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In this paper, a hidden extra symmetry of conformally invariant La-
grangians occuring in physics is pointed out. This symmetry is most ap-
parent in a metric-independent, i.e. in a Palatini-like presentation of the
variational problem. In such a presentation, the usual conformal weight of
fields can be encoded as local dilatation group gauge charges. The conven-
tional conformal invariance of Lagrangians is then equivalent to dilatation
gauge invariance. The claim of the paper is that the most commonly oc-
curring conformally invariant Lagrangians turning up in physics are not
only invariant to local dilatation gauge transformations, but they are also
invariant to any change of the dilatation gauge connection, meaning an
additional algebraic symmetry property. In terms of dimensional analysis
and differential geometry, this additional symmetry means complete insen-
sitivity of the Lagrangian to the choice of the parallel transport rule of local
measurement units throughout spacetime.
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1. Introduction

Conformally invariant field theories form a very important class of models
when it comes to the general relativistic (GR) model building related to
particle physics. For instance, the kinetic terms of the general relativistically
formulated Standard Model (SM) Lagrangian are all conformally invariant,
or can be made conformally invariant with rather plausible generalization.

Given a general relativistic spacetime model (M, g), M being a four-
dimensional real smooth manifold and g being a smooth Lorentz signature
metric tensor field over it, a conformal transformation is a pair (φ,Ω), where
φ is an M → M diffeomorphism and Ω is an M → R+ positive valued
smooth scalar field. A conformal transformation (φ,Ω) maps a metric ten-
sor field g to another one by the group action Ω2φ∗g, where φ∗ denotes the
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pullback operation of the diffeomorphism φ 1. An important subgroup of
these transformations are the conformal rescalings, also called Weyl rescal-
ings. For Weyl rescalings, the diffeomorphism φ is the identity of M and
Ω is kept to be an arbitrary positive-valued smooth scalar field. In a field
theory, a group action of the Weyl rescalings on the fundamental fields may
be specified, called to be the conformal weights, and then the conformal
group can act on all the fields in the theory simultaneously. Whenever the
field equations or the action functional of the model are invariant to such a
group action, the theory is called conformally invariant [1–3].

In the above conventional definition of conformal invariance, one needs
first a field equation or Lagrangian, and the spacetime metric must be one
of the fundamental fields. Then, a group action of the Weyl rescalings of the
metric on all the fields must be specified. Only if all these group actions are
declared, the invariance of the field equations or the action functional can
be stated.

In this paper, a less metric-dependent formulation of conformal invari-
ance is used. In that approach, all the fundamental fields are regarded as
fields with D(1) gauge charge, analogous to the conformal weight2. The
spacetime metric tensor field may as well be a composite field, i.e. some
function of more fundamental fields, such as its spinorial decomposition.
In such D(1) gauge theory reformulation, the usual conformal invariance
in terms of Weyl rescalings is equivalent to a requirement on the action
functional to be D(1) gauge invariant. The claim of the paper is that the
most common conformally invariant Lagrangians in physics have a slightly
larger symmetry than mere conformal invariance: their action functional
has an algebraic property of being not only D(1) gauge invariant, but to be
completely invariant to the choice of the D(1) gauge connection.

The mentioned phenomenon can most easily be seen on a general rel-
ativistic Dirac Lagrangian vγ Re

(
Ψ̄γai∇aΨ

)
, where γa is the Clifford map

associated with a Lorentz metric gab, vγ is the volume form subordinate
to the Clifford map (or equivalently, to the metric), Ψ is a Dirac field, and
∇b is the combined metric and U(1) gauge covariant derivation [4]. (Pen-
rose abstract indices are used for the tangent indices.) This Lagrangian is
very well known to be conformally invariant, i.e. invariant to the transfor-
mation

(
Ψ, γa, ∇b

)
7→
(
Ω−

3
2 Ψ, Ωγa, ∇b − 1

2(iΣb
c−δbcI)(Ω−1dcΩ)

)
, where

Σab := i
2 (γaγb − γbγa) stands for the spin tensor. The transformation rule of

∇b is very well known to be uniquely determined by the requirement that the
transformation preserves the metricity, torsion-freeness and the compatibil-

1 The group of conformal transformations is not to be confused with the conformal
diffeomorphism group, which is a subgroup of the group of conformal transformations,
satisfying the condition Ω2φ∗g = g, also called conformal isometries.

2 The dilatation group, D(1), is R+ with the real multiplication.
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ity to the Clifford map. This ordinary Dirac Lagrangian may be generalized
in a quite straightforward way: the covariant derivation ∇b may be general-
ized by incorporating a D(1) gauge potential as well. In that case, the perti-
nent Dirac Lagrangian is invariant as well to a slightly different transforma-
tion

(
Ψ, γa, ∇b

)
7→
(
Ω−

3
2 Ψ, Ωγa, ∇b+Ω−

3
2 dbΩ

3
2

)
, which can be considered

as a local D(1) gauge transformation. With this generalization, the gradi-
ents of Ω are absorbed by the D(1) gauge potential, understood within ∇b.
In such variables, it is straightforward to verify that the Dirac Lagrangian
is invariant to a further transformation:

(
Ψ, γa, ∇b

)
7→
(
Ψ, γa, ∇b + Cb

)
,

where Cb is any D(1) gauge potential, i.e. is an arbitrary real valued smooth
covector field.

