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We numerically study the classical evolution of a Yang–Mills matrix
model with two distinct mass deformation terms, which can be contem-
plated as a massive deformation of the bosonic part of the BFSS model.
Through numerical analysis, it is shown that when the simulations are
started from a certain set of initial conditions, thermalization occurs. Be-
sides, an estimation method is proposed to determine the approximate
thermalization time. Using this method, we demonstrate that thermaliza-
tion time varies logarithmically with increasing matrix size when the mass
terms differ. Introducing a matrix configuration, we also obtain reduced
actions and subsequently analyze how the thermalization time changes as
a function of energy.
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1. Introduction

Since the introduction of the gauge/gravity duality [1, 2], there has been
an immense effort from the theoretical physics community to use holographic
methods in order to gain enhanced understanding of various physical phe-
nomena. The duality between a thermal state in the boundary theory and a
black hole in the bulk has formed the backbone of these studies and enabled
the researchers to associate the process of thermalization in a unitary field
theory with the formation of a black hole in the dual side. Explaining the
dynamics of thermalization in isolated quantum systems, which is a central
problem in many-body physics [3, 4], has also been studied within the con-
text of AdS/CFT by focusing on certain string-theory-inspired constructions
such as the BFSS [5] and BMN [6] matrix models.
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Over a decade ago, the remaining mysteries about the nature of black
holes have led to several speculations related to their quantum mechanical
structure, some of which could be tested in matrix model environments.
To elaborate, motivated by the arguments of [7], Sekino and Susskind have
conjectured that black holes are fast scramblers, i.e. they scramble infor-
mation at a rate proportional to the logarithm of the number of degrees
of freedom [8]. The thermalization processes observed in the BMN model
have been numerically investigated and reported in a series of papers [9–11].
In particular, the results obtained in [9] are intriguing as they are broadly
consistent with the fast scrambling conjecture. Berenstein et al. [9–11] have
shown that simulations of thermalization in the BMN model provide nu-
merical evidence for fast thermalization, which may also be interpreted to
implicate fast scrambling.

On the other hand, extensive thermodynamic simulations of the BFSS
model, including detailed numerical studies of thermalization times, have
been performed in [12, 13]. Furthermore, the relation between quantum
chaos and thermalization has been recently explored in [14]. Besides these
developments, it is essential to note that due to the large number of degrees
of freedom interacting through a quartic Yang–Mills potential, it does not
appear quite possible that general solutions of the BFSS/BMN models can
be determined. Even the smallest Yang–Mills matrix model with two 2× 2
matrices and with SU(2) gauge symmetry has not been completely solved
until this date [15]. Thus, in order to reach meaningful results, instead
of considering the whole matrix theory, it seems reasonable to concentrate
on simplified structures with less degrees of freedom. A convenient way of
achieving this is to place prior constraints on the system at hand by starting
the simulations with specified sets of initial conditions. Although one would
ideally prefer to choose initial conditions with the aim of setting up a con-
figuration which resembles the phenomenon of scattering gravitons at high
energies, currently it is not possible in the BFSS case due to the insufficient
understanding of graviton states in this matrix model [10]. Nevertheless, as
it will be discussed shortly, valuable information regarding the thermaliza-
tion phenomenon can still be gathered from certain gauge-invariant massive
deformations of the BFSS model.

In this paper, our main interest is to analyze the dynamics of thermal-
ization in a Yang–Mills matrix model with two distinct mass deformation
terms, whose emerging chaotic motions have been investigated in [16]. This
model has the same matrix content as the bosonic part of the BFSS ma-
trix model, but also contains mass deformation terms that keep the gauge
invariance intact. The paper is structured as follows. Section 2 starts with
a brief introduction of the model, which is followed by a description of the
initial conditions that are used in the simulations. In Section 3, we investi-
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gate the thermalization processes observed in the matrix model with massive
deformations by performing a detailed numerical analysis of its classical evo-
lution. This is followed by an examination of the variation of thermalization
time with respect to matrix size. Then, by introducing a configuration of
matrices, we obtain reduced actions from the full matrix model and subse-
quently explore the change of thermalization time with the energies of these
reduced actions. Lastly, Section 4 is devoted to conclusions and outlook.

