respect to time
due to the random movement of nodes in a given spatial region. In Fig. 15,
we show the effect of the mobility of nodes on the infected population in a
network topology at each time instance. For the network topology, at time
t = 0, the maximum value of the infected population Imax is 0.7950. In the
next time instance at time t = 1, again, the network topology changes, as the
infected population increases to 0.8098 due to the mobility of nodes, as the
degree and clustering coefficient of nodes vary. For the network topology, at
the third time instance, the infected population again changes. In this way,
the maximum value of the infected population Imax is plotted for the network
topology of 20-time instances. The error bars are also plotted to show the
variation in the infected population from the mean value of network at each
instances. The length of an error bars explains the uncertainty of the value
from the mean value. Error bar shows the intensity of epidemic spreading on
each network based on average degree. Therefore, it should be advised from
the error bar plot that immunization should be taken immediately to cure
the epidemic. Otherwise, in GNMN, epidemic spreads out more quickly at
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certain time instances as shown in Fig. 15 because number of acquaintances
is high at respective time. Figure 15 shows that the network at time instances
4, 9 and 16 infection is low and it should be controlled as soon as possible,
otherwise spreading will increase in the network created at the next time
instances, i.e., 5, 10 and 17 because a number of acquaintances increases
due to movement of nodes and trest.

4.5. Analysis of SIS and SIR models on Brightkite dataset

A network is formed using the proposed model with parameter trest

and V . Further, SIS and SIR epidemic models are used over it to study
the epidemiological dynamics. It is found that the increasing the trest time
of a node also increases the epidemic spreading faster as shown in Fig. 16.
The value of trest is taken in days as 5, 10, 15, and 20. We see that spreading
at trest = 20 is much faster than trest = 5.
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Fig. 16. Effect of trest time in SIS epidemic spreading model considering human
connection network from Brightkite dataset.

SIS model is applied over a human network with mobility of humans to
see its effect. We analyze the spreading pattern on various network topolo-
gies using mobile nodes in a given spatial region. We conclude the value of
I∞ and S∞. For the first network structure of dataset, the value of satu-
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ration state of S∞ is 0.1871, while I∞ is 0.8129 as per degree of nodes. In
the second network structure, infected population decreases to 0.78734 as
a number of acquaintances of infected nodes is low hence healthy popula-
tion increases to 0.21266. For the third network, infected and susceptible
population again changes because an average degree of nodes vary. In this
way, we plot the saturated value of infected and susceptible population for
6th network structure of defined spatial region from Table IV in Fig. 17.
For 4th, 5th and 6th network structure, the saturated value of infected and
susceptible population changes as 0.2735, 0.32245 and 0.35915 for suscep-
tible population, and 0.7265, 0.67755 and 0.64085 for infected population,
respectively. This change in infected and susceptible population depends
upon average degree of nodes.
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Fig. 17. Effect of mobility on SIS epidemic spreading model in human connection
network from Brightkite dataset.

By considering underlying network, formed by static nodes with the node
at trest time during movement, we apply the SIR epidemic model to show
the effect of trest of a node. It is found that the increasing the trest time of
a node also increases the epidemic spreading faster as shown in Fig. 18. We
consider 4 value of trest in days as 3, 5, 8, and 10. We see that spreading
at trest = 10 is much faster than trest = 3 — an infection threshold also
increases.

To find the effect of mobility of human population on epidemic spread-
ing by using SIR model, we analyze the spreading pattern in 6th network
structure formed in a spatial region and find that mobility also effects the
epidemic spreading as shown in Fig. 19. We analyze the value of Imax. By
considering the first network structure, the value of Imax is 0.5188. In the
second network structure, infected population decreases to 0.4932 as average
degree is low compared to the first network. In this way, we plot the max-
imum value of infected population for 6th network structure. For 4th, 5th

and 6th network structure, maximum value of infected population changes
as 0.3902, 0.3215 and 0.2822, respectively, due to change in average degree.
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Fig. 18. Effect of trest time in SIR epidemic spreading model by considering human
connection network from Brightkite dataset.
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5. Conclusions and future work

In this paper, we have proposed a GNMN. The acquaintances of each
node in the connectivity region (r) keep changing due to mobility of a
node with random velocity in a given spatial region and their stay for
tresti > tthreshold time. Therefore, statistical properties of the network in
this model are not fixed. The variation in statistical properties affect the
dynamics of epidemics. The dynamics of epidemics is studied by considering
the parameter trest, and simulations show that epidemics spread out quickly
if an infected node remains for the longer trest time. If trest of a node is
longer, then there is a chance that more nodes will appear in connectivity
region of the respective node. Hence, dense acquaintances are found with
longer trest because when a node is in rest for longer trest, then at the same
time, some other nodes move from different locations to the connectivity re-
gion of that node and epidemics spread out quickly as compared to smaller
trest, where longer and smaller trest is greater than tthreshold. We vary the
velocity V and trest of nodes to analyze the epidemic spreading in the human
connection network. Our proposed model is validated by using the dataset
of human movement, which also shows that trest and V of nodes play an
important role in the dynamics of network. Simulation with human move-
ment dataset also shows that the mobility changes the topology of network
and statistical properties as produced in different geometric region. The
generated network by the dataset of human movement validates the varying
statistical properties of the network as degree distribution of network varies
in each geometric region. Simulations of epidemic on synthetic data and real
data show a similar type of result that trest affects the spreading of epidemics
while, due to mobility, epidemics spread from one region to another region.

There are other important areas for future work based on the random
mobility, such as the effect of the mixing rate and the connectivity fluc-
tuation parameter. There are a lot of areas where time delay should be
considered in the propagation process.

I would like to thank Mr. Abhishek Saroha for helping in simulation on
the dataset.
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Appendix

TABLE V

Symbols and variables used in the paper.

Symbol Description

N Total number of nodes
trest Time of rest of a node during movement
E[d] Expected distance between two random points
r Connectivity radius
β Spreading rate
µ Recovery rate
prest Probability of a node to be in rest during movement
pstat Probability of a node to be stationary
m(t) Total number of movement of a node
V Velocity of node

tmovej Duration of jth movement of a node with velocity V
fX,Y (X,Y ) Spatial density function

(X,Y ) Random variable of geometric points
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