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It has been argued that the bosonic large-N master field of the IIB
matrix model can give rise to an emergent classical spacetime. In a re-
cent paper, we have obtained solutions of a simplified bosonic master-field
equation from a related matrix model. In this simplified equation, the ef-
fects of dynamic fermions were removed. We now consider the full bosonic
master-field equation from a related supersymmetric matrix model for di-
mensionality D = 3 and matrix size N = 3. In this last equation, the effects
of dynamic fermions are included. With an explicit realization of the ran-
dom constants entering this algebraic equation, we establish the existence
of nontrivial solutions. The small matrix size, however, does not allow us
to make a definitive statement as to the appearance of a diagonal/band-
diagonal structure in the obtained matrices.
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1. Introduction

The IIB matrix model [1, 2] has been proposed as a nonperturbative
formulation of type-IIB superstring theory. Recently, the corresponding
large-N bosonic master field [3, 4] has been suggested as the possible source
of an emerging classical spacetime [5] (see also Ref. [6] for a follow-up paper
on cosmology and Ref. [7] for a review).

The task, now, is to solve the relevant bosonic master-field equation.
Preliminary results have shown that there may appear a bosonic master-
field solution, whose matrices have an approximate diagonal/band-diagonal
structure [8]. These results were, however, obtained from a simplified bosonic
master-field equation with dynamical effects of the fermions removed alto-
gether.
∗ Funded by SCOAP3 under Creative Commons License, CC-BY 4.0.
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In the present paper, we will consider the full bosonic master-field equa-
tion with dynamical effects of the fermions included. There are, then, two
crucial questions. First, does the full bosonic master-field equation still have
solutions? Second, assuming the existence of a solution, do the fermion ef-
fects preserve the diagonal/band-diagonal structure found from the previous
simplified equation?

It is well known that the fermions of the IIB matrix model give rise to a
Pfaffian, which is extremely difficult to calculate symbolically [9–11]. As a
first step towards answering the two questions of the previous paragraph, we
consider a low dimensionality D = 3 and a small matrix size N = 3. Then,
we can give a clear affirmative answer to the first question on the existence
of solutions, but are not yet able to give a definitive answer to the second
question on a possible diagonal/band-diagonal structure (even though, the
D = N = 3 results are somewhat encouraging).

2. Supersymmetric matrix model

2.1. General case

Let us briefly review the IIB matrix model [1, 2], first allowing for a
different number of spacetime dimensions than ten. We essentially take
over the conventions and notation of Ref. [9], except that we write Aµ for
the bosonic matrices, with a directional index µ running over {1, . . . , D}.
These bosonic matrices, as well as the fermionic matrices, areN×N traceless
Hermitian matrices. The partition function for D > 2 and N ≥ 2 is then
defined as follows [1, 2, 9]:

ZFD,N =

∫ g∏
I=1

D∏
µ=1

dAIµ√
2π

e−Sbos[A]

×

(∫ g∏
I=1

N∏
α=1

dΨ Iα e−Sferm[A, Ψ ]

)F
, (2.1a)

Sbos[A] = −1

2
Tr
([
Aµ, Aν

] [
Aµ, Aν

] )
, (2.1b)

Sferm[A, Ψ ] = −Tr
(
Ψ̄α Γ

µ
αβ

[
Aµ, Ψβ

])
, (2.1c)

Aµ = AIµ TI , Ψα = Ψ Iα TI , (2.1d)

Tr
(
TI · TJ

)
=

1

2
δIJ , (2.1e)
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g ≡ N2 − 1 , (2.1f)

N ≡ 2 [D/2] ×

{
1 , for oddD ,

1/2 , for evenD ,
(2.1g)

F ∈
{

0, 1
}
, (2.1h)

where repeated Greek indices are summed over (corresponding to an implicit
Euclidean “metric”) and F is an on/off parameter to include (F = 1) or ex-
clude (F = 0) dynamic-fermion effects. The square bracket in the exponent
of (2.1g) stands for the Entier/Floor function and the factor 1/2 corresponds
to the Weyl projection [for D = 10, there is also a reality (Majorana) con-
dition on the fermions]. The commutators entering the action terms (2.1b)
and (2.1c) are defined by [X, Y ] ≡ X ·Y −Y ·X for square matrices X and Y
of equal dimension.