2. Yang–Mills matrix model with double mass deformation

The BFSS matrix model is a Yang–Mills theory in 0 + 1 dimensions
which arises from the dimensional reduction of the Yang–Mills theory in
9 + 1 dimensions with N = 1 supersymmetry [5]. In this paper, we focus
upon a gauge-invariant double mass deformation of the bosonic part of the
BFSS action which may be specified as [16]

S =
1

g2

∫
dt tr

(
1

2
(DtBI)

2 +
1

4
[BI , BJ ]

2 − 1

2
µ21B

2
i −

1

2
µ22B

2
k

)
, (1)

where the indices i and k take on the values i = 1, 2, 3 and k = 4, 5, 6,
respectively. In (1), BI (I = 1, . . . , 9) are N ×N Hermitian matrices and tr
stands for the trace. The covariant derivatives are defined by

DtBI = ∂tBI − i[A,BI ] . (2)

When the deformation parameters µ1 and µ2 are both equal to zero, (1)
reduces to the bosonic part of the classical BFSS action. Since we are going
to be essentially concerned with the classical dynamics of (1), we absorb the
coupling constant in the definition of ~, as it only determines the overall
scale of energy classically.

In the Weyl gauge, A = 0, the equations of motion for BI take the
form of

B̈i + [BI , [BI , Bi]] + µ21Bi = 0 , (3a)
B̈k + [BI , [BI , Bk]] + µ22Bk = 0 , (3b)

B̈r + [BI , [BI , Br]] = 0 , (3c)

where the index r runs through the values 7, 8, and 9. Similarly, the Weyl
gauge Hamiltonian reads

H = tr

(
PI

2

2
− 1

4
[BI , BJ ]

2 +
1

2
µ21B

2
i +

1

2
µ22B

2
k

)
. (4)

Due to gauge invariance, BI matrices and conjugate momenta should also
satisfy the Gauss law constraint given by

[BI , PI ] = 0 . (5)



1408 O. Oktay

Hamilton’s equations of motion can easily be derived from (4). However, in
order to obtain relations that are more convenient for numerical simulations,
we rename a subset of phase space coordinates (namely BI and PI for I > 4)
and subsequently change the indices labeling the aforementioned coordinates
so that all indices can range over the same set of integer values. The resulting
equations of motion can be written out as follows:

Ṗi = [[Bj , Bi], Bj ] + [[Cl, Bi], Cl] + [[Ds, Bi], Ds]− µ21Bi , (6a)

Ṙl = [[Bi, Cl], Bi] + [[Cl′ , Cl], Cl′ ] + [[Ds, Cl], Ds]− µ22Cl , (6b)
Ẇs = [[Bi, Ds], Bi] + [[Cl, Ds], Cl] + [[Ds′ , Ds], Ds′ ] , (6c)
Pi = Ḃi , Rl = Ċl , Ws = Ḋs , (6d)

where j, l, l′, s, s′ = 1, 2, 3. Furthermore, in this new notation, (5) becomes

G = [Bi, Pi] + [Cl, Rl] + [Ds,Ws] = 0 . (7)

One of the primary purposes of this study is to examine the dependence
of thermalization on the choice of initial conditions. To this end, we adopt an
approach similar to the one suggested in [9] and set up the initial conditions
as follows:

B1 =

(
J1 0
0 0

)
, B2 =

(
J2 q1
q1
† 0

)
, B3 =

(
J3 q2
q2
† 0

)
, Cl =

(
Jl 0
0 0

)
P1 =

(
0 0
0 p0

)
, P2 = P3 = 0 , Ds = 0 , Rl =Ws = 0 ,

(8)

where Ji’s are (N − 1)-dimensional Hermitian matrices. They denote the
spin-j (j = (N − 2)/2) irreducible representation of SU(2) and form the
fuzzy two-sphere at level j [19, 20]. While the diagonal modes of Bi and Cl
matrices start from the fuzzy sphere configurations, P1 initiates with a single
eigenvalue, p0, on the main diagonal. Besides their diagonal modes, the off-
diagonal elements of B2 and B3 are also excited with the addition of q1 and
q2 blocks that are consisting of randomly generated initial conditions. These
blocks, which serve as sources of small fluctuations, are formed by utilizing
a complex normal distribution with a spread proportional to (~/(N − 1))

1
2 .

After completing the essential procedure of specifying initial conditions, we
may now proceed to the stage of numerical simulations.

3. Numerical results

This section is devoted to an investigation of the thermalization processes
observed in the Yang–Mills theory with massive deformations. In order to
provide a comprehensive analysis, we carry out numerical simulations for
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the time evolution of (6a)–(6d). After discretizing the equations of motion,
an iterative algorithm can be developed to solve the discretized equations
numerically. By saving the contents of the eighteen matrices every few iter-
ations, one can gain valuable insight into the dynamics of thermalization as
will be discussed shortly.

