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CHAOTIC AND PERIODIC BEHAVIOR
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We investigated the effects of variation in the non-integer order of a frac-
tional differential equation modeling activated enzyme molecules in brain
wave. The dynamical changes in the system trajectories in both the chaotic
and the periodic regimes of an existing second order differential equation
model are numerically examined when the orders of the biological system
are assigned non-integer values. The simulation showed that the dynam-
ics of the system can be altered through the order of the derivatives. In
particular, the integer-order system can be driven from chaotic oscillation
into periodic state by adopting an appropriate non-integer orders when the
system is associated with innate memory.
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1. Introduction

Differential equations containing arbitrary (non-integer) order deriva-
tives are generally referred to as fractional differential equations (FDEs)
(also known as extraordinary differential equation). A system is said to be a
fractional order system when the dynamics of the system can be modeled by
a fractional differential equation, in contradistinction to an ordinary integer-
order differential equation which contains derivatives in whole numbers [1].
Fractional differential equations are viewed as alternative models to nonlin-
ear differential equations. FDEs have been reported to exhibit chaotic at-
tractors and other fascinating features of nonlinear differential equations [2].

Generally, fractional calculus has been receiving increased interest by re-
searchers in many fields of science and it has been employed as a crucial tool
in modeling many physical phenomena in applied sciences. For instance,
studies in fractional-order differential equations have found applications in
areas such as electromagnetism, viscoelasticity, signal processing, population
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dynamics, electrochemistry, acoustics and material sciences. These applica-
tions are not limited to mathematics but cut across other disciplines such
as biology, chemistry, physics, engineering, computational fluid mechanics,
systems identification, signal and image processing, finance, economics, food
supplement, climate and several other physical processes [3–8]. Interestingly,
the subject (fractional differentiation and integration) is as old as calculus
itself and the recent increase in its application is attributable to the fact
that fractional calculus is not a local or point property [9], rather it con-
siders the system’s history and non-local distributed effect. This essential
property of FDEs is known as the memory and it makes the fractional cal-
culus more realistic than its integer-order counterpart. In fact, the memory
associated with natural systems is better modeled with non-local operators
contained in delayed differential equations (DDEs) and FDEs compared to
the ordinary integer-order derivatives [10]. Consequently, this makes FDE
more applicable to solving real-life problems in social and physical sciences.

The popularity of fractional-order calculus is fast growing, evidently due
to the benefits stemming from using its concepts in various social and scien-
tific fields, ranging from system modelings to automatic controls. The acces-
sibility of researchers to more efficient and powerful computational tools that
are based on computer algebraic systems in commercially available softwares
such as MatLab, Mathematica and Python has seriously increased interest in
fractional differentiation, and as such, it has unplowed new possibilities for
appraising the theoretical aspects of fractional calculus in its various appli-
cations. For instance, in biology, FDEs have put an undying demand on
both theoretical and experimental research in studying life and living organ-
ism which makes the field an open area for ever expanding research and new
discoveries. Since research in theoretical biology uses mathematical meth-
ods and quantitative models, it is constantly evolving due to new insights
in mathematics and their application [11].

Numerical and analytic solutions of FDEs are typically difficult to com-
pute. This is a major challenge mitigating the full implementation and ap-
plication of FDEs. Currently, determining the approximate, numerical and
exact solutions of FDEs is facile. The fact that different computational tools
are now in use in analyzing dynamics of natural systems and the uniqueness
in the existence of solutions of associated fractional differential equations
have attracted the attention of many researchers, making it more roomy for
its wide-spread applications in various fields [12–17]. Therefore, the need for
analyzing the role of the order of differentiation on the dynamics of fractional
differential equations can never be overemphasized.

The FDEs have been adapted to model and study biological systems [11]
due to the need to incorporate long-range temporal memory effects (present
in many population systems) into existing biological models. In ecology,
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memory simply describes the ability of the past state or history of the com-
munity to effectively influence the present or future responses of the commu-
nity. It also describes the degree to which the current state of an ecological
process is being influenced by its past modifications of a landscape [18]. By
incorporating the characteristic unlimited memory associated with FDEs
into models of physical systems, scientists are able to give more concise and
accurate information about the dynamical behavior of these systems. Bio-
logical systems have metastable states with a very high electric polarization,
hence they exhibit rich variety of dynamical behaviors that require detailed
description. In particular, selective transport processes in enzymatic sub-
strate reaction with ferroelectric behavior in brain waves tend to increase
the level of substrate influx, thus initiating specific chemical reactions that
are dependent on the history of activated enzymes concentration, growth of
unexcited enzymes and the number of the substrate molecules. Therefore,
incorporating the memory capabilities of FDE into an existing integer-order
model of brain waves can better describe the dynamics of enzyme–substrate
interactions.

