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A previously introduced reduction of the Dirac equation is used to
study the charmonium spectrum. A regularized vector potential that only
depends on the coupling constant and the regularization radius is adopted,
considering the interacting quark as an extended source of the chromo-
electric field. A scalar interaction is also introduced with some constraints
for its parameters. A good description of the structure of the charmonium
spectrum is obtained with only three free parameters.
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1. Introduction

In a previous work [1], we studied a relativistic reduction of the Dirac
equation for quark-composed systems. In that work, we analyzed the the-
oretical fundaments of that reduced equation and showed that it was able
to reproduce the charmonium spectrum with high accuracy but using a rel-
atively large number of free parameters. More precisely, we used eight or
nine parameters to reproduce the spectrum, taking into account a possible
energy dependence of the interaction.

On the contrary, in the present work, by using the same reduced rela-
tivistic equation we shall try to reproduce the main structure of the char-
monium spectrum with a very small number of parameters, possibly with
evident physical meaning. To this aim, we shall determine two parameters
of the model in order to reduce the total number of free parameters.

As in [1], we use a vector–scalar interaction model to represent the dy-
namics of charmonium. In more detail, we shall use a specific form of the
vector interaction (possibly related to QCD) that corresponds to a regular-
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ized color interaction of the quarks. To this aim, we assume a non-pointlike
distribution of their chromo-electric charge. This model has been studied in
detail in work [2].

To avoid repetition, the reader will be directed to the specific parts of
works [1] and [2], when necessary. In those works, the reader can also find
the references on which the whole study is based. Recalling that the aim of
this work is to study the charmonium spectroscopy with a relativistic model
with only three free parameters, we briefly mention below (with no attempt
of completeness), some relatively recent studies on this subject.

We first quote the non-relativistic models. In Ref. [3], two models with
five parameters are constructed to study the charmonium resonances and
their electromagnetic transitions. A momentum-helicity model [4], also with
five parameters, was proposed for the charmonium spectrum. A model for
the spectrum and decay rates with a Coulomb-like potential, a linear con-
fining potential and a potential derived from the instanton vacuum [5], was
studied. This model used four parameters. The instanton effects are also
studied in another model with six parameters [6]. The mass spectrum was
calculated in the framework of non-relativistic QCD, with seven parame-
ters [7]. The charmonium properties were studied by solving the Schrödinger
equation with the discrete variable representation method [8]. This last
model used five parameters.

A semirelativistic model with a Coulomb plus linear potential using five
parameters [9] was studied.

As for the fully relativistic models, we recall the studies performed by
means of the Covariant Spectator Theory, with vector, scalar and pseu-
doscalar interactions [10, 11]. The authors studied, by means of the same
model, heavy and heavy–light mesons. They used three free parameters and
a fixed cutoff parameter to regularize the momentum space integrals. Other
parameters are the constituent quark masses, and the weight of scalar and
pseudoscalar coupling for the confining interaction. The authors analyzed
the dependence of the results on these last parameters by means of different
calculations in which they are considered as fixed or as free parameters.

Another relativistic model was based on the use of a momentum space
integral equation with positive energy Dirac spinors. A complete one-gluon
exchange interaction with other phenomenological scalar terms was used [12].
In that work, two different potentials were considered, with seven and eight
free parameters, respectively. The same model was applied to the study of
the bottomonium spectrum [13].

A covariant four-dimensional approach based on the Schwinger–Dyson
equations with a vector contact interaction was used to study the first radial
excitations of heavy quarkonium [14]. For the charmonium case, the authors
used five parameters and fixed the c-quark current mass at 1.09 GeV. Fur-
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thermore, they obtained other results adjusting three parameters to get the
experimental mass of the η′c(2S). The model was also generalized to study
the masses of light and heavy mesons and baryons [15].

We conclude observing that the construction of a consistent model for
the study of charmonium (and, in more general, quarkonium) is still a very
active field of investigation.

Going back to the present paper, its remaining content is organized as
follows. In Subsection 1.1, we briefly explain the symbols and the notation
used in the work. In Section 2, we recall the main aspects of the reduced
relativistic equation. In Section 3, the general form of the interaction is
introduced. In Subsections 3.1 and 3.2, the details of the vector and scalar
interactions are discussed, respectively. Finally, the results of the model
are presented and analyzed in Section 4. Some conclusions are drawn in
Section 5.