In the computations, a simulation code implemented in Matlab is used.
The code is executed with a constant time step of 0.004 and we run it for a
sufficient amount of time to clearly observe the values that the eigenvalues
converge to. Due to truncation of digits, errors are inevitable in numerical
calculations. In this regard, although the initial conditions given by (8) fulfill
the Gauss law constraint, the cumulative effect of rounding errors could cause
the violation of (7). However, by constantly monitoring G during the trial
runs of the simulation, we made sure that no such effect is present.

Having now introduced the basic features of numerical computations, we
move on to the details of obtained results. When the random fluctuation
terms are not added to the system, i.e. ~ = 0, the starting configurations
keep evolving periodically in time and thermalization does not occur. Thus,
to avoid such a scenario, we set the value of ~ to 0.001, which will remain
fixed for the rest of this work. In order to discover various intriguing prop-
erties of the thermalization process, we first vary the p0 parameter. Figure 1
shows the evolution of the eigenvalues of B1 with simulation time for six dif-
ferent p0 values. The first thing we can immediately observe from the plots
is that the oscillatory behavior of eigenvalues, which can be most clearly

(a) p0 = 0 (b) p0 = 5 (c) p0 = 7

(d) p0 = 10 (e) p0 = 19.5 (f) p0 = 30

Fig. 1. Eigenvalues of B1 vs. time at N = 8, µ1 = 1, and µ2 = 1.5.
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seen from the last two figures, becomes more apparent with increasing p0.
In Figs. 1 (e) and 1 (f), after a series of oscillations, the amplitudes of the
oscillations decrease considerably and the frequencies tend to synchronize
which results in the emergence of collective oscillations.

On the other hand, as it is described in detail in Subsection 3.1, thermal-
ization occurs at all six p0 values that are used in the preparation of Fig. 1.
In order to probe the presence of thermalization occurring at the p0 values
of 19.5 and 30, let us consider the results shown in Fig. 2. In Figs. 2 (a)
and 2 (b), the eigenvalue distributions of the momentum matrix P1 are illus-
trated. The histograms are generated by sampling the eigenvalues of P1 on
the time interval1 [758, 2500] during which the system resides in potentially
thermalized states. The bin size is set to 40 and the dots in the figure cor-
respond to the midpoints of the top edges of histogram bars. As expected
from thermalized configurations, the semicircle distribution model fits the
data nicely in both cases. Furthermore, in order to compare the eigenvalue
distributions of the momenta matrices, the histograms of the eigenvalues of
P1 and R1 are plotted together in Fig. 3. This time, the histograms are
generated by sampling the eigenvalues on the time interval [758, 3000] with
a bin size equal 30. Let us also note that we now set the value of p0 to 30,
which will remain fixed for the rest of this work unless otherwise stated. It
appears that the semicircle model gives an essentially good fit to both P1 and
R1 distributions, which implies that after t = 758 momenta temperatures
become essentially the same. Thus, it is safe to conclude that thermalization
has occurred.

(a) p0 = 19.5 (b) p0 = 30

Fig. 2. Histograms of eigenvalues of P1 at N = 8, µ1 = 1, and µ2 = 1.5.

1 A detailed discussion of the determination of thermalization times is given in the next
subsection.
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Fig. 3. Histograms of eigenvalues of P1 and R1 at N = 8, µ1 = 1, and µ2 = 1.5.

3.1. Thermalization time

The main results concerning the presence of thermalization have been
discussed up to this point. As it is central to the understanding of the
thermalization process, let us consider a method that will help us in both
determining the thermalization time of the system and providing evidence
for the presence of thermalization. This method relies on the evaluation of
the relative size of changes in both Bi and Cl eigenvalues [9].

Figure 4 displays how the standard deviations of the eigenvalues for B1,
B2, C1, and C2 matrices evolve with simulation time. As seen in the legend,
std(B1) denotes the standard deviation of the eigenvalues for B1 and so on.
Starting from oscillatory behavior with nearly constant amplitude, std(B1)

Fig. 4. Standard deviations of eigenvalues vs. time at N = 8, µ1 = 1, and µ2 = 1.5.
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undergoes a change at t ' 500 and its amplitude decreases considerably
with time. In addition, as time progresses, the standard deviations tend to
converge on a narrow band of values and the system reaches a seemingly
stable configuration in which only minor fluctuations are observed.