In addition, fractional models have been shown by many researchers to
adequately describe the operation of a variety of biological processes, which
includes models of cancer treatment [7], immune-tumor [19], viscoelasticity
[20], and neurons [21]. Many intriguing results have been obtained from
studies relating to the dynamics of biological systems modeled as FDEs,
for instance, the stability conditions, bifurcations and chaos of fractional-
order prey–predator system have been well highlighted [18]. Many of the
interesting dynamical behaviors of integer-order ODE models of physical
systems are reproducible using FDEs and some hidden behaviors are also
being revealed when the systems are modeled as FDEs [22–25]. For exam-
ple, the Mackey–Glass equation with fractional-order derivative was shown
to exhibit more complex and richer dynamics with the cooperation of a
delay term and fractional-order derivative [26]. Jahanshahi et al. [27] pre-
sented the dynamics of a novel four-dimensional fractional order system and
showed that it exhibits rich dynamical behavior including self-excitation
and hidden chaotic attractors. In addition, several control algorithms and
synchronization techniques including active controller, adaptive controller,
linear feed-back technique, backstepping controller, sliding mode controller
(SMC), hybrid controllers and fuzzy logic controller (see [9, 23, 28–30] and
references therein) that are widely applicable to integer-order equations of
megastable, chaotic and hyperchaotic systems can be adopted to stabilize,
synchronize or/and control these oscillators [27, 31, 32]. These techniques
have been applied to synchronize and control FDE models of Bloch sys-
tem [33], financial system [34, 35], hyper-chaotic economic system [31].
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In this direction, this paper investigates the changes in the dynamics of
an existing integer-order biological model, when the orders of the model are
changed to arbitrary (non-integer) orders, assuming that all values of an
arbitrary real fractional derivative are admissible. The rest of this paper is
organized as follows: the dimensionless model of the unidirectional biological
system is presented in Section 2. The relevant theories on how to solve
fractional differential equations are briefly introduced in Section 3, while
specifics on numerical simulations are detailed in Section 4. Results and
relevant discussion are presented in Section 5.

2. Description of the model

The biological model used in this paper is a second order non-autonomous
differential equation modeling activated enzyme molecules in the brain wave.
The model is based on long range coherence interactions which are capable
of initiating specific chemical reactions and transport processes in enzymes
as highlighted by Fröhlich et al. [36]. This model reduces to a multi-limit
cycles Van der Pol oscillator when the system is unforced. It exhibits both
the periodic and the chaotic dynamics [37].

Kadji et al. [37] consider the biological model as a system of S substrate
molecules with N and Z representing the population of excited enzymes and
unexcited enzymes, respectively. The enzymes and substrate are character-
ized by selective long-range interactions that increase their level by influx.
They [37] assumed that the rate of increase of the activated enzymes is pro-
portional to their concentration N , the concentration Z of the remaining
unexcited enzymes and the number of substrates S, so that the system of
nonlinear differential equations in variables N , S and Z are, respectively,

dN

dτ
= νNRS − ξN , (1a)

dS

dτ
= γS − νNRS , (1b)

dZ

dτ
= ξN − νNZS − λ(Z − C) , (1c)

where the nonlinear enzyme–substrate reaction strength is denoted as ν, the
rate at which excited enzymes decay to the ground (or weakly polar) state
is ξ and γ is the range attraction of the substrate particles initiated by spon-
taneous catalytic reactions. λ(Z−C) is obtained from the long-range inter-
action where C denotes the equilibrium concentration of unexcited enzymes
molecules where both the excited enzyme and the substrate are absent, that
is, N = S = 0.
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The system described by Eq. (1) is simplified by using the adiabatic elim-
ination of fast variable, that is, by assuming the equilibrium of the unexcited
enzyme concentration can be attained fast. Thus, the system described by
Eqs. (1a) and (1b) becomes the well-known Lotka–Voltera equation [38].
Equations (1a) and (1b) can be respectively redefined in terms of excess
concentrations of activated enzymes ε and substrate η molecules beyond
their equilibrium values by considering the perturbed activated enzymes
and substrate molecules around the non-trivial steady state.

Frohlich [36, 39] considered that the available chemical energy from
substrate–enzyme reactions is capable of initiating two possible forms of
oscillations around the equilibrium state in large regions of the proteins, sub-
strates, ions and structured water. The first of these oscillations is a very
low-frequency chemical oscillation in the substrate and activated enzyme
molecules, while the second oscillation is in a form of electric vibrations
induced by partially screened high dipole moment of the excited enzyme,
which leads the system towards ferroelectric instability. By accounting for
the system’s innate resistance towards ferroelectric tendency and possible
external chemical fluctuations or contributions to the electric field F from
thermal fluctuations, and an externally applied field on the excited enzyme,
the combined dielectric and chemical contribution for small values of excess
concentrations of activated enzymes ε and substrate η leads to a modified
form of equations (1a) and (1b), given by

dε

dτ
= γη +

(
κ2e−ψ

2ε2 − σ2
)
ε+ νCηε+ F (τ) ,

dη

dτ
= −ξε− νCηε . (2)

σ is the relaxation term from the contribution of electric resistance to fer-
roelectricity with polarization P assumed to be proportional to the excited
enzyme molecules ε(τ).

By re-scaling the variables in the equation obtained from the third or-
der expansion of the function e−ψ2ε2 in Eq. (2) which accounts for some
nonlinearities in the excess concentration of the activated enzymes as

t = ω0τ , ω2
0 = ξγ , x = Ξε , Ξ =

√
3

κ2 − σ2
κψ , µ =

κ2 − σ2

ω0
,

E(t) =
Ξ

ω2
0

d

dt
F

(
t

ω0

)
, α =

5

18κ2
(
κ2− σ2

)
, β =

7

162κ

(
κ2− σ2

)2
, (3)

we obtain the dimensionless biological system as

ẍ− µ
(
1− x2 + αx4 − βx6

)
ẋ+ x = E cosΩt , (4)
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where the dots denote differentiation w.r.t. time. α and β are positive coef-
ficients of higher-order nonlinearities in damping parameter, µ is the ampli-
tude of damping coefficients, while E and Ω denote the amplitude and the
frequency of the externally applied input signal, respectively.

The biological system governed by Eq. (4) is well-studied and it exhibits a
rich catalogue of dynamical behavior including periodic, quasi-periodic, and
chaotic oscillations [37, 40, 41]. In this research, we focus on the dynamical
changes induced by a modulation of the order of the differential equation
governing the system.

3. Solution of fractional-order differential equations

Several definitions exist for fractional-order derivative, among which
researchers take advantage of the Riemann–Liouville, the Caputo, or the
Grünwald–Letnikov definition. For a wide class of functions, these three
definitions are equivalent under certain conditions (zero initial condition
and lower terminal a = 0) [2]. The Riemann–Liouville fractional derivative
is defined as

dλf

dtλ
= aDλt =

dm

dtm

 1

Γ (m− λ)

t∫
a

f(τ)

(t− τ)λ−m+1
dτ

 , (m− 1 < λ < m) ,

(5)
where m ∈ N and Γ (· ) is a gamma function. λ is the non-integer order of
the derivative which is usually in the range of 0 < λ < 2. In spite of the
fact that the definition guarantees some pleasant and useful mathematical
properties, its practical implementation is often rigorous. For example, it is
usually difficult to assign some physical meaning to the initial conditions in
many situations. This is because the fractional derivative of a constant is not
identically zero. To navigate the aforementioned challenge, an alternative
definition introduced by Caputo is given by

dλf

dtλ
= aDλt =

dλf(t)

dtλ
=

1

Γ (m− λ)

t∫
a

f (m)(τ)

(t− τ)λ−m+1
dτ , (m− 1 < λ < m) .

(6)
A major advantage of Caputo’s definition of fractional derivative is that
initial conditions can take on the same standard form, x(0) = x0, as that of
associated integer-order variant, which is sufficient for practical problems [2].
From the fact that there exist an integral and a gamma function in the
definitions, it also appears difficult to obtain the numerical solution of a
fractional-order differential equations using the above definitions in Eq. (6).
Therefore, a more simpler definition like the Grünwald–Letnikov definition,
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which is well-known for its lack of sophistication in the discretization of
fractional-order operators can be employed. This definition is given by

dλf

dtλ
= aDλt = lim

h→0

1

hλ

[ t−ah ]∑
j=0

(−1)j
(
λ
j

)
f(t− jh) , (7)

where the pair of square brackets [.] in the upper limit of the summation sign
implies the integer part, while a is the length of the memory. The binomial

coefficients are given by
(
λ
0

)
= 1, and

(
λ
j

)
= λ(λ−1)...(λ−j+1)

j! , for j ≥ 1.

To obtain the solution of a fractional-order differential system, one of-
ten refers to approximation methods through discretization of correspond-
ing fractional-order differentiator, which requires the history (information
about the previous state) of the system, a condition known as memory ef-
fect [2, 25, 42]. There are two popular approximation methods for numer-
ical computation of fractional-order differential equations, which are: the
frequency domain methods and the time domain methods. The Adams–
Bashforth–Moulton algorithm which is an improved predictor–correctors
scheme is a time domain method. Solving fractional-order differential equa-
tions in time domain has been shown to be more reliable in detecting chaos,
however, simulation time may be longer with complicated algorithm com-
pared to simulations in frequency domain methods due to long memory
characteristics [43].

4. Numerical simulation

Here, we apply the Grünwald–Letnikov derivative (Eq. (7)) to numeri-
cally solve Eq. (4) by applying the short memory principle to the Grünwald–
Letnikov definition so that the length of a system memory is substantially
reduced and the numerical algorithm produces reliable results [43]. The
principle is convenient for the consideration of dynamical properties of sys-
tems. The technique is dependent on the approximation that at large time t
Grünwald–Letnikov’s definition coefficients which correspond to the value of
the function around the initial condition (say t = 0) have little significant
contribution to the solution. The approximation of the numerical solution
is based on the recent history [t − L, t] of the system (where L is “memory
length”) with the derivative computed over a moving low limit. In general,
the approach is that if f(a) = 0, the three definitions of fractional derivative
(Riemann–Liouville, Caputo and Grünwald–Letnikov) are equivalent for a
wide class of functions [2, 25, 42]. Thus, the explicit numerical approxima-
tion of Eq. (7) at the points tk = kh, (k = 1, 2, . . .) in accordance with the
short memory principle is of the form of
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LDλtk ≈ lim
h→0

1

hλ

[N(t)]∑
j=0

(−1)j
(
λ
j

)
f(tk−j) = lim

h→0

1

hλ

[N(t)]∑
j=0

c
(λ)
j f(tk−j) , (8)

where h is the integration time step for the numerical computation and
N(t) = min( tk−Lh , Lh ). This relation helps to eliminate our dependence on
initial conditions before t = 0 as normally required for systems with mem-
ory. The c(λ)j are coefficients which can be computed by using the following
recursive relation:

c
(λ)
0 = 1 , c

(λ)
j =

(
1− 1 + λ

j

)
c
(λ)
j−1 . (9)

By factoring in the memory capabilities of contributing system properties
into the biological system described by Eq. (4), the model can be written as
a fractional differential equation of the form of

dλ2x

dtλ2
− µ

(
1− x2 + αx4 − βx6

) dλ1x
dtλ1

+ x = E cosΩt , (10)

where λ1 and λ2 are the arbitrary non-integer orders. By setting y = dλ1x
dtλ1

,
Eq. (10) can be expressed in a form of a coupled lower-order differential
equation of the form of

dλ1x

dtλ1
= y ,

dλ2y

dtλ2
= µ

(
1− x2 + αx4 − βx6

)
y − x+ E cosΩt . (11)

The discretization of the system is achieved by using the relation for the
explicit approximation of fractional derivatives (Eq. (8)) in Eq. (10), such
that Eq. (11) is written in the discretized form as

x(tk) = (y(tk−1))h
λ1 −

N−1∑
j=1

c
(λ1)
j x(tk−j) ,

y(tk) =
(
− x(tk) + µ

(
1− x(tk)2 + αx(tk)

4 − βx(tk)6
)
y(tk−1)

+E cos(Ωhtk)
)
hλ2 −

N−1∑
j=1

c
(λ2)
j y(tk−j) . (12)