In this paper, we show that the pertinent shift symmetry

∇b 7→ ∇b + Cb (Cb being a D(1) gauge potential) (1)

is also the symmetry of any conformally invariant Lagrangian turning up in
physics. This algebraic symmetry property is in addition to their conformal
invariance, and it means that the pertinent type of Lagrangians are com-
pletely insensitive to the parallel transport rule of local measurement units
throughout spacetime. Although conformal invariance has been studied ex-
tensively (see a comprehensive review in [5, 6]), to our knowledge such an
algebraic symmetry property has not yet been explicitly pointed out in the
literature.

The structure of the paper is as follows. First, we recall the Lagrangian
formulation of classical field theories in metric-independent way, i.e. in a
Palatini-like approach. Then, we invoke a simple formalism for endowing
the fields with D(1) charges without referring to a metric. Following that,
we shall present important examples of conformally invariant Lagrangians
and show that they have the additional algebraic symmetry property of
being invariant to the choice of the D(1) connection, which is the emphasis
of the paper. Then, we show a (non-physical) quite trivial counterexample
of a conformally invariant Lagrangian, which does not have the pertinent
additional symmetry property. Finally, we conclude.

2. Non-metric formulation of classical field theories
In this section, the precise mathematical definition of classical field the-

ories is recalled in terms of the Lagrangian and variational principles: for
a comprehensive overview, see e.g. [7–9]. The used definition deliberately
does not refer to an a priori known spacetime metric tensor field, and thus
resembles basically to a Palatini-type formulation [1]. In the following, we
shall denote the tangent bundle of a manifold M by T (M), and by T ∗(M)
the corresponding cotangent bundle. The vector bundle of maximal forms



66 A. László

is denoted by
n
∧T ∗(M), where n := dim(M). In the following, every dif-

ferential geometrical object is assumed to be smooth for simplicity of pre-
sentation: strict differentiability counting is performed in [7]. The vector
space of smooth sections of some vector bundle V (M) over M is denoted
by Γ (V (M)). The affine space of covariant derivations over V (M) shall be
denoted by D(V (M)). The corresponding dual vector bundle of V (M) is
denoted by V ∗(M). These notations are the usual ones in differential ge-
ometry literature. In addition, we shall use Penrose abstract indices [1, 2]
for denoting tensor traces and expressions concerning the tensor powers of
T (M) and T ∗(M). The abstract indices of T (M) shall be denoted by su-
perscripted lower case Latin letters ( abcd...), whereas for T ∗(M) subscripted
lower case Latin letters ( abcd...) shall be used. The index symmetrization
operation shall be denoted by round brackets, e.g. t(abc), whereas the an-
tisymmetrization operation shall be denoted by square brackets, e.g. t[abc],
furthermore, their normalization convention shall be set as in e.g. [1].

Let us recall that the space of smooth sections Γ (V (M)) of some vec-
tor bundle V (M) admits a natural E test function topology [7]: without
any further assumption, it is meaningful to define convergence of a sequence
(ϕk)k∈N in Γ (V (M)) to a limit ϕ in Γ (V (M)) with requiring that the field
(ϕ−ϕk)k∈N and all of its gradients uniformly converge to zero on any com-
pact region ofM3. Whenever the manifoldM is compact, or a fixed compact
region K ⊂ M is considered, the E topology naturally gives rise to a norm
equivalence class on the fields over the pertinent region [7, 10]. Because of
that, ordinary (Fréchet) derivatives of functionals of such local fields can be
naturally defined without further mathematical assumptions.

As usual in the differential geometry literature [1], a covariant derivation
on a vector bundle V (M) may be uniquely extended to all the tensor powers
of V (M) and its dual bundle V ∗(M) by requiring Leibniz rule over tensor
product, commutativity with tensor contraction, and correspondence to the
exterior derivation over the scalar line bundle M × R. Similarly, given two
different vector bundles over M along with covariant derivation on each,
then they naturally give rise to a joint covariant derivation, which uniquely
extends to all tensor powers of the pertinent vector bundles and their duals,
by requiring analogous properties.

Remark 1. If ∇ is a covariant derivation over T (M), then there is a unique
covariant derivation ∇̃ over T (M) associated to it, having vanishing torsion
tensor and having the same geodesics as ∇. The covariant derivation ∇̃

3 A pointwise change of the norms and covariant derivation operators acting on
Γ (V (M)), used for the definition of such a convergence notion, form a norm equiv-
alence class in each point of M , as e.g. summarized in [10] Appendix A Lemma 3.
Due to that pointwise norm equivalence, the E convergence notion does not depend
on the particular choice of these auxiliary mathematical objects.
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is called the torsion-free part of ∇. In explicit formulae: whenever vb is
a smooth section of T (M), then one has ∇̃avb = ∇avb + 1

2T (∇)bacv
c, where

T (∇)bac denotes the torsion tensor of ∇.

Remark 2. Let Ja[c1...cn] be a smooth section of T (M)⊗
n
∧T ∗(M), i.e. a max-

imal form valued tangent vector field. Then, given any covariant derivation
∇ on T (M), one has that the expression ∇̃aJa[c1...cn] is independent of the
choice of the covariant derivation, where ∇̃ denotes the torsion-free part of
∇. That is, the divergence of a maximal form valued vector field is naturally
defined without further assumptions. Similarly, for a smooth section K [ab]

[c1...cn]

of T (M)∧T (M) ⊗
n
∧T ∗(M), one has that ∇̃aK [ab]

[c1...cn]
is independent of the

choice of the covariant derivation and thus the divergence of such a field is
naturally defined without further assumptions.

Given the above notions and observations, a classical field theory may
be defined as a quartet

(M,V (M),L, S) , (2)

where M is some finite dimensional differentiable manifold possibly with
boundary (this is called the base manifold — it models the spacetime or a
compactified spacetime with or without a boundary), V (M) is some finite
dimensional smooth vector bundle over it, called the vector bundle of mat-
ter fields. The Lagrange form L is then a smooth pointwise fiber bundle
morphism

V (M) × T ∗(M)⊗V (M) × T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M)

→
n
∧T ∗(M) , (3)

taking the triplet of matter fields, matter field gradients, and field strength
tensors into a maximal form field. In particular, it acts on the sections as

L :
Γ (V (M) × T ∗(M)⊗V (M) × T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ
(n
∧T ∗(M)

)
,

(v,Dv, F ) 7→ L(v,Dv, F ) . (4)

A pair (v,∇) ∈ Γ (V (M)) ×D(V (M)) is called a field configuration, which
forms an affine space over the vector space field variations Γ (V (M)) ×
Γ (T ∗(M)⊗V (M)⊗V ∗(M)). Given a field configuration (v,∇), the map
(v,∇) 7→ L(v,∇v, F (∇)) is called the Lagrangian expression, where ∇v is
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the covariant derivative of v by ∇, and where F (∇) denotes the curvature
tensor of ∇. Then, the action functional S(K) is defined on a compact
region K ⊂M as the integral of the Lagrangian expression over K

S(K) :
Γ (V (M))×D(V (M))→ R ,

(v,∇) 7→ Sv,∇(K) :=

∫
K

L(v,∇v, F (∇)) . (5)

(As such, the action functional can be regarded as a Radon measure valued
map S : (v,∇) 7→ S(v,∇)(·) from the field configurations.) As usually, the
solutions of the field equation of the field theory shall be the stationary
points of the action functional with the fields having fixed boundary value
on ∂K. More concretely, the field (v,∇) ∈ Γ (V (M))×D(V (M)) is said to
be a solution of the field theory whenever for all compact regions K ⊂ M
one has

D◦Sv,∇(K) = 0 , (6)

where D◦S(K) denotes the Fréchet derivative DS(K) of S(K) restricted in
its linear variable to the space of vanishing field variations on the boundary
set ∂K. In the end, as quite expected [7], this is equivalent to the Euler–
Lagrange equations

D1L(v,∇v, F (∇))− ∇̃aDa
2L(v,∇v, F (∇)) = 0 ,

D2L(v,∇v, F (∇))(·)v − ∇̃a2D[ab]
3 L(v,∇v, F (∇))(·) = 0 (7)

for the fields (v,∇) throughout the interior of any compact region K ⊂M
and thus throughout M . Here, D1L, D2L, D3L mean the spacetime point-
wise partial derivative of L with respect to its first, second and third argu-
ment, respectively, i.e. the derivative of the Lagrange form along the matter
fields, the matter field gradients, and the curvature tensor. One should note
that because of Remark 2, the covariant derivation may be chosen arbitrarily
over T (M) in the divergence expressions of Eq. (7).

Remark 3. Note that whenever a model is considered in whichM is compact
(possibly with boundary), then the field equations can be written in a simpler
form

DSv,∇(M) = 0 . (8)

This is quite similar to as in Eq. (6), but variation on the boundary does
not need to be excluded. If the variation on the boundary is not suppressed,
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then along with the Euler–Lagrange equations (Eq. (7)), one gets additional
boundary field equations

Da
2L(v,∇v, F (∇)) = 0 ,

2D
[ab]
3 L(v,∇v, F (∇))(·) = 0 (9)

over ∂M , which can eventually be used to impose boundary constraints on
the fields.

For clarity, we note that in the standard GR terminology, the above
approach resembles the Palatini action principle: the covariant derivation is
varied independently from the field quantities, in particular, independently
from the metric tensor field.

3. Non-metric formulation of conformal invariance

Given a metric-independent formulation of a field theory (M,V (M),L, S)
as in the previous section, we introduce a metric-independent notion of con-
formal weights. For this, we assume that the vector bundle of fields V (M)
is composed of sectors having D(1) gauge charges, i.e.