Among the different notions of thermalization time, we choose to focus
on the one that defines it as the timescale of thermalization from a given
set of initial conditions. Using the signal processing toolbox of Matlab, we
have developed a code that detects the time instants at which the variance
of a signal changes significantly and run it on the standard deviation data
graphed in Fig. 4. The approximate time when the standard deviations,
hence the system, reaches an equilibrium size is determined to be equal
to 758. In Fig. 4, this approximate time instant is marked with a dashed
vertical line and tth denotes the thermalization time of the system.

The procedure detailed above can be generalized for N > 8. In Fig. 5,
we present plots of thermalization time vs. N at four distinct mass combi-
nations, where the matrix size N takes the values of N = 8, . . . , 100. Let
us immediately note that the models at µ1 = µ2 = 1 have different features
from the rest in the sense that data values tend to decrease with increas-
ing N . We find that the function

T1(N) =
3404√
N

(9)

provides an adequate fit to the data as can be seen from Fig. 5 (a). In
addition, a logarithmic fit of the form of

Ta(N) = ca log(N) + da (10)

with the data from Table I appears to be well-suited for the remaining models
as can be observed from Figs. 5 (b)–5 (d). In Eq. (10), the index a ranges
from 2 to 4. Besides, it is important to note that expressions (9) and (10) are
quite sufficient to fit the data as the minimum recorded adjusted R-squared
value is equal to 0.938.

TABLE I

ca and da values for the fitting curve (10).

ca da

T2(N) 439.5 −284.9
T3(N) 380.1 49.04
T4(N) 419.4 −60.1
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(a) µ2 = 1 (b) µ2 = 1.5

(c) µ2 = 2 (d) µ2 = 3

Fig. 5. Thermalization time vs. N at µ1 = 1.

At a slight tangent to the analysis of thermalization times, let us return
to the study of Fig. 4. The method used in the preparation of this figure can
be applied with some arbitrary p0 value of our choosing to produce a similar
graph. In Appendix A we display Fig. 9, which shows the variations of the
standard deviations of the eigenvalues for B1, B2, C1, and C2 matrices at the
p0 values that are already utilized in the preparation of Fig. 1. Similar to the
behavior observed when p0 is equal to 30, in Figs. 9 (a)–9 (e), after periods of
decrease in oscillation amplitudes, standard deviations converge on narrow
bands, which implies that thermalization occurs at all six p0 values. To test
this hypothesis, we may pick p0 = 7 and examine the eigenvalue distributions
of the momenta matrices. In Fig. 8, the histograms of the eigenvalues of P1

and R1 at p0 = 7 are depicted together for the sake of comparison. Since
the semicircle curve provides a good fit to both distributions, we can infer
that the momenta temperatures are essentially the same and thermalization
has occurred.
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3.1.1. Energy dependence of thermalization time

Apart from its dependence on matrix size, we can also explore the vari-
ation of the thermalization time with respect to energy. In this subsection,
by performing simulations of the matrix model (4), the dependence on ther-
malization time to energy is depicted at several distinct mass combinations
and matrix size values.

We launch the discussion with introducing a matrix configuration in the
form of

B1 =

(
v(t)J1 0

0 0

)
, B2 =

(
v(t)J2 q1
q1
† 0

)
, B3 =

(
v(t)J3 q2
q2
† 0

)
,

Cl =

(
z(t)Jl 0
0 0

)
, P1 =

(
0 0
0 p0

)
, P2 = P3 = 0 ,

Rl = 0 , Ds = 0 , Ws = 0 , (11)

where v(t) and z(t) are real functions of time and Ji satisfy the commutation
relations given by [Ji, Jj ] = i~JεijlJl. After substituting configuration (11)
at an arbitrary time t into the Hamiltonian (4), we evaluate the traces using
Matlab and arrive at a set of effective Hamiltonians2. A generic member of
this set can be expressed as follows:

Hs =
1

2
p20 + ~J4cN

(
v2 + z2

)2
+ ~J2

[(
cNµ

2
1 +∆1

)
v2 +

(
cNµ

2
2 +∆2

)
z2
]

+∆3µ
2
1 , (12)

where the coefficients cN are defined by cN = N(N−1)(N−2)
8 .

Here, it is essential to note that, due to the presence of fluctuation blocks
q1 and q2, unlike cN , ∆i coefficients are random numbers that change with
every new substitution of the configuration (11) into (4). With the purpose
of listing and examining ∆i values, we have repeated the procedure utilized
in the obtainment of Hs by running a code 500 times and determined the
reduced Hamiltonians. For N = 8, the maxima of the absolute values of
∆1, ∆2, and ∆3 were recorