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We derive a formula that defines quantum fluctuations of energy in
subsystems of a hot relativistic gas. For small subsystem sizes, we find
a substantial increase of fluctuations compared to those known from the
standard thermodynamic considerations. However, if the size of the sub-
system is sufficiently large, we reproduce the result for energy fluctuations
in the canonical ensemble. Our results are subsequently used in the context
of relativistic heavy-ion collisions to introduce limitations of the concepts
such as classical energy density or fluid element. In a straightforward way,
our formula can be applied in other fields of physics, wherever one deals
with hot and relativistic matter.
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1. Introduction

Fluctuations of various physical quantities play a very important role
in all fields of physics, as they reveal the information about possible phase
transitions [1, 2], formation of structures in the Early Universe [3, 4], and dis-
sipative phenomena [5]. Most common fluctuations we deal with are those
arising from quantum uncertainty relation or those present in thermody-
namic systems [6]. Our present study combines these two physics aspects —
we study quantum fluctuations of energy in subsystems of a hot relativistic
gas and demonstrate that they agree with thermodynamic fluctuations in the
canonical ensemble if subsystems are sufficiently large. On the other hand,
we find a very substantial increase of the fluctuations for small subsystems.

(1395)



1396 A. Das et al.

The results of our numerical calculations may serve as a guide that shows,
for a given temperature and particle mass, how large the size of the subsys-
tem is for which the quantum fluctuations of energy become classical and
eventually may be neglected. This, in turn, may be used to validate the
concept of energy density used in the classical description of fluids.

The physical system we are particularly interested in is hot matter pro-
duced in relativistic heavy-ion collisions. The concept of a hot gas is domi-
nantly used here in various aspects: from perturbative quark–gluon plasma
possibly produced at the top beam energies to hadron resonance gas pro-
duced at hadronic freeze-out. Combined with the concept of hot gas is the
use of relativistic hydrodynamics which uses the equation of state that is
very often of the ideal-gas form.

In fact, relativistic hydrodynamics has now become the main theoretical
tool used to interpret heavy-ion collisions. Its overwhelming successes paved
the road to its wider and wider applications — in the regions where its
applicability range might be questioned [7–9]. The basic concepts of energy
density and pressure are used now within hydrodynamics to characterize
very small portions of matter at extreme conditions. This leads us back to
the question of how well the energy of such small systems is defined and how
seriously we can take hydrodynamic structures of the energy density profiles
which vary on a space scale that is a fraction of one Fermi.

The results presented below have two aspects: We first derive a compact
formula that defines quantum fluctuations in a subsystem of a hot rela-
tivistic gas, then we apply this formula in the physical situations expected
in relativistic heavy-ion collisions. Below we use the West Coast metric
gµν = diag(+1,−1,−1,−1). Three-vectors are shown in bold font and a dot
is used to denote the scalar product of both four- and three-vectors, i.e.,
aµbµ = a · b = a0b0 − a · b.

2. Basic concepts and definitions

In this work, we consider a subsystem Sa of the thermodynamic system
SV described by the canonical ensemble characterized by the temperature T
(or its inverse β = 1/T ). For the sake of simplicity, we assume that the sys-
tem SV consists of spinless boson particles with mass m. The characteristic
volume of the system Sa is always smaller than the volume V of the system
SV , and V is sufficiently large to allow for doing integrals over particle mo-
menta (instead of sums imposed by otherwise commonly used box periodic
conditions).

With these assumptions in mind, we describe our system by a quantum
scalar field in thermal equilibrium. The field operator has the standard
form of [10]
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φ(t,x) =

∫
d3k√

(2π)3 2ωk

(
ake
−ik·x + a†ke

ik·x
)
, (1)

where ak and a†k are annihilation and creation operators, respectively, satis-
fying the canonical commutation relations [ak, a

†
k′ ] = δ(3)(k − k′), whereas

ωk =
√

k2 +m2 is the energy of a particle. To perform thermal averaging,
it is sufficient to know the expectation values of the products of two and
four creation and/or annihilation operators [11–13]〈

a†kak′

〉
= δ(3)

(
k − k′

)
f(ωk) , (2)〈

a†ka
†
k′apap′

〉
=

(
δ(3)(k − p) δ(3)

(
k′ − p′

)
+δ(3)

(
k − p′) δ(3) (k′ − p

))
f (ωk) f (ωk′) . (3)

Here, f(ωk) is the Bose–Einstein distribution function, f(ωk) = 1/(exp[β ωk]
− 1). Any other combinations of two and four creation and/or annihilation
operators can be obtained from Eqs. (2) and (3) through the commutation
relation between ak and a†k.

Following [10], we define an operatorHa that describes the energy density
of a finite subsystem Sa placed at the origin of the coordinate system

Ha =
1

(a
√
π )

3

∫
d3x H(x) exp

(
−x2

a2

)
. (4)

Here, H(x) ≡ (φ̇2 + (∇φ)2 +m2φ2)/2 is the Hamiltonian density of the free
real scalar field. The Gaussian profile used in Eq. (4) is in fact our definition
of the subsystem Sa — the smooth profile with a length scale a has been
introduced instead of a cube to remove possible boundary effects coming
from sharp boundaries.

The thermal expectation value of the operator Ha is

〈: Ha :〉 =
∫

d3k

(2π)3
ωk f (ωk) ≡ ε(T ) . (5)

This is certainly an expected result known from elementary kinetic theory
considerations [6]. To remove an infinite vacuum part coming from zero-
point energy contributions, we have applied a standard normal ordering
procedure to Ha on the left-hand side of Eq. (5). We note that the energy
density ε defined by Eq. (5) is independent of a, which reflects the spatial
uniformity of the system SV . Our results are also independent of time.
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To determine the fluctuation of energy of the subsystem Sa, in agreement
with general quantum-mechanics rules, we consider the variation

σ2(a,m, T ) = 〈: Ha :: Ha :〉 − 〈: Ha :〉2 (6)

or the normalized standard deviation

σn(a,m, T ) =

(
〈: Ha :: Ha :〉 − 〈: Ha :〉2

)1/2
〈: Ha :〉

. (7)

Using the thermal expectation values of the products of two and four
creation and annihilation operators, as given by Eqs. (2) and (3), we find

σ2(a,m, T ) =

∫
dK dK ′f(ωk)(1 + f(ωk′))

×
[ (
ωkωk′ + k · k′ +m2

)2
e−

a2

2
(k−k′)2

+
(
ωkωk′ + k · k′ −m2

)2
e−

a2

2
(k+k′)2

]
, (8)

where dK = d3k/((2π)32ωk). In Eq. (8), we have discarded a divergent
term that is temperature independent and may be attributed to the pure
vacuum energy fluctuation. As a matter of fact, the latter was studied in
Ref. [14], where a technique of smeared and displaced operators was used.
The variation of the energy density divided by the mean energy density
squared was found in this case to be 2/3. As this result corresponds to
the limit of a → 0 for m = 0, it is negligible compared to our value of σ2n
that diverges as a → 0. On the other hand, using the dimensional analysis
one expects that the variation of the vacuum energy density for massless
particles in a volume of the size of a3 should decrease as 1/a8, which makes
it again smaller compared to our effects that decrease as T 5/a3, which will
be demonstrated below. Altogether, we expect that the inclusion of the
properly regularized vacuum fluctuations into Eq. (8) cannot quantitatively
alter our conclusions.