V (M) = ⊕
q∈Q

Vq(M) , (10)

where Q is a finite set of rational numbers and a D(1) gauge transformation
is represented by a non-vanishing smooth field Ω : M → R+ acting as

vq 7→ Ωq vq (vq ∈ Vq(M), q ∈ Q) ,

∇ 7→ Ωq∇Ω−q = ∇− q d (lnΩ) (over Vq(M), q ∈ Q) (11)

on the fields and covariant derivations, where ‘d’ denotes exterior derivation.
The numbers q ∈ Q are called D(1) gauge charges, and such transformations
are called D(1) gauge transformations. Whenever a spacetime metric tensor
field is present in the theory with non-zero D(1) gauge charge, then quite
evidently, the field rescalings induced by the D(1) group can always be re-
defined such that the spacetime metric tensor field has D(1) gauge charge 2
by convention, i.e. belonging to V2(M), which is just an equivalent reformu-
lation of the Weyl rescaling, i.e. that the metric transforms as gab 7→ Ω2gab
by convention. With these notions, a field theory (M,V (M),L, S) is said
to be D(1) gauge invariant whenever its action functional is invariant to the
D(1) gauge transformations as in Eq. (11).

It shall be shown in the following sections that the conformally invariant
Lagrangians turning up in physics have a slightly larger symmetry than
simple D(1) gauge invariance: their action functional does not depend on the
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D(1) gauge connection at all. In terms of formulas, this means an algebraic
property of the invariance of the Lagrangian expression L(v,∇v, F (∇)) to
the transformation

v 7→ v ,
∇ 7→ ∇+ q C (over each sector Vq(M), q ∈ Q) (12)

for any real smooth covector field C ∈ Γ (T ∗(M)). This property shall be
called D(1) connection invariance, and is seen to be a further symmetry on
top of invariance to simple Weyl rescalings. It means that the theory is
invariant to the choice of the parallel transport of local measurement units
throughout spacetime.

3.1. More geometric reformulation using measure line bundles

The notion of D(1) gauge charge can be reformulated in a geometri-
cally even more elegant setting. The key idea is motivated by a work of
Matolcsi [11] and of Janys̆ka, Modugno, Vitolo [12], in which they pro-
posed a simple mathematical framework for formal mathematical handling
of physical units. In their concept, the mathematical model of special rel-
ativistic spacetime is considered to be a triplet (M,L, η), where M is a
four-dimensional real affine space (modeling the flat spacetime), L is a
one-dimensional vector space (modeling the one-dimensional vector space

of length values), and η :
2
∨T →

2
⊗L is the flat Lorentz signature metric

(constant throughout the spacetime), where T is the underlying vector space
of M (tangent space). The important idea in that construction is: the field
quantities, such as the metric tensor, are not simply real valued, but they
take their values in the rational tensor powers of the measure line L 4. Such
a setting formalizes the physical expectation that quantities actually have
physical dimensions (the metric carries length-square dimension in this case),
and that quantities with different physical dimensions cannot be added since
they reside in different vector spaces. It is seen that the technique of mea-
sure lines is nothing but the precise mathematical formulation of dimensional
analysis.

Such a mathematically precise formulation of dimensional analysis, al-
though may seem to be a relatively innocent idea at a first glance, becomes
quite powerful tool when carried over to a general relativistic framework.
Namely, let our base manifold M be some four dimensional real manifold
(with or without boundary), and let L(M) be a real vector bundle over M ,
with one-dimensional fiber. The fiber of L(M) over each point of M shall

4 The term measure line was introduced by [11], whereas the same concept is called
scale space by [12]. Apparently, these two groups of authors discovered the pertinent
rather useful notion independently.
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model the vector space of length values, and the pertinent line bundle shall
be called the measure line bundle, or line bundle of lengths. Just like pro-
posed in [11, 12], the field quantities shall carry certain tensor powers of
L(M). For simplicity, the notation Ln(M) :=

n
⊗L(M) and L−n(M) :=

n
⊗L∗(M) shall be used, for all non-negative integers n, conforming to the
conventions of [11, 12], and also to our physical intuition of dimensional
analysis5. The proposed idea can be physically formulated as: the field
quantities are tagged with physical dimensions, but the units of the physical
dimensions in different spacetime points are not necessarily comparable a
priori, but a connection over L(M) needs to be explicitly specified for that.
Using these conventions and the analogy of Eq. (10), we assume that the
structure of the vector bundle of matter fields takes the form of

V (M) = ⊕
q∈Q

Vq(M) ,

with Vq(M) = Lq(M)⊗ Vq(M) (for all q ∈ Q) . (13)

This form of Eq. (10) helps to book-keep the physical dimensions of quan-
tities in a quite transparent way: the rational numbers q ∈ Q are called
physical dimensions, the factors Lq(M) are seen to count the physical di-
mensions, and Vq(M) would represent the dimension-free form of field quan-
tities, but the true physical fields reside in Vq(M) = Lq(M) ⊗ Vq(M), car-
rying appropriate dimensions. The pointwise L(M)→ L(M) vector bundle
automorphisms are equivalent to D(1) gauge transformations as discussed
previously, and the power q in the Lq(M) factor shall then automatically
correspond to the D(1) gauge charge. Thus, using the formalism of mea-
sure line bundle makes the D(1) gauge charge, i.e. the physical dimension
of the fields explicit. From the dimensional analysis point of view, all this
can simply be understood as: the fields are tagged by physical dimensions,
but the unit of measurement might be spacetime-point-dependent. Since
only pure real valued maximal form fields may be integrated throughout
the manifold, L must be pure

n
∧T ∗(M) valued, without physical dimension

in terms of powers of L(M). This consistency requirement already poses
algebraic constraints on the possible Lagrangians and shows the advantage
of not neglecting the physical dimensions of fields in the formalism.

It is evidently seen that the property of D(1) connection invariance of an
above-type model is just equivalent to the independence of the Lagrangian
expression L(v,∇v, F (∇)) from the L(M) connection. We shall call such

5 Note that due to the one dimensionality of the measure line L, rational tensor powers
are also well-defined as seen in [11, 12]. Roughly speaking, if L is a one-dimensional
real vector space, then n

√
L is defined to be the one-dimensional vector space obeying

n
⊗
(

n
√
L
)
≡ L for a given non-negative integer n.
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models measure line connection invariant. In the coming section, it is shown
that the conformally invariant Lagrangians turning up in physics possess this
property, which means that these type of Lagrangians are insensitive to the
parallel transport rule of measurement units throughout spacetime.

4. Examples

In the following, the important conformally invariant Lagrangians are
recalled. It is shown that these all have an additional symmetry of being
invariant to the choice of the connection on the measure line bundle, or
equivalently, to the choice of the D(1) gauge connection.

4.1. Conformal invariant version of vacuum general relativity

For illustrative purpose, we present the formulation of the conformally
invariant generalization of vacuum GR. The model is specified via a slightly
generalized form of the Einstein–Hilbert Lagrangian. Namely, let the base
manifold M be 4 real dimensional and oriented, and the vector bundle of

fields to be V (M) := L−1(M) ⊕ L2(M)⊗
2
∨T ∗(M), where L(M) is the line

bundle of lengths. Let the symbol v(g) denote the canonical volume form

field generated by the dimensional metric tensor field g∈Γ
(
L2(M)⊗

2
∨T ∗(M)

)
,

taking its values in Γ
(
L4(M)⊗

4
∧T ∗(M)

)
, i.e. having dimension length to

the four, as physically expected. We take then the Lagrange form to be

L :
Γ (V (M)×T ∗(M)⊗V (M)×T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ

(
4
∧T ∗(M)

)
,(

(ϕ, gab), (Dϕc, Dgdef ),
(
rgh, Rghi

j
))
7→ v(g)ϕ2gkmδlnRklm

n . (14)

As already mentioned in Section 2, in our variational scheme, the quanti-
ties are varied independently, i.e. no a priori relation is assumed between
the metric and covariant derivation, furthermore, also the torsion of the co-
variant derivation is not restricted initially. It is seen that Eq. (14) simply
corresponds to the standard Einstein–Hilbert Lagrangian with a slight gen-
eralization: the inverse Planck length (here denoted by ϕ) is not assumed
to be constant, but can (must) have location dependence, i.e. it is rather a
field than a constant in this model, as it is set to be a section of the vec-
tor bundle L−1(M). With this simple generalization, the theory becomes
measure-line-connection-invariant, and hence D(1) connection-invariant in
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terms of our definition in Section 3. This is verified by directly observing
that at any field configuration ((ϕ, gab),∇c), the Lagrangian expression

v(g)ϕ2gabR(∇)acb
c (15)

is invariant to the transformation, Eq. (12), i.e. does not depend on the
covariant derivation over the line bundle of lengths, where R(∇)acb

d is the
Riemann tensor of ∇.

The field equations are derived by direct substitution of L in Eq. (14) into
Eq. (7), along with the subsequent usage of the identities ∂v(g)

∂gab
= 1

2g
abv(g)

and ∂gcd

∂gab
= −1

2

(
gcagbd + gcbgad

)
. Straightforward calculations show (see

also [7]) that the field equations read as

∇̃a
(
ϕ2gbc

)
= 0 ,

ϕ2E
(
∇, ϕ2g

)
ab

= 0 (16)

throughout M , where

E
(
∇, ϕ2g

)
ab

:=
1
2R(∇)acb

c + 1
2R(∇)bca

c − 1
2

(
ϕ2gab

) (
ϕ−2gef

)
R(∇)ecf

c (17)

is the Einstein tensor defined by ∇a and ϕ2gbc, whereas ∇̃ denotes the
torsion-free part of the covariant derivation ∇, furthermore R(∇)abc

d is its
Riemann tensor. Equation (16) can be transformed to a more familiar form
via introducing the notation

T
(
∇, ϕ2g

)
ab

:=

1
4

(
∇̃aT (∇)gbg + ∇̃bT (∇)gag + T (∇)hgaT (∇)gbh

−1
2

(
ϕ2gab

) (
ϕ−2gef

)(
2∇̃eT (∇)gfg + T (∇)hgeT (∇)gfh

))
, (18)

where T (∇)cab is the torsion tensor of ∇. Using this, Eq. (16) is equivalent to

∇̃a
(
ϕ2gbc

)
= 0 ,

ϕ2E
(
∇̃, ϕ2g

)
ab

= ϕ2T
(
∇, ϕ2g

)
ab
, (19)

which is obtained by the well-known identity between the Riemann tensor
of a covariant derivation and the Riemann tensor of its torsion-free part.
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The obtained field equation is nothing but an ordinary vacuum Einstein
equation for the dimension-free metric ϕ2gab, i.e. for the metric tensor mea-
sured in units of square Planck length ϕ−2 in each spacetime point. Quite
obviously, presence of matter fields will generate contribution to Eq. (19)
in terms of energy-momentum tensor as a source on the right-hand side. It
should be noted that whenever the torsion tensor T (∇)cab is not assumed to
be zero a priori , it contributes to the energy-momentum tensor as seen from
Eq. (19).

Remark 4. The presented variational problem may be reformulated on the
closed affine subspace of torsion-free covariant derivations, in which case
the torsion tensor T (∇)cab automatically vanishes and thus the source term
T (∇, ϕ2g)ab vanishes on the right-hand side of Eq. (19) along with having
automatically ∇̃a = ∇a. That would mean ordinary vacuum Einstein equa-
tions for the dimension-free metric ϕ2gab.

The field equations (Eq. (19)) may be re-expressed also in terms of the
original metric gab which is not rescaled to be dimensionless. More specifi-
cally, Eq. (19) is seen to be equivalent to

D̃a(gbc) = 0 ,

E(D̃, g)ab = T
(
∇, ϕ2g

)
ab

+ϕ−1D̃aD̃bϕ+ ϕ−1D̃bD̃aϕ
−2gab g

efϕ−1D̃eD̃f (ϕ)

−4ϕ−1D̃a(ϕ)ϕ−1D̃b(ϕ)

+gab g
efϕ−1D̃e(ϕ)ϕ−1D̃f (ϕ) ,

gabD̃aD̃bϕ− 1
6R
(
D̃, g

)
ϕ = 1

6g
abT

(
∇, ϕ2g

)
ab
ϕ , (20)

where in this case D̃a is a torsion-free covariant derivation over L−1(M)⊗T (M)

such that it is metric-compatible (D̃a(gbc) = 0), furthermore E(D̃, g)ab is the
Einstein tensor of D̃a and gbc, whereas R(D̃, g) is the Ricci scalar of D̃a and
gbc. The obtained field equation is seen to be nothing but the coupled confor-
mally invariant Einstein–Klein–Gordon equation for gab and ϕ, along with
some source term coming from a possible torsion contribution (which may
be zeroed out by means of Remark 4). Again, when further matter fields
are present, they contribute to the right-hand side in terms of an energy-
momentum tensor. The field equations Eq. (20) are known to be conformally
invariant in the conventional sense of Weyl rescalings.

Remark 5. Whenever the base manifold M has a boundary ∂M and the
variation on the manifold boundary is allowed as in Remark 3, the boundary
field equations read as

ϕ2gab = 0 (throughout ∂M) . (21)
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The field equations (Eq. (19) and Eq. (21)) mean together that the dimension-
free metric ϕ2gab and its Levi-Civita covariant derivation ∇̃a obey vacuum
Einstein equations with a possible additional source term originating from
the torsion of ∇a. Furthermore, the dimension-free metric ϕ2gab is pressed
to zero as approaching the boundary with a conformal scaling factor (just
like the asymptotical behavior in the case of Friedman–Robertson–Walker
cosmological solutions).

Remark 6. It is worth to note that whenever the torsion is not zeroed
out a priori, a dynamical torsion theory arises. However, due to our non-
metric (Palatini-like) variational principle, the field equations will be slightly
different than that of the Einstein–Cartan–Sciama–Kibble theory [13]. The
essential difference is: not the original covariant derivation ∇a is compatible
with the dimension-free metric ϕ2gab as in ECSK theory, but the torsion-free
part of it. That is, if the torsion is not required to be zero a priori, the field
equations are a simple Einstein theory for ∇̃a and ϕ2gab, but the torsion
T (∇)cab also contributes to the energy-momentum tensor. In addition, one
obtains the constraint equation

ϕ−2gab∇̃aT
(
∇, ϕ2g

)
bc

= 0 (22)

for the torsion tensor due to the automatic vanishing of the divergence of
the Einstein tensor because of the Bianchi identities. It is seen that Eq. (19)
along with Eq. (22) is slightly different than that of ECSK field equations [13].

4.2. Spinorial formulation of conformally invariant version
of vacuum general relativity

The proposed metric-independent definition of conformal invariance be-
comes particularly useful when dealing with non-metric theories, i.e. with
models in which the spacetime metric tensor is a derived quantity, not a
fundamental one.