1.1. Symbols and notation

For the Dirac matrices (in the standard representation), for all the other
operators and wave functions, we use the notation introduced in [1] and also
~ = c = 1. We shall use the generic word quark to denote both the c-quark
and the antiquark c̄ of the charmonium system. The word antiquark will
be used only when strictly necessary. For the argument of the color charge
distribution, in Eqs. (12) and (15), we use x = |x|.

2. The reduced Dirac equation

Following [1], we summarize here the main aspects of the reduction of the
Dirac equation that is used in this work. The starting point is represented by
the one-body reduction operator that, for the ith particle, takes the form of

Ki = K(mi, Ei;pi,σi) =

(
1

σi·pi
mi+Ei

)
, (1)

where mi, Ei, pi, σi, respectively, represent the mass, energy, momentum
and Pauli matrix of the ith constituent. The operator Ki, introduced in
Eq. (21) of [1], is applied to a two-component spinor and gives rise (for one
particle) to a four-component vinculated Dirac spinor. Note that Ki is a
local operator, so that the complete equation is also local and can be solved
in the coordinate space.

The two-body reduced equation, given in Eq. (40) of [1], can be formally
written as

K†1 ·K
†
2

(
D1 +D2 +W(2)

)
K1 ·K2|Φ〉 = 0 , (2)
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where Di (i = 1, 2) represents the standard operator of the free Dirac equa-
tion

Di = D(mi, Ei;pi,αi, βi) = αi · pi + βimi − Ei . (3)

In Eq. (2), we have also introduced the two-body Dirac interaction operator
W(2).

We consider the case of two equal mass particles m1 = m2 = m, in
the center-of-mass (CM) reference frame, where the total momentum P is
vanishing. In this frame, the following relation holds:

p1 = −p , p2 = p , (4)

where p represents the relative momentum operator, canonically conjugated
to the relative distance vector

r = r2 − r1 . (5)

Furthermore, we assume that, in the CM, the two particles have the same
energy

E1 = E2 =
ET

2
=
M

2
, (6)

where ET = M represents the mass off the resonant state.
In this way, we obtain the reduced equation in the form given by Eqs. (43)

and (44) of [1], that is[(
1 +

p2

(ET/2 +m)2

)(
2p2

ET/2 +m
+ 2m− ET

)
+ Ŵ(2)

]
|Φ〉 = 0 , (7)

where we have also introduced the two-body reduced interaction operator

Ŵ(2) = K†1 ·K
†
2 W(2) K1 ·K2 . (8)

The expressions for the reduced scalar and vector two-body interactions have
been given in Eqs. (C.3) and (C.5) of [1].

Equation (7) is a local, energy-dependent equation, free from continuum
dissolution disease [1, 16] that can be advantageously used to study the
spectroscopy of charmonium and of other mesons.

We also recall that Eq. (7), being an energy-dependent effective equation,
can be solved by means of the technique explained in detail in Section 7 of [1].
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3. The general structure of the interaction

As in Section 6 of [1], for the two-body interaction W(2) that appears
in Eqs. (7) and (8), we consider a standard sum of a vector and a scalar
contribution, in the form of

W(2) = W v
(2) +W s

(2) . (9)

For the vector interaction, we take the following standard expression:

W v
(2) = V v

(2)(r)γ
0
1γ

0
2 · γ

µ
1 γ

ν
2gµν . (10)

The potential function V v
(2)(r) will be discussed in Subsection 3.1.

In order to have a local interaction operator, as explained in [1], we have
not included retardation contributions, consistently with Eq. (6): we make
the hypothesis that the quark energies Ei = ET/2 are fixed ; in other words,
we assume that the quarks do not interchange energy with the effective
gluonic vector field that mediates the interaction.

For the scalar interaction, we take the expression

W s
(2) = V s

(2)(r)γ
0
1γ

0
2 . (11)

Many trials have been performed to determine the specific form of the po-
tential functions V v

(2)(r) and V s
(2)(r) in order to reproduce the charmonium

spectrum with a very small number of free parameters. In the two follow-
ing subsections, the specific properties of the two potential functions will be
discussed in detail.

3.1. The vector interaction

The vector interaction is constructed according to the model proposed
in work [2]. In that model, the quarks are considered as extended sources
of the chromo-electric field. In consequence, the color charge distribution
of these sources determines the form of the potential and the value of the
self-energy (i.e., the zero-point potential energy) that is not introduced as
an extra parameter.

Considering the objective of the present work, the contents of Section 2
of [2] can be synthetically rewritten in the following way.

Given a color charge distribution ρ(x) (obviously rotationally invariant)
for each quark, the attractive interaction energy between the quark and
antiquark has the form of

V int(r) = −4

3
αv

∫
d3x

∫
d3x′ρ(x)ρ

(
x′
) 1

|x− x′ + r|
. (12)
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(This interaction energy was denoted as W int
qq̄ in [2].) Now, we recall that

4/3 is the color factor for the quark–antiquark interaction, αv is the color
(vector) effective coupling constant (more frequently denoted as αstrong).
Note that the last factor of Eq. (12) represents the Coulombic term. Due to
the presence of that term, the interaction energy V int(r) is also Coulombic
at a large distance.

As shown in [2], the color charge distributions give rise to a positive zero-
point self-energy that will be denoted as V̄v in the present work (while the
same quantity was defined W self in [2]). It is given by the following relation:

V̄v = −V int(r = 0) . (13)

Furthermore, we note that the time component of the vector interaction,
studied in [2], corresponds to V v

(2)(r) of Eq. (10). In conclusion, for this
quantity, we have

V v
(2)(r) = V̄v + V int(r) . (14)

The color charge distributions of the quarks regularize the interaction po-
tential at r = 0 and produce the self-energy V̄v. As a result, we obtain for
V v

(2)(r) a potential that is vanishing at r = 0 and approaches the maximum
value V̄v (with a Coulombic behavior) as r →∞.

The best reproduction of the experimental data has been obtained with
a Gaussian color charge distribution, of the form of

ρ(x) =
1

(2πd2)3/2
exp

(
− x

2

2d2

)
. (15)

With this distribution, V̄v and V int(r) can be calculated analytically. The
results are

V̄v =
4

3

αv

d

1√
π

(16)

and
V int(r) = −4

3

αv

r
erf
( r

2d

)
. (17)

The same regularization function Fv(r) = erf
(
r
2d

)
was also used in Eq. (61)

of [1], with 2d = dv. The relevant properties of this regularization function
are also explained there.

Finally, note that V̄v is not a free parameter but is determined by αv

and d that represent the only free parameters of the vector interaction.



A Relativistic Model for the Charmonium Spectrum with a Reduced . . . 1295

3.2. The scalar interaction and an additional constraint

In order to reproduce with reasonable accuracy the experimental data of
the charmonium spectrum, we have verified that it is strictly necessary to
introduce a scalar interaction.

However, in the present context, it has not been possible to construct a
more fundamental model to represent this interaction.

After trying different forms for Vs(r), we have found that a negative
function, regular at r = 0, that goes to zero as r →∞, is needed to reproduce
the spectrum. The simplest expression, with only two free parameters, is a
Gaussian function

V G
s (r) = −V̄s exp

(
−r

2

r2
s

)
. (18)

We also report, in the results of the following section, a very simple test with
a constant interaction

V C
s (r) = −V̄s . (19)

In this case, the reproduction of the spectrum is obviously worse than that
obtained with V G

s (r).
Furthermore, we have used a two-region potential, studying the possibil-

ity that the scalar interaction is related to the interchange of a scalar particle
of mass mb.

After trying different parametrizations, we found that, in any case, it is
necessary to consider two spatial regions: an inner region, with a relatively
soft dependence on r and an outer region in which the scalar interaction is
represented by a standard Yukawa function related to the interchange of a
mass mb. The expression that has been used has the following form:

V T
s (r) =

−V̄s

[
1− b

(
r
rs

)p
]

for r ≤ rs,

−β
r exp

(
− r
rb

)
for r > rs .

(20)

In the previous expression, we use the same symbol rs introduced for the
Gaussian potential. But now it has a different meaning: it fixes the limit
between the inner and outer spatial regions; b and p are adimensional param-
eters whose numerical value will be given in the next section, β represents
the adimensional coupling constant of the Yukawa interaction and, finally,
rb = 1/mb.

We require that V T
s (r) and its first derivative are continous at r = rs.

These two conditions respectively give

β = V̄srs(1− b) exp

(
rs

rb

)
(21)
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and
rb = rs

1− b
bp− 1 + b

. (22)

Further discussions about the scalar interaction and its specific form V T
s (r)

are postponed to the next section.
Finally, in order to reduce the number of free parameters of the scalar in-

teraction, we introduce a phenomenological constraint on the parameter V̄s.
Recalling the discussion in the previous subsection about the self-energy of
the vector interaction, analogously to Eq. (13), we assume here that, for the
scalar potentials of Eqs. (18), (19) and (20), Vs(r = 0) = −V̄s represents
the (negative) self-energy of the scalar interaction.

Considering this starting point, we shall use the following phenomeno-
logical balance equation:

V̄v = 2mq − V̄s . (23)

It means that the self-energy of the vector interaction equals the rest energy
of the quarks plus the negative self-energy of the scalar interaction.

In this way, solving Eq. (23) with respect to V̄s, we avoid to introduce
this quantity as a free parameter; on the contrary, it is determined by the
other parameters of the model.

Some more comments will be given in Section 4 when analyzing the
results of the calculation.

4. The result for the charmonium spectrum

In this section, we apply the model to study the charmonium spectrum
with the interaction introduced in Section 3.

The relativistic, energy-dependent equation (7) is solved with the same
technique explained in Section 7 of [1], to which we refer the reader.

We use a variational basis of harmonic oscillator (HO) wave functions
that, in the coordinate space, have the form given in Eq. (63) of [1]

Φn;L,S,J(r) = 〈r|n;L, S, J〉 = Rn,L(r; r̄)[YL(r̂)⊗ χS ]J . (24)

In the previous equation, the trial radial function is represented byRn,L(r; r̄),
n being the principal HO quantum number and r̄ the variational parameter
with the dimension of longitude; YL,ML

(r̂) is the corresponding spherical
harmonic and χS,MS

, with S = 0, 1 is the c c̄ coupled spin function. The
orbital angular momentum and the spin are standardly coupled to the total
angular momentum J,MJ . For brevity, we do not write MJ because it is
irrelevant for the calculations of rotationally scalar operators.
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Finally, for simplicity, we do not consider the possibility of mixing be-
tween states with different values of L, because these effects are usually
considered negligible in these calculations.

The analytic form of the radial HO functions is given in Eq. (64) of [1].
As for the fit procedure, we have determined the free parameters of the

model by minimizing the quantity

D2 =
∑
i

(
Eth
i −M

exp
i

)2
, (25)

where Eth
i and M exp

i , respectively, represent the calculated energy and the
experimental mass (rest energy) of the ith resonance.

Due to the higher number of parameters (more precisely, eight or nine)
used in [1], in that work, a better reproduction of the spectrum was ob-
tained. On the other hand, we try here to fit the whole spectrum with three
parameters only.

To this aim, we also fix the mass of the c-quark at the value given by
the PDG as the “running” mass in the MS scheme. This value is presently
mq = 1.27 GeV [17].

All the results for the spectrum are given in Table I.
In the last column of this table, we give the experimental values of the

resonances. In particular, we have considered all the eight experimentally
observed resonances, whose energies are below the open charm threshold
D D̄; we have also taken eight not controversial resonances at higher energies.
For a discussion about the phenomenological interpretation of the resonances
in different models, the interested reader is referred to Ref. [12].

In the columns denoted by Gauss, Const. and Two Reg., we report the
theoretical results given respectively by the Gaussian scalar potential of
Eq. (18), by the constant scalar potential of Eq. (19) and by the two-region
scalar potential of Eq. (20).

Considering Eq. (25), we report, for simplicity, in the last line of Table I
the quantity Q = D2/100 MeV2 in order to give an indication about the
quality of the fit for the three scalar potentials.

The values of the parameters of the model are shown in Table II.
In particular, we give the values obtained with the fit procedure for

the independent parameters: the effective coupling constant αv and the
regularization radius d for the effective vector interaction, and the radius rs

of the scalar interaction. We also give the values of dependent parameters
V̄v of Eq. (16) and V̄s, determined by means of Eq. (23).

The same notation (for the different scalar potentials) as in Table I is
used in Table II.



1298 M. De Sanctis

TABLE I

Comparison between the experimental average values [17] of the charmonium spec-
trum (last column) and the theoretical results of the model. All the masses are
in MeV. The quantum numbers n, L, S and J have been introduced in Eq. (24);
they represent the principal quantum number, the orbital angular momentum, the
spin and the total angular momentum, respectively. The results of the columns
Gauss, Const. and Two Reg. refer to the different forms of the scalar interaction,
as specified in the text. A line divides the resonances below and above the open
Charm threshold. At the bottom, the quantity Q gives an indication of the quality
of the fit, as explained in the text.

Name n2S+1LJ Gauss Const. Two Reg. Experiment

ηc 11S0 2989 3007 2990 2983.9 ± 0.5
J/ψ 13S1 3092 3100 3092 3096.9 ± 0.006
χc0 13P0 3420 3386 3419 3414.71 ± 0.30
χc1 13P1 3499 3461 3497 3510.67 ± 0.05
hc 11P1 3511 3464 3509 3525.38 ± 0.11
χc2 13P2 3565 3556 3562 3556.17 ± 0.07
η′c 21S0 3649 3680 3643 3637.5 ± 1.1
ψ′ 23S1 3680 3708 3673 3686.097 ± 0.010

ψ(3770) 13D1 3797 3756 3791 3778.1 ± 1.2
ψ(3823) 13D2 3832 3828 3826 3822.2 ± 1.2

χc1(3872) 23P1 3893 3914 3890 3871.69 ± 0.17
χc2(3930) 23P2 3928 3949 3926 3927.2 ± 2.6
ψ(4040) 33S1 4014 4027 4020 4039 ± 1

χc1(4140) 33P1 4145 4135 4158 4146.8 ± 2.4
ψ(4230) 43S1 4214 4195 4220 4218.7 ± 2.8

χc1(4274) 43P1 4272 4258 4269 4274 ± 7

Q 22.6 138 17.8

The main results of this work are those obtained with the Gaussian
potential V G

s (r) of Eq. (18) for the scalar interaction. As shown in Table I,
a good overall reproduction of the spectrum is obtained with only three free
parameters.

As anticipated in Subsection 3.2, we have also tried to reproduce the
spectrum (as a very simple test) with a constant scalar potential. In this
case, we need only two free parameters: αv and d.

The corresponding value of Q in Table I shows that the quality of the fit
is considerably worse than that given by the Gaussian scalar potential.

Finally, with the two-region potential, we have explored the possibility
that the scalar interaction is given, at least in the outer region, by the stan-
dard exchange of a scalar particle, by using the potential V T

s (r) of Eq. (20),
with the continuity conditions of Eqs. (21) and (22).
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TABLE II

Numerical values of the free and dependent parameters of the model; mq is fixed
at the value of Ref. [17], as explained in the text. The reported numerical values
represent the results of the fits of the free parameters αv, d and rs; V̄v and V̄s are
dependent parameters, as explained in the text.

Units

mq 1.27 GeV

Gauss Const. Two Reg.

αv 1.864 3.991 1.865
d 0.1526 0.2665 0.1531 fm
rs 1.879 1.991 fm

V̄v 1.813 2.223 1.808 GeV
V̄s 0.7268 0.3170 0.7321 GeV

For this case, we point out that, after some trials, we have fixed (for
simplicity) the power p of the inner part of the potential at p = 3/2 and
the parameter b at the value b = 2−1/2. We have verified that no significant
improvement is obtained varying these values.

We also give the values of other dependent parameters of this interaction:
(i) for the range of the Yukawa interaction rb, fixed by Eq. (22), we have

obtained rb = 0.7594 fm, corresponding to a scalar boson mass of
mb = 0.2598 GeV;

(ii) for the Yukawa coupling costant β, fixed by Eq. (21), we have found
β = 29.75.

Considering the results of Table I, we observe that no significant im-
provement for the charmonium spectrum is obtained with respect to the
case of the Gaussian scalar potential. Furthermore, the radius of the inner
region rs is large with respect to the range rb of the (hypothetical) Yukawa
interaction.

In conclusion, the model does not show clear evidence for the exchange
of a scalar particle.

Finally, for all the scalar interactions we have also tried to consider V̄v

and V̄s as free parameters, ignoring Eqs. (16) and (23), but no significant
improvement in the reproduction of the spectrum has been obtained.

As in [1], we have also used the reduced equation obtained by the rel-
ativistic Mandelzweig and Wallace equation [18, 19]; the obtained results
are very similar to those discussed above (obtained by using the reduced
Dirac-like equation (7)). For this reason, they have not been shown in the
paper. Some more comments are given in Conclusions.
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5. Conclusions

In this paper, we have shown that a relativistic, energy-dependent, local
equation can be used to describe the charmonium spectrum with good accu-
racy using only three free parameters. A standard mixture of a vector and
scalar interaction has been considered. As for the vector part of the interac-
tion, the regularization radius fixes the quark self-energy that is determined
in this way as a dependent parameter.

For the scalar interaction, a phenomenological Gaussian potential is
taken; the possibility of the interchange of a scalar particle has been also
explored. A balance equation is used to determine the value of the scalar
potential at r = 0.

Further investigation is needed to understand in more detail the nature
and the origin of the scalar interaction.

The author thanks the group of Gestión de Recursos de Computo Cien-
tífico, Laboratorio de Biología Computacional, Facultad de Ciencias — Uni-
versidad Nacional de Colombia for the access to the computation facilities
that were used to perform the numerical calculations of this work.
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