Equation (8) represents our main result that allows us to determine the
energy fluctuations of “Gaussian” subsystems Sa of the system SV . By nu-
merical integration, we may obtain the results for any subsystem of size a,
temperature T , and for particle massm. Nevertheless, before we present our
numerical results, it is instructive to consider the limiting case of very large
system of size a and to analyze special cases for which analytic results can
be obtained. It is also useful to generalize our formulas to the case where
we deal with several particle types.
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3. Degeneracy factor

Studying thermodynamic properties of particles, one usually introduces
degeneracy factors connected with so-called internal degrees of freedom such
as spin, isospin or color charge. In our approach, we have so far considered
only one type of boson particle without any internal quantum numbers. To
take into account g copies of such particles, one has to include g copies of
the scalar field expressed by the creation and annihilation operators that
commute for different particle species. Altogether this procedure results in
the simple replacements

ε→ gε , σ2 → gσ2. (9)

As the multiplication of the energy density by g is rather straightforward,
the scaling of σ2 with g is less obvious — it is a consequence of the fact that
the mixed terms describing different types of particles in Eq. (6) vanish.

4. Thermodynamic limit

As we have mentioned earlier, Sa is a subsystem of the system SV . We
expect that in the limit of a → ∞ (still with a3 � V ), our formula for
quantum fluctuation is reduced to that known from the classical statisti-
cal mechanics [6]. To check this property, we use in Eq. (8) the Gaussian
representation of the three-dimensional Dirac delta function

δ(3)(k − p) = lim
a→∞

a3

(2π)3/2
e−

a2

2
(k−p)2 . (10)

This leads us to the formula valid in the large a limit

σ2 ∼ g

(2π)3/2a3

∫
d3k

(2π)3
ω2
k f(ωk)(1 + f(ωk)) .

We note that for massless particles σ2 ∼ T 5/a3, which is the result men-
tioned above. The right-hand side of the last equation can be expressed in
terms of the specific heat at a constant volume

cV =
dε

dT
=

g

T 2

∫
d3k

(2π)3
ω2
k f(ωk)(1 + f(ωk)) . (11)

Therefore, we find (again in the large a limit)

Vaσ
2
n =

T 2cV
ε2

= V

〈
H2
〉
− 〈H〉2

〈H〉2
≡ V σ2H , (12)
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where Va = a3(2π)3/2 and H is the Hamiltonian of SV . The right-hand
side of Eq. (12) may be identified as the normalized energy fluctuation in
the system SV [6]. One may identify Va = a3(2π)3/2 as the volume of the
subsystem Sa — a nontrivial factor of (2π)3/2 is an artifact of using the
“Gaussian” box. We note that Eq. (12) is also consistent with the result
obtained in Ref. [15], where purely classical concepts have been used.

5. Massless case with Boltzmann statistics

In principle, the last result can be alternatively shown by first finding
an analytic expression for Vaσ2n and then finding its asymptotic form for
a→∞ limit. Unfortunately, in the general case of finite particle mass and
Bose–Einstein statistics, integral (8) is not analytic and such a procedure
cannot be easily accomplished. However, the integrals appearing in Eq. (8)
become analytic for the Boltzmann statistics and m = 0. In this case, we
obtain

〈: Ha :〉2 =
9g2

π4
T 8 (13)

and

σ2n =
1

4320 g

[
2970 ζ4 − 540 ζ6 − 96 ζ8 − 28 ζ10

−2 ζ12 +
√
2π e

ζ2

2

(
1485 ζ3 − 765 ζ5 + 300 ζ7

+60 ζ9 + 15 ζ11 + ζ13
)
erfc
(
ζ√
2

)]
, (14)

where ζ = 1/(aT ). Using this result, we find

lim
a→∞

Vaσ
2
n =

11π2

8g

1

T 3
, (15)

which is the normalized energy fluctuation V σ2H of the system SV as can be
obtained from Eq. (12) for Boltzmann distribution functions with m = 0.
We emphasize that for a → ∞, the analytic result for the case of m = 0
and Boltzmann statistics agrees with the result obtained earlier with the
Gaussian approximation for the Dirac delta function.