The matrix model (2.1) with F = 1 is supersymmetric for dimensionality

D = 3, 4, 6, 10 , (2.2)
where the field transformations have, for example, been given by Eq. (2)
in Ref. [9]. Expansions (2.1d), for real coefficients AIµ and Grassmannian
coefficients Ψ Iα, use the N × N traceless Hermitian SU(N) generators TI
with normalization (2.1e). Remark also that we have set the model length
scale ` to unity, so that the coefficients AIµ and Ψ Iα are dimensionless.

The Gaussian integrals over the Grassmann variables Ψ Iα in (2.1a) can
be performed analytically, so that the partition function reduces to a purely
bosonic integral,

ZFD,N =

∫ g∏
I=1

D∏
µ=1

dAIµ√
2π

(
PD,N [A]

)F
e−Sbos[A]

=

∫ g∏
I=1

D∏
µ=1

dAIµ√
2π

e−S
F
eff, D,N [A] , (2.3a)

SFeff, D,N [A] = Sbos[A]− F log PD,N [A] . (2.3b)

The Pfaffian PD,N [A], which can be absorbed into the effective action Seff[A],
is given explicitly by a sum over permutations [9] or by a sum involving
the Levi-Civita symbol. Concretely, the Pfaffian PD,N [A] is a homogenous
polynomial in the bosonic coefficients AIµ, where the order K, for the special
dimensions (2.2), is given by the following expression [9, 10]:

K =
(
D − 2

) (
N2 − 1

)
. (2.4)

An explicit example of the Pfaffian will be given in Sec. 2.2. Further discus-
sion of the Pfaffian appears in, e.g., Refs. [9–11].
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The partition function of the genuine IIB matrix model [1, 2] has the
following parameters in (2.1):{

D, N, F
}

=
{

10, ∞, 1
}
, (2.5)

and there is a second supersymmetry transformation in addition to the one
mentioned below (2.2). The large-N limit may require further discussion,
but, at this moment, we just consider N to be large and finite (for ex-
ploratory numerical results, see, e.g., Refs. [12–14] and references therein).

2.2. Particular case

Now consider the matrix model (2.1) with the particular parameters{
D, N, F

}
=
{

3, 3, 1
}
, (2.6)

for which the model has a supersymmetry invariance, as mentioned in the
second paragraph of Sec. 2.1. The eight generators TI are proportional
to the 3 × 3 Gell-Mann matrices λI used in elementary particle physics.
Remarkably, there is an explicit result for the Pfaffian [9]:

P3, 3[A] = −3

4
Tr
([
Aµ, Aν

] {
Aρ, Aσ

})
Tr
([
Aµ, Aν

] {
Aρ, Aσ

})
+

6

5
Tr
(
Aµ
[
Aν , Aρ

] )
Tr
(
Aµ
[{
Aν , Aσ

}
,
{
Aρ, Aσ

}] )
, (2.7)

which corresponds to a homogenous eighth-order polynomial in the bosonic
coefficients AIµ. Expression (2.7) contains, in addition to commutators, also
anticommutators, defined by {X, Y } ≡ X · Y + Y · X for square matrices
X and Y of equal dimension.

Using expression (2.7) for the Pfaffian, the effective action is given by

SFeff, 3, 3[A] = Sbos, 3, 3[A]− F log P3, 3[A] , (2.8)

where F = 0 removes the effects of dynamic fermions and F = 1 includes
them. In a previous paper [8], we had simply removed the fermion term in
the effective action but, here, we intend to study it carefully. Incidentally, the
integrals in (2.3), for parameters (2.6), may have convergence problems [11],
but our focus will be solely on a type of saddle-point equation obtained from
the effective action (2.8).
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3. Bosonic master field

3.1. Bosonic observables and master field

As our main interest is in the possible recovery of an emerging classical
spacetime [5–7], we primarily consider the bosonic observable

wµ1 ... µm ≡ 1

N
Tr
(
Aµ1 · · · Aµm

)
, (3.1)

where the 1/N prefactor on the right-hand side is only for convenience. Now,
arbitrary strings of these bosonic observables have expectation values

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉FD,N

=
1

ZFD,N

∫
dA
(
wµ1 ... µm wν1 ... νn · · · wω1 ... ωz

)
e
−SFeff, D,N , (3.2)

where “dA” is a short-hand notation of the measure appearing in (2.1a) and
ZFD,N is defined by the integral (2.3).

These expectation values, at large values of N , have a remarkable fac-
torization property:

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉FD,N
N
= 〈w µ1 ... µm〉FD,N 〈w ν1 ... νn〉FD,N
· · · 〈w ω1 ... ωz〉FD,N , (3.3)

where the equality holds to leading order in N . According to Witten [3],
the factorization (3.3) implies that the path integrals (3.2) are saturated by
a single configuration, which has been called the “master field” and whose
matrices will be denoted by Âµ. To leading order in N , the expectation
values (3.2) are then given by the bosonic master-field matrices Âµ in the
following way:

〈wµ1 ... µm wν1 ... νn · · · wω1 ... ωz〉FD,N
N
= ŵ µ1 ... µm ŵ ν1 ... νn · · · ŵ ω1 ... ωz , (3.4a)

ŵ µ1 ... µm ≡ 1

N
Tr
(
Âµ1 · · · Âµm

)
, (3.4b)

where the master-field matrices Âµ have an implicit dependence on the
model parameters D, N , and F . See Refs. [5, 7] for further discussion and
references.
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3.2. Bosonic master-field equation

Introducing N random constants p̂k and the N ×N diagonal matrix

D( p̂ )(τ) ≡ diag
(

ei p̂1 τ , . . . , ei p̂N τ
)
, (3.5)

the bosonic master-field matrices take the following “quenched” form [4, 5]:

Â ρ = D( p̂ ) (τeq) · â ρ ·D−1
( p̂ ) (τeq) , (3.6a)

for a sufficiently large value of τeq (see below for further explanations). The
τ -independent matrix â ρ in (3.6a) is determined by the algebraic equation [5]

d

dτ

[
D( p̂ )(τ) · â ρ ·D−1

( p̂ )(τ)
]
τ=0

= −
δSFeff, D,N

[
â
]

δ âρ
+ η̂ ρ . (3.6b)

All matrix indices have been suppressed in the three equations above [the
notation with a functional derivative on the right-hand side of (3.6b) is
purely symbolic] and SFeff, D,N [ â ] is given by (2.3b) or by (2.8) for the par-
ticular case considered. The left-hand side of (3.6b), with matrix indices
{k, l} added, reads i (p̂k − p̂l) â ρkl and the equation is manifestly algebraic
(see below for further comments on its basic structure).

The algebraic equation (3.6b) has two types of constants: the mas-
ter momenta p̂k (uniform random numbers) and the master noise matri-
ces η̂ ρkl (Gaussian random numbers). Very briefly, the meaning of these
two types of random numbers is as follows. The dimensionless time τ is
the fictitious Langevin time of stochastic quantization, with a Gaussian
noise term η in the differential equation (its basic structure is as follows:
dA/dτ = −δSeff/δA+ η). The τ evolution drives the system to equilibrium
at τ = τeq and the resulting configuration Aρ(τeq) corresponds to the master
field Â ρ. For large N , the τ -dependence of the bosonic variable Aρk l(τ) and
the Langevin noise matrix ηρk l(τ) is quenched by use of the uniform ran-
dom momenta p̂k. Note that all master variables and master constants are
denoted by a caret. See Refs. [4, 5] for further discussion and references.