To generate the numerical results, Eq. (12) was solved with zero initial
conditions (x(0) = 0, y(0) = 0). Since the aforementioned definitions of
fractional derivatives (given by Riemann–Liouville, Caputo and Grünwald–
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Letnikov) take the same form at zero initial conditions, this choice is usually
sufficient for numerical integration of FDEs. All simulations were imple-
mented on MatLab with integration step length of h = 0.005 and a total
simulation time Tsim = 500 (see [43, 45] and references therein for short
tutorials on how to implement the algorithm on MatLab). The first 1000
iterates (initial iterates) were discarded to account for transient effects. The
phase portraits and the time series plots were produced by varying the frac-
tional integer coefficients.

5. Results and discussion

5.1. Modulation in chaotic dynamics

For clarity, we introduce the basic dynamics of the system through one-
parameter bifurcation diagrams with respect to system parameters µ and α
as shown in Fig. 1 (a) and (b), respectively, for the preliminary case (λ1=1,
λ2 = 1) described by integer-order differential equation (Eq. (4)). Other
system parameters are set as: β = 1.70, E = 8.27, and Ω = 3.465. We

Fig. 1. The bifurcation diagram for the variation of oscillation with a system pa-
rameter for the preliminary biological system (Eq. (4)), λ1 = 1, λ2 = 1, presented
as (a) x versus µ when α = 2.55, µ ∈ [0.01, 5], (b) x versus α when µ = 2.00,
α∈ [0.01, 3]. Other system parameters are set as: β=1.70, E=8.27 and Ω=3.465.
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remark that for λ1 = 1, λ2 = 1, the coefficients in Eq. (9) vanishes, that is,
c
(λ)
j = 0 (j = 1, . . . , k), and Eq. (12) is reduced to the standard biological
model (Eq. (4)) without the memory effect. From Fig. 1 (a), the choice of
µ within this parameter regime determines the state of the system. At the
onset, the system is chaotic, afterwards it settles into a periodic window
before transiting into another chaos. The onset of chaos exists till µ ' 1.59
where the system transitions into periodic orbits within µ ∈ (0.59, 1.44).
The oscillation exits this periodic window into chaos within µ ∈ (1.44, 2.08),
followed by prevalent periodic transitions. The dependence of the system
oscillations on α is presented in Fig. 1 (b) with obvious transitions from
periodic motion to chaos reminiscent of transitions observed in the system
dynamics with variation in µ (Fig. 1 (a)). As seen in Fig. 1, the choice
of µ = 2.0 and α = 2.55 with other parameter values unchanged ensures
the preliminary system is chaotic within the set parameter regime. The
corresponding phase plots and time series are presented in Fig. 2 (a) and
Fig. 3 (a), respectively. We shall analyze the changes in the system dynamics
within this chaotic regime when the integer orders of the system derivatives
are assigned arbitrary non-integer values, assuming such variations in system
orders is physically plausible.

Fig. 2. λ1(= 1, 0.9, 0.6, 0.1) for λ2 = 1 on the system trajectories in phase space
(a)–(d), respectively. Other parameters are set as: µ=2.0, α=2.55, β=1.70, E=

8.27 and Ω=3.465.
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Fig. 3. The time evolution of the system (Eq. (10)) corresponding to the phase
plots presented in Fig. 2 (a)–(d).

Figure 2 shows the system’s phase portraits for four values of arbitrary
real order λ1(= 1, 0.9, 0.6, 0.1) when λ2 = 1. The values of other parameter
are set as: µ = 2.0, α = 2.55, β = 1.70, E = 8.27, and Ω = 3.465.
Figure 2 (a) is the phase portrait of the preliminary biological system with
λ1 = λ2 = 1. The system’s trajectories correspond to the chaotic attrac-
tor reported by Kadji et al. [37] for the integer-order ODE (Eq. (4)). In
Fig. 2 (b)–(d), the values of λ1 were chosen as λ1 = 0.9, λ1 = 0.6 and
λ1 = 0.1, respectively. Clearly, the system’s chaotic dynamics (presented in
Fig. 2 (a)) is altered by reducing the value of the arbitrary real order λ1 as
shown in Fig. 2 (b). Consequently, the system is driven into periodic oscilla-
tion as λ1 and further reduced as presented in Fig. 2 (c) and Fig. 2 (d). The
same behavior is verified in the time series evolution of the system as shown
in Fig. 3 (a)–(d) for the same parameter values used in Fig. 2.