6. Numerical results

Having checked that our expression for quantum fluctuation correctly
reproduces the thermodynamic limit for a → ∞ and with the massless-
Boltzmann case known analytically, we can present the results of our numer-
ical calculations. In Figs. 1 and 2, we show the variation of the normalized
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energy density fluctuation σn with the subsystem size a for different values
of temperature and mass, respectively. With the possible interpretation of
heavy-ion data in mind, we consider temperatures in the range of 100 MeV
< T < 250 MeV, and particle masses: m = 0, 300 and 1000 MeV. The ef-
fective number of degrees of freedom in a perturbative quark–gluon plasma
varies between 37 (for two quark flavors) and 47.5 (for three quark flavors).
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Fig. 1. Variation of the normalized energy density fluctuation σn in the subsystem
Sa with the length scale a for different values of the temperature T and fixed
particle mass m = 0.3 GeV.
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Fig. 2. The same as Fig. 1 but for the fixed temperature T = 0.15 GeV and different
particles masses.
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In a hot hadron gas used to describe the properties of matter at freeze-out,
one includes about 400 hadronic states [16] but these are usually very heavy
and equivalent to a smaller number of lighter particles (in terms of energy
density or pressure). In order to get some rough estimate of g, we use the
value g = 40.

Figures 1 and 2 show that σn decreases with the increasing size of the
system a, which is the expected general behavior of fluctuations. By the way,
we note that Eq. (8) implies that σn diverges in the limit of a→ 0 (which is
a consequence of uncertainty relation), so our plots start only at a = 0.3 fm.
For a fixed particle mass, the normalized fluctuations decrease with growing
temperature. On the other hand, at fixed T , the fluctuations grow with m.
Interestingly, the standard deviations alone exhibit an opposite behavior
(not shown here).

We have analytically demonstrated above that the volume-scaled nor-
malized fluctuation Vaσ

2
n approaches a thermodynamic limit in the large

volume limit for massless particles. Figures 3 and 4 present the variation of
Vaσ

2
n/V σ

2
H with the size of the subsystem Sa in the case where particles have

a non-vanishing mass and they obey Bose–Einstein statistics. The values of
the parameters are the same as in Figs. 1 and 2. From Eq. (12) one expects
that in the thermodynamic limit, Vaσ2n/V σ2H should approach unity. This
property is nicely seen in Figs. 3 and 4, where we observe that the quan-
tum fluctuations agree with the thermodynamic ones already for a > 1 fm.
On the other hand, the quantum fluctuations become very important at the
scale of 0.1 fm, which excludes the classical treatment of such small sub-
systems. It also suggests that quantum fluctuation should be combined in
future works with hydrodynamic fluctuations [17].
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Fig. 3. Variation of the normalized energy fluctuation in the subsystem Sa with
the length scale a for different values of the temperature at m = 0.3 GeV.
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Fig. 4. Variation of the normalized energy fluctuation in the subsystem Sa with
the length scale a for different values of mass at T = 0.15 GeV.

For given values of T , m, and g, our results may be used to quickly
check if the corresponding fluctuations (quantum and thermodynamic ones)
in a finite subsystem of the size a3 are sufficiently small, let us say, smaller
than 1. If this condition is not satisfied, the classical picture of a well-defined
energy density in the gas/fluid cells of the size a3 is not well defined. For
example, for massless particles at the temperature of 150 MeV (with g = 40),
the normalized fluctuations become larger than unity for a < 0.4 fm. This
suggests that for smaller sizes, the effects of fluctuations become relevant for
the system’s description. The classical description with “well-defined energy
density” makes sense only after coarse graining over the scales larger than
0.4 fm.

7. Conclusions

In this work, we have derived the formula characterizing the quantum
fluctuation of energy in subsystems of a hot relativistic gas. We have shown
that it agrees with the expression for thermodynamic fluctuations, if the size
of the subsystem is sufficiently large. We have found the exact analytic ex-
pression for the energy fluctuation in the case of massless particles described
by the Boltzmann statistics. The consequences one can draw from our for-
mula for description of hot and relativistic systems have been discussed in
the case of heavy-ion physics. Applications of our approach to other systems
are straightforward.
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