We now have three technical remarks on the obtained master-field equa-
tions (3.6a) and (3.6b). First, the algebraic equation (3.6b) for F = 0
reproduces the simplified equation (3.1) of Ref. [8], up to an irrelevant mi-
nus sign of the double-commutator there. Second, the derivative term on
the right-hand side of (3.6b) for F = 1 involves not only the derivative of
the Pfaffian (which has been studied in, e.g., Ref. [10]) but also the inverse
of the Pfaffian. Third, as the Pfaffian is a Kth order polynomial, denoted
symbolically by PK [A] with K given by (2.4), the basic structure of the
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algebraic equation (3.6b) is as follows:

P
( p̂ )
1 [ â ] = P3 [ â ] + F

PK−1 [ â ]

PK [ â ]
+ P

( η̂ )
0 [ â ] , (3.7)

where only the on/off constant F is shown explicitly and where the suffixes
on P1 and P0 indicate their respective dependence on the master momenta p̂k
and the master noise η̂ ρkl. If we multiply (3.7) by PK [ â ], we get a polynomial
equation of the order of K + 3.

In order to obtain the component equations [labeled by an index I run-
ning over 1, . . . , (N2−1) and an index ρ running over 1, . . . , D], we matrix
multiply (3.6b) by TI , take the trace, and multiply the result by two. There
are then Dg = D

(
N2−1

)
coupled algebraic equations for an equal number

of unknowns {â 1
1 , . . . , â

g
D}. It appears impossible to obtain a general solu-

tion of these algebraic equations. We will look for solutions of these coupled
algebraic equations with an explicit realization of the random constants p̂k
and η̂ ρkl. This is still a formidable problem for large values of N . Only for
very small values of N are we, at this moment, able to get an explicit result.

4. Solutions for D = 3 and N = 3

4.1. Setup and method

We will now obtain, for the particular case (2.6), several solutions of the
algebraic equation (3.6b), which corresponds to 24 real algebraic equations
for 24 real unknowns {â 1

1 , . . . , â
8

3 }.
For the constants entering these 24 algebraic equations, we take pseudo-

random rational numbers with a range [−1/2, 1/2] for the master momenta
p̂k and pseudorandom rational numbers with a range [−1, 1] for the master
noise coefficients η̂ Iρ. Specifically, we restrict to rational numbers of the form
of n/1000, for n ∈ Z, and take the p̂k numbers from a uniform distribution
with a range [−1/2, 1/2] and the η̂ Iρ numbers from a truncated Gaussian
distribution (with spread σ = 2 and cut-off value xtrunc = 1 in the notation
of Sec. III B of Ref. [8]; ultimately we must take xtrunc � σ).

Explicitly, we use the following realization (labeled α) of the pseudoran-
dom constants:

p̂ α-realization =

{
− 27

100
,

257

1000
,

121

1000

}
, (4.1a)
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η̂ 1
α-realization =

547

2000
+

13
√

3

400

36

125
− 38 i

125

103

250
− 131 i

2000

36

125
+

38 i

125
− 547

2000
+

13
√

3

400
− 247

2000
+

41 i

250

103

250
+

131 i

2000
− 247

2000
− 41 i

250

−13
√

3

200


, (4.1b)

η̂ 2
α-realization =

319

2000
− 467

2000
√

3
− 921

2000
+

43 i

400

163

1000
+

97 i

400

− 921

2000
− 43 i

400
− 319

2000
− 467

2000
√

3

951

2000
+

419 i

2000

163

1000
− 97 i

400

951

2000
− 419 i

2000

467

1000
√

3


, (4.1c)

η̂ 3
α-realization =

28

125
+

989

2000
√

3
− 419

1000
+

27 i

1000

169

500
+

13 i

40

− 419

1000
− 27 i

1000
− 28

125
+

989

2000
√

3

219

500
− 241 i

1000

169

500
− 13 i

40

219

500
+

241 i

1000

−989

1000
√

3


. (4.1d)

The tracelessness of the η̂ ρ matrices in (4.1) is manifest. Other realizations
(labeled β, γ, . . .) have given similar results.

The 3 solution matrices â ρα-sol are determined by 24 coefficients
(
â ρα-sol

)I .
Before we present these coefficients, which are obtained from the 24 algebraic
equations mentioned above, let us briefly describe the method used. Strictly
speaking, it does not matter how the 24 real numbers

(
â ρα-sol

)I are obtained,
as long as they solve the 24 algebraic equations. Here, we obtain these 24
real numbers with the numerical minimization routine FindMinimum from
Mathematica 12.1 (cf. Ref. [15]). The minimization operates on a penalty
function, which consists of a sum of 24 squares, each square containing one
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of the real components of the algebraic equation without further overall
numerical factor. (This penalty function has a size of approximately 29 MB,
as further simplifications are hard to obtain.) For all calculations of the
present paper, we use a 36-digit working precision. The accuracy of the
obtained 24 real numbers

(
â ρα-sol

)I can, in principle, be increased arbitrarily.
Given the exact (pseudorandom) rational constants p̂k and η̂ Iρ from (4.1),
the obtained matrices may, therefore, be called “quasi-exact.”

4.2. Solution without dynamic fermions (F = 0)

We, first, get a solution of the D = N = 3 algebraic master-field equa-
tion (3.6b), where dynamic-fermion effects have been excluded by setting
F = 0 in the effective action (2.8). Then, the resulting 24 coupled algebraic
equations, with constants (4.1), have the following solution (for display and
readability reasons, we split each matrix into the sum of a matrix with real
entries and a matrix with imaginary entries):

â 1
α-sol

∣∣∣(F=0)
=


0.186159 0.073147 0.562726

0.073147 −0.281384 −0.393265

0.562726 −0.393265 0.0952246



+


0 0.401829 i −0.217741 i

−0.401829 i 0 −0.100372 i

0.217741 i 0.100372 i 0

 , (4.2a)

â 2
α-sol

∣∣∣(F=0)
=


−0.194103 0.008581 −0.580188

0.008581 0.131909 0.546198

−0.580188 0.546198 0.0621938



+


0 −0.360539 i 0.482773 i

0.360539 i 0 0.389392 i

−0.482773 i −0.389392 i 0

 , (4.2b)
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â 3
α-sol

∣∣∣(F=0)
=


0.130861 −0.201837 −0.1076245

−0.201837 0.304673 0.277152

−0.1076245 0.277152 −0.435534



+


0 −0.581365 i −0.0760187 i

0.581365 i 0 −0.281138 i

0.0760187 i 0.281138 i 0

 , (4.2c)

where up to 6 significant digits are shown (a 36-digit working precision is
used). The apparent violation of tracelessness is solely due to roundoff errors
and is absent in the true solution, which is given by an expansion in terms
of traceless generators, as in (2.1d).

A cursory inspection of the matrices (4.2) shows that the far-off-diagonal
entries [1, 3] and [3, 1] are not all really small. Following the discussion of
our previous paper [8], we will consider the absolute values of the entries
in the ρ = 1 matrix (4.2a), calculate the average band-diagonal value from
2+3+2 entries, the average off-band-diagonal value from 1+1 entries, and
the ratio R1 of the average band-diagonal value over the average off-band-
diagonal value. For the ρ = 2 and ρ = 3 matrices, we follow the same
procedure and get the ratios R2 and R3. In order to avoid any confusion, we
give the general definition of this ratio R for a symmetric 3 × 3 matrix M
with nonnegative entries m[i, j]:

RM ≡
1

7

 3∑
i=1

m[i, i] + 2
2∑
j=1

m[j, j + 1]

 1

m[1, 3]
, (4.3)

where the symmetry of M has been used to simplify the expression.
From the matrices (4.2), we then get the following ratio values:{

R1, R2, R3

}(F=0)

Abs[â ρα-sol]
= {0.519, 0.464, 3.13} , (4.4)

where two ratios lie below unity and one above. The somewhat large value
of the last ratio in (4.4) is due to the rather small [1, 3] and [3, 1] entries in
the matrix (4.2c).