To further investigate the dynamics of the system with respect to varia-
tions in the non-integer orders, the arbitrary real order which was previously
varied is kept constant (at λ1 = 1), while the other λ2 is varied. A noticeable
change was observed in dynamics of the system, as depicted in Fig. 4 (a)–
(d). Starting from the preliminary case in Fig. 4 (a) which corresponds to
the plot presented in Fig. 2 (a) for λ1 = λ2 = 1, the trajectory of the sys-
tem changes significantly presenting chaotic attractors which appear to have
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Fig. 4. The phase portrait of the biological system (Eq. (10)) computed from
Eq. (12), depicting the effects of four values of arbitrary real order λ2(=

1, 0.9, 0.6, 0.3) at λ1 = 1 on the system trajectories in phase space (a)–(d), re-
spectively. Other parameters are set as; µ = 2.0, α = 2.55, β = 1.70, E = 8.27

and Ω = 3.465.

different trajectories (as shown in Fig. 4 (b)–(d)). At λ2 = 0.6 (shown in
Fig. 4 (c)), the trajectory spirals into a double-scroll attractor with each on
half sides of a period. This is well-captured in Fig. 4 (d) (λ2 = 0.3) which
shows the dynamics of the system with double-scroll attractors that are in
equilibrium. Though, modulation of the system dynamics with λ2 does not
drive the system into periodic oscillation, it significantly changes the nature
of its chaotic behavior. The chaotic dynamics of the system appears to be
more controllable from the values of λ2 as presented in Fig. 4 (a)–(d) and
Fig. 5 (a)–(d).

It has earlier been reported by [37] that the dissipation term can be used
to control the chaotic behavior of the system. However, from the above, it
can be said that unlike the contributions of the dissipation term in controlling
the dynamics of the system, the system’s inherent memory property which is
described by the non-integer order can be directly used to control the chaotic
behavior of the system. Further evidence that validates this statement is pre-
sented in Fig. 6 (a)–(b) showing bifurcation diagrams of the system (Eq. (10))
with respect to the arbitrary (non-integer) order for (a) x vs. λ2 when λ1 = 1
in the upper panel, and (b) x vs. λ1 when λ2 = 1 in the lower panel. Other
parameters are set as follows: µ = 2.0, α = 2.55, β = 1.70, E = 8.27,
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Fig. 5. The time evolution of the system (Eq. (10)) corresponding to the phase
plots presented in Fig. 4 (a)–(d).

and Ω = 3.465. These bifurcation diagrams are in agreement with the
phase portraits and time evolutions presented for the variations of λ1 and
λ2. Expectedly, the system is chaotic for a choice of λ1 = 1, λ2 = 1 in both
panels. The periodic and chaotic windows correspond to the same dynam-
ics presented through the phase portraits for the three non-integer values of
λ1(= 0.9, 0.6, 0.1) considered in Fig. 2 (b)–(d), and λ2(= 0.9, 0.6, 0.3) con-
sidered in Fig. (4) (b)–(d). For instance, the periodicity shown in Fig. 2 (b)
at (λ1, λ2) = (0.9, 1) is confirmed on the upper panel of Fig. 6. Besides,
the chaotic attractor revealed in Fig. 4 (b) for (λ1, λ2) = (1, 0.9) falls within
the chaotic window of Fig. 6 (b). This validates our submission that the dy-
namical behavior of the biological system can be determined in part by the
arbitrary real orders. Hence, the arbitrary real orders can play complemen-
tary roles to the dissipative parameters in controlling the system behavior.

5.2. Modulation in periodic oscillation

Next, we extend the results by analyzing possible dynamical changes in
the system’s behavior by variation of arbitrary nonlinear orders when the
preliminary system is periodic. For λ1 = λ2 = 1, and other parameters set
as µ = 0.1, α = 0.1, β = 0.2, E = 1 and Ω = 0.7, the system is periodic.
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Fig. 6. The bifurcation diagram for the fractional-order biological system (Eq. (10))
computed from Eq. (12) with respect to variations in the arbitrary real fractional
orders, presented as x-coordinate versus arbitrary real order of the derivative within
λ ∈ [0.5, 1.1] for (a) x vs. λ2 when λ1 = 1, (b) x vs. λ1 when λ2 = 1. Other
parameters are set as: µ = 2.0, α = 2.55, β = 1.7, E = 8.27, and Ω = 3.465.

In this regime, the variation of the non-integer orders constrained the
system to a period-1 attractors as shown in Figs. 7 and 8. Figure 7 (a)–(d)
depicts the effect of varying λ1 for a fixed value of λ2. The periodic oscilla-
tion of the preliminary system at λ1 = λ2 = 1 remained at other non-integer
values of λ1, that is, no transition to chaos was induced. It can be observed
from Fig. 7 (a)–(d) and Fig. 8 (a)–(d) that reducing the value of the sys-
tem’s real order (λ1) reduces the width of the associated periodic attractor.
This effect is more pronounced in Fig. 7 (c) and Fig. 8 (d), respectively. In
addition, at constant λ1(= 1), λ2 was varied to study it effects on the dy-
namical behavior of the system. Again, no transition to chaos occurred as
the system remains periodic (see Fig. 9), but the corresponding time series
in Fig. 10 show reduction in amplitude of oscillation. The bifurcation dia-
grams in Fig. 11 also confirms that within the chosen parameter regime, the
system remains periodic.
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Fig. 7. The phase portrait of the system (Eq. (10)) computed from Eq. (12), depict-
ing the effects of four values of arbitrary real order λ2(= 1, 0.9, 0.6, 0.3) at λ1 = 1

on the system trajectories in phase space (a)–(d), respectively. Other parameters
are set as: µ = 0.1, α = 0.1, β = 0.2, E = 1, and Ω = 0.7.

Fig. 8. The time evolution of the system with same parameters as in Fig. 7.
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Fig. 9. The phase portrait of the system (Eq. (10)) computed from Eq. (12), depict-
ing the effects of four values of arbitrary real order λ2(= 1, 0.9, 0.6, 0.3) at λ1 = 1

on the system trajectories in phase space (a)–(d), respectively. Other parameters
are set as: µ = 0.1, α = 0.1, β = 0.2, E = 1, Ω = 0.7 and λ1 = 1.

Fig. 10. The time evolution of the system (Eq. (10)) with same parameters as in
Fig. 9.
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Fig. 11. The bifurcation diagram for the fractional-order biological system
(Eq. (10)) computed from Eq. (12) with respect to variations in the arbitrary
(non-integer) fractional order showing x-coordinate versus arbitrary real order of
the derivative within λ ∈ [0.5, 1.1] presented as (a) x vs. λ2 when λ1 = 1, (b) x
vs. λ1 when λ2 = 1. Other system parameters are set as: µ = 0.1, α = 0.1, β =

0.2, E = 1, and Ω = 0.7.

6. Conclusion

We leverage on the memory capabilities inherently found in most bio-
logical systems to imagine a fractional-order differential model for a type of
biological system in place of the integer-order ODE as considered by Kadji
et al. [37]. The effects of variations in the non-integer-order values of the sys-
tem derivatives were examined in both the chaotic and the periodic regimes
of a preliminary integer-order variant. Results are presented in phase plots
and times series, and bifurcation diagrams depicting dynamical changes in
system trajectories. The investigation revealed that the dynamics of the
system is significantly dependent on the orders of the system derivatives,
which implies that not only the bifurcation parameters of the system but
also the memory parameters or a cooperation of both can be used to alter or
control the system. In particular, we have shown that the chaotic oscillation
of the integer-order system can be driven into periodic state by adopting an
appropriate non-integer order when the system is modeled as a fractional
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differential equation. In this direction, the results of our investigation can
be of importance to researchers, especially in the field of nonlinear sciences
and complex systems where emphases are placed on bifurcation parameters
of physical systems in order to control their complex fascinating phenomena.

However, the fractional calculus model of the biological system (Eq. (4))
was not derived ab initio, instead a modification to an existing ODE equiva-
lent was used. Thus, our modified model may potentially be an approxima-
tion to the applicable FDE model of the biological system, and the contribu-
tions of some system properties might have been omitted. Importantly, the
stability conditions of the system was not analyzed. Moreover, the control
effects of the arbitrary non-integer orders together with development of an
appropriate controller were not implemented. We believe the analysis of the
stability of the controlled system and synchronization of coupled systems are
still open and challenging. We shall follow up this research in this direction.
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