Remark 7. A simple example for a model in which the metric tensor is not
a fundamental quantity can be readily given with spinorial formulation [1, 2]
of conformally invariant version of general relativity. In that approach, one
has a spinor bundle S(M) with two complex dimensional fibers over the real
four manifold M . The Lagrange form is the spinorial representation of the
conformally invariant Einstein–Hilbert Lagrangian (see also Eq. (14))

L :
Γ (V (M)×T ∗(M)⊗V (M)×T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ

(
4
∧T ∗(M)

)
,
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ϕ, εAB, σ

AA′
a , χB

)
,
(
Dϕb, DεABb, Dσ

AA′
a b, Dχ

B
b

)
,(

rab, ρabAB
CD,Πab

AA′
c

d
BB′ , PabA

B
))

7→ v(g(σ, ε))ϕ2g(σ, ε)ac
(
σAA

′
c P̄abA′

B′σbAB′ + σAA
′

c PabA
BσbBA′

)
, (23)

where V (M) := L−1(M) ⊕ L(M)⊗
2
∧S∗(M) ⊕ T ∗(M)⊗S̄(M)⊗S(M) ⊕

L−1⊗S(M). Here, g(σ, ε)ab := σAA
′

a σBB
′

b ε̄A′B′εAB denotes the canonical

Lorentz metric tensor generated by an εAB ∈ Γ

(
L(M)⊗

2
∧S∗(M)

)
and

σAA
′

a ∈Γ
(
T ∗(M)⊗S̄(M)⊗S(M)

)
, furthermore, v(g(σ, ε)) denotes the canon-

ical volume form generated by g(σ, ε)ab ∈ Γ

(
L2(M)⊗

2
∨T ∗(M)

)
. In the

notation, Penrose abstract indices were used according to the conventions
of [1, 2]. It is seen by direct substitution that the model defined by this La-
grange form is measure-line-connection-invariant, and hence is D(1) gauge-
connection-invariant in the sense of Section 3. This is verified by directly
observing that for any field configuration

(
(ϕ, εAB, σ

AA′
a , χB),∇b

)
, the La-

grangian expression

v(g(σ, ε))ϕ2g(σ, ε)ac
(
σAA

′
c P̄ (∇)abA′

B′σbAB′ + σAA
′

c P (∇)abA
BσbBA′

)
(24)

is invariant to the transformation Eq. (12), i.e. does not depend on the
covariant derivation over the line bundle of lengths, where P (∇)abB

D is the
spinorial curvature tensor of ∇.

4.3. Dirac kinetic term

The below example shows how the definition of conformal invariance
in terms of connection works for the Dirac kinetic term, which is a classic
example of non-trivial Lagrangians known to be conformally invariant in
terms of Weyl rescalings.

Remark 8. For the definition of Dirac Lagrangian, we refer again to [1, 2]
for spinorial notations. One has a spinor bundle S(M) with two complex
dimensional fibers over the real four manifold M . The Lagrangian reads as

L :
Γ (V (M)×T ∗(M)⊗V (M)×T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ

(
4
∧T ∗(M)

)
,((

ϕ, εAB, σ
AA′
a , χB, ξ̄C′

)
,
(
Dϕb, DεABb, Dσ

AA′
a b, Dχ

B
b, Dξ̄C′b

)
,
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rab, ρabAB

CD,Πab
AA′
c

d
BB′ , PabA

B, Q̄abA′
B′
))

7→ v(g(σ, ε)) g(σ, ε)ab
√

2σAA
′

a Re
(
ε̄A′B′εABχ̄

B′iDχBb+ξAiDξ̄A′b

)
, (25)

where V (M) := L−1(M) ⊕ L(M)⊗
2
∧S∗(M) ⊕ T ∗(M)⊗S̄(M)⊗S(M) ⊕

L−2(M)⊗S(M)⊕L−1(M)⊗S̄∗(M). The definition of g(σ, ε)ab and v(g(σ, ε))
is the same as in Section 4.2. It is seen by direct substitution that the
model defined by this Lagrange form is measure-line-connection-invariant,
and hence is D(1) gauge-connection-invariant in the sense of Section 3. This
is verified by directly observing that for any field configuration(

(ϕ, εAB, σ
AA′
a , χB, ξ̄C′),∇b

)
,

the Lagrangian expression

v(g(σ, ε)) g(σ, ε)ab
√

2σAA
′

a Re
(
ε̄A′B′εABχ̄

B′i∇b
(
χB
)

+ ξAi∇b
(
ξ̄A′
))

(26)

is invariant to the transformation Eq. (12), i.e. does not depend on the
covariant derivation over the line bundle of lengths.

4.4. Yang–Mills kinetic term

Our last example shows how the definition of conformal invariance in
terms of connection works for the Yang–Mills kinetic term, which is another
classic example of non-trivial Lagrangians known to be conformally invariant
in terms of Weyl rescalings.

Remark 9. For the formulation of the Yang–Mills Lagrangian, we postulate
that our gauge group is a compact real Lie group. This implies that any
element of a finite dimensional real linear representation of its Lie algebra
has vanishing real part of its trace. The Lagrangian reads as

L :
Γ (V (M)×T ∗(M)⊗V (M)×T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ

(
4
∧T ∗(M)

)
,(

(Φ, gab), (DΦc, Dgdef ),
(
Fgh, Rghi

j
))

7→ Av(g) gac gbd Tr

((
Fab −

1

Tr I
I TrFab

)(
Fcd −

1

Tr I
I TrFcd

))
+ B v(g) gac gbd Im (TrFab) Im (TrFcd) , (27)

where V (M) := Y (M) ⊕ L2(M)⊗
2
∨T ∗(M). Here, Y (M) is the vector

bundle of matter fields in the Yang–Mills theory, possibly internally also
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tagged with physical dimensions in terms of tensor powers of L(M). The
symbol v(g) means the canonical volume form generated by the metric tensor
gab as previously, and I is the identity over the sections of Y (M), whereas Tr
denotes trace in terms of Y (M)⊗Y ∗(M). In the formula, A and B are real
numbers, determining the weights (coupling factors) of the non-Abelian part
and the U(1) part of the gauge group. It is seen by direct substitution that the
model defined by this Lagrange form is measure-line-connection-invariant,
and hence is D(1) gauge-connection-invariant in the sense of Section 3. This
is verified by directly observing that for any field configuration ((Φ, gab),∇b),
the Lagrangian expression

Av(g) gac gbd Tr

((
F∇ab −

1

Tr I
I TrF∇ab

)(
F∇cd −

1

Tr I
I TrF∇cd

))
+ B v(g) gac gbd Im (TrF∇ab) Im (TrF∇cd) (28)

is invariant to the transformation, Eq. (12), i.e. does not depend on the
covariant derivation over the line bundle of lengths, where F∇ab denotes
the curvature tensor of ∇ over Y (M). This invariance property simply fol-
lows from the fact that a change of the covariant derivation on L(M) could
only give contribution through Re(TrF∇ab), which is excluded from the La-
grangian expression by construction.

4.5. A counterexample

Based on the examples presented, one could ask the question whether
there is an counterexample, when a theory is locally D(1) gauge-invariant,
but it does not possess the extra symmetry of being independent from the
choice of the D(1) gauge connection. The answer is affirmative: for example,
a Yang–Mills Lagrangian based on the curvature tensor of the D(1) gauge
connection would be conformally invariant, would be locally D(1) gauge-
invariant, but it would be an explicit function of the D(1) gauge connection,
i.e. of a connection on the measure line bundle L(M) and, therefore, it would
not possess the property of being independent of the choice of the D(1) gauge
connection. That is, the pertinent symmetry is not an inherent property of
all conformally-invariant Lagrangians, but it seems that the conformally-
invariant Lagrangians appearing in realistic models, such as the Standard
Model, happen to possess this extra symmetry of being not dependent on
the choice of a D(1) connection. With the notations as in Section 4.4, the
pertinent non-invariant Lagrangian reads as

L :
Γ (V (M)×T ∗(M)⊗V (M)×T ∗(M)∧T ∗(M)⊗V (M)⊗V ∗(M))

→ Γ

(
4
∧T ∗(M)

)
,
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((Φ, gab), (DΦc, Dgdef ), (Fgh, Rghi
j))

7→ v(g) gac gbd Re (TrFab) Re (TrFcd) . (29)

Given a field configuration ((Φ, gab),∇b), the Lagrangian expression reads as

v(g) gac gbd Re (TrF∇ab) Re (TrF∇cd) . (30)

Clearly, a connection on L(M), possibly contained within the connection on
Y (M) will contribute to Re (TrF∇ab), and thus the pertinent Lagrangian
is conformally invariant, but it is not invariant then to the choice of the
connection on L(M).

5. Concluding remarks

In this paper, a metric independent reformulation for the property of
conformal invariance for classical field theories was shown. This was done
by attaching a D(1) gauge charge (in the analogy of conformal weight) to
each fundamental field. It was argued that the D(1) gauge charge is nothing
but a physical dimension, and the D(1) gauge connection is nothing but the
rule for parallel transport of measurement units between points of spacetime.
The D(1) gauge invariance was seen to be equivalent to ordinary conformal
invariance in terms of Weyl rescalings of the metric. It was also shown in
addition, that conformally invariant Lagrangians turning up in physics have
a slightly larger symmetry than that: their action functional is not only D(1)
gauge-invariant, but does not depend on the D(1) gauge connection at all.

All this was also presented by a somewhat more elegant geometrical for-
mulation using measure line bundles. In that approach, the field quantities
are not simply real valued, but each fundamental field takes its value on the
tensor powers of line bundle of lengths. The connection on this line bundle
corresponds to the pertinent D(1) gauge connection.

The presented metric independent variational formulation has the advan-
tage of direct applicability to models in which the spacetime metric tensor
is not a fundamental quantity, but is some function of other fundamental
fields. (Such a situation happens if the spinorial decomposition of the met-
ric is considered to be the fundamental variables, rather than the metric.)
The used metric-independent formalism also reveals the discussed hidden
symmetry of conformally invariant Lagrangians in a fairly transparent way.
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