Next, we diagonalize one of the matrices, while ordering the eigenvalues,
and look at the other two matrices to see if they have a band-diagonal
structure (even for the very small value of N we are considering). If we
diagonalize and order â 1

α-sol (the new matrices are denoted by a prime), we
get



Solutions of the Bosonic Master-Field Equation from a Supersymmetric . . . 1349

â
′ 1 (F=0)
α-sol = S1 · â 1 (F=0)

α-sol · S−1
1

= diag
(
− 0.760473, −0.188386, 0.948859

)
, (4.5a)

â
′ 2 (F=0)
α-sol = S1 · â 2 (F=0)

α-sol · S−1
1

=


0.666791 −0.102279 −0.0133662

−0.102279 0.516194 0.066637

−0.0133662 0.066637 −1.18298



+


0 −0.255347 i 0.0232436 i

0.255347 i 0 0.207603 i

−0.0232436 i −0.207603 i 0

 , (4.5b)

â
′ 3 (F=0)
α-sol = S1 · â 3 (F=0)

α-sol · S−1
1

=


0.727690 0.273460 −0.0776651

0.273460 −0.347068 0.136913

−0.0776651 0.136913 −0.380622



+


0 0.440485 i 0.0239532 i

−0.440485 i 0 0.100836 i

−0.0239532 i −0.100836 i 0

 . (4.5c)

The last two matrices in (4.5) have a rather clear band-diagonal structure.
This can, again, be quantified by the ratios Rρ of the average band-diagonal
value over the average off-band-diagonal value,{

R1, R2, R3

}(F=0)

Abs[â ′ ρα-sol]
= {∞, 17.9, 4.98} , (4.6)

where the first ratio is simply infinite because the [1, 3] entry of the matrix
(4.5a) vanishes. All three ratios from (4.6) are larger than 1, just as seen in
our previous results [8].
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4.3. Solutions with dynamic fermions (F = 1)

We, next, get solutions of the D = N = 3 algebraic master-field equation
(3.6b), where dynamic-fermion effects have been included by setting F = 1
in the effective action (2.8). The resulting 24 coupled algebraic equations,
with constants (4.1), have then the following two solutions.

4.3.1. First solution

Starting the minimization procedure from the configuration (4.2) ob-
tained in Sec. 4.2, we find

â 1
α-sol

∣∣∣(F=1)
=


0.481805 0.325813 0.384395

0.325813 −0.682181 −0.183233

0.384395 −0.183233 0.200375



+


0 0.576164 i −0.050542 i

−0.576164 i 0 0.593735 i

0.050542 i −0.593735 i 0

 , (4.7a)

â 2
α-sol

∣∣∣(F=1)
=


−0.222436 −0.0458796 0.048921

−0.0458796 0.000171969 0.287881

0.048921 0.287881 0.222264



+


0 −0.1004043 i 0.503341 i

0.1004043 i 0 0.093830 i

−0.503341 i −0.093830 i 0

 , (4.7b)

â 3
α-sol

∣∣∣(F=1)
=


0.0389571 −0.304651 −0.194354

−0.304651 0.858818 0.777316

−0.194354 0.777316 −0.897775



+


0 −0.920567 i 0.239810 i

0.920567 i 0 −0.977785 i

−0.239810 i 0.977785 i 0

 , (4.7c)
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where up to 6 significant digits are shown (as mentioned before, the apparent
violation of tracelessness is due to roundoff errors). The most important
result of the present paper is the fact that we were able to find a nontrivial
solution (4.7) for the case of dynamic fermions (another solution will be
given in Sec. 4.3.2).

There is perhaps a slight resemblance between the F = 0 matrices (4.2)
and the F = 1 matrices (4.7), if, for example, the signs of the diagonal
elements are considered. Anyway, it is clear that the far-off-diagonal entries
[1, 3] and [3, 1] of the matrices (4.7) are not really small. Again, we will
consider the absolute values of the entries in the matrices (4.7) and calculate,
for each matrix, the ratio R of the average band-diagonal value over the
average off-band-diagonal value, according to the general definition (4.3).
We then get the following ratio values:{

R1, R2, R3

}(F=1)

Abs[â ρα-sol]
= {1.45, 0.359, 2.88} , (4.8)

where two ratios lie above unity and one below.
Next, we diagonalize and order â 1 (F=1)

α-sol (the new matrices are denoted
by a prime) and get

â
′ 1 (F=1)
α-sol = S̃1 · â 1 (F=1)

α-sol · S̃−1
1

= diag
(
− 1.32720, 0.514388, 0.812811

)
, (4.9a)

â
′ 2 (F=1)
α-sol = S̃1 · â 2 (F=1)

α-sol · S̃−1
1

=


0.0919594 0.1408718 −0.177064

0.1408718 0.0633399 0.179233

−0.17706 0.179233 −0.155299



+


0 −0.0118767 i −0.134760 i

0.0118767 i 0 −0.537712 i

0.134760 i 0.537712 i 0

 , (4.9b)
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â
′ 3 (F=1)
α-sol = S̃1 · â 3 (F=1)

α-sol · S̃−1
1

=


1.91375 0.245877 0.022834

0.245877 −1.57339 0.102361

0.022834 0.102361 −0.340362



+


0 0.219132 i 0.184308 i

−0.219132 i 0 −0.296644 i

−0.184308 i 0.296644 i 0

 . (4.9c)

The last two matrices in (4.9) have a mild band-diagonal structure, quanti-
fied by the following ratios Rρ of the average band-diagonal value over the
average off-band-diagonal value:{

R1, R2, R3

}(F=1)

Abs[â ′ ρα-sol]
= {∞, 1.11, 3.93} . (4.10)

All three values in (4.10) lie above unity, but the second not by much.

4.3.2. Second solution

With a different start configuration, we obtain another dynamic-fermion
solution (denoted by an underline):

â 1
α-sol

∣∣∣(F=1)
=


0.125763 0.412706 0.233008

0.412706 −0.817158 0.126363

0.233008 0.126363 0.691395



+


0 −0.424807 i −0.106924 i

0.424807 i 0 −0.774279 i

0.106924 i 0.774279 i 0

 , (4.11a)

â 2
α-sol

∣∣∣(F=1)
=


−0.0889768 −0.256429 0.164899

−0.256429 −0.299159 −0.078519

0.164899 −0.078519 0.388136



+


0 −0.199471 i 0.170884 i

0.199471 i 0 −0.153213 i

−0.170884 i 0.153213 i 0

 , (4.11b)
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â 3
α-sol

∣∣∣(F=1)
=


0.823634 −0.164815 −0.353134

−0.164815 −0.365779 −0.158931

−0.353134 −0.158931 −0.457855



+


0 −0.354320 i 0.320626 i

0.354320 i 0 −0.293612 i

−0.320626 i 0.293612 i 0

 , (4.11c)

where up to 6 significant digits are shown (the apparent violation of trace-
lessness is due to roundoff errors).

Inspection of the matrices (4.11) shows that the far-off-diagonal entries
[1, 3] and [3, 1] are not really small. Considering the absolute values of the
entries in the matrices (4.11) and calculating, for each matrix, the ratio R
of the average band-diagonal value over the average off-band-diagonal value,
according to the general definition (4.3), we get the following ratio values:{

R1, R2, R3

}(F=1)

Abs[â ρα-sol]
= {2.45, 1.06, 0.927} , (4.12)

where all three ratios are of the order of unity.
Next, we diagonalize and order â 1

α-sol (the new matrices are denoted by
a further prime) and get

â
′ 1 (F=1)
α-sol = S 1 · â

1 (F=1)
α-sol · S−1

1

= diag
(
− 1.37609, 0.249211, 1.12688

)
, (4.13a)

â
′ 2 (F=1)
α-sol = S 1 · â

2 (F=1)
α-sol · S−1

1

=


−0.346970 −0.204388 0.0067429

−0.204388 0.172384 0.049531

0.0067429 0.049531 0.174586



+


0 0.161013 i 0.1331020 i

−0.161013 i 0 0.370677 i

−0.1331020 i −0.370677 i 0

 , (4.13b)



1354 F.R. Klinkhamer

â
′ 3 (F=1)
α-sol = S 1 · â

3 (F=1)
α-sol · S−1

1

=


−0.491709 −0.366405 −0.0482257

−0.366405 0.909724 −0.428317

−0.0482257 −0.428317 −0.418015



+


0 −0.207799 i −0.0663827 i

0.207799 i 0 −0.113580 i

0.0663827 i 0.113580 i 0

 . (4.13c)

The last two matrices in (4.13) have a mild band-diagonal structure. This
can, again, be quantified by the ratios Rρ of the average band-diagonal value
over the average off-band-diagonal value:{

R1, R2, R3

}(F=1)

Abs[â ′ ρα-sol]
= {∞, 2.10, 6.18} . (4.14)

All three values in (4.14) lie above unity, the last two values being somewhat
larger than those of the first F = 1 solution in (4.10).

5. Discussion

In the present article, we have obtained, for the first time, solutions of
the full bosonic master-field equation from the supersymmetric matrix model
(2.1) with dimensionality D = 3, matrix size N = 3, and fermion-inclusion
parameter F = 1. These particular values of D and N are, of course, far
below the values (2.5) needed for the IIB matrix model [1, 2]. Still, it is an
important point of principle to have established the existence of solutions
with full fermion dynamics, even for small values of D and N . Let us turn
the argument around: assume that there were no such solutions for D = 3
and N = 3, then it would be hard to believe that there could be solutions for
D = 10 and N � 1, as needed for the IIB matrix model. For completeness,
we mention that the bosonic master-field equation (3.6b) is purely algebraic,
with a basic structure clarified in (3.7) for K as given by (2.4) .

The matrices of the obtained bosonic D = N = 3 solutions feel the
induction effects of the dynamic fermions (F = 1). The comparison be-
tween the solution without dynamic fermions (Sec. 4.2) and the correspond-
ing solution with dynamic fermions (Sec. 4.3.1) suggests that the fermions
reduce somewhat the strength of the diagonal/band-diagonal structure re-
siding in the obtained matrices [specifically, compare the ratios in (4.6) with
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those in (4.10)]. But there is, at least, one other dynamic-fermion solu-
tion (Sec. 4.3.2), which has a somewhat more pronounced diagonal/band-
diagonal structure, as shown by the ratios in (4.14).

At this moment, we would like to proceed to larger values of (D, N),
in order to ultimately reach the parameter values D = 10 and N � 1 of
the genuine IIB matrix model [1, 2]. But this will be difficult. Already the
matrix model with modest values (D, N) = (4, 4) has a Pfaffian given as
the determinant of a 30 × 30 complex matrix [9]. And the matrix model
with (D, N) = (10, 4) has a Pfaffian of a 240× 240 skew-symmetric matrix.
In both cases, it will be hard to evaluate the Pfaffian symbolically.

Instead of searching for a direct algebraic solution of the full bosonic
master-field equation, an indirect numerical approach may be called for or
even a reliable approximation method, if at all available.

The referee is thanked for helpful remarks on Eqs. (2.1g) and (2.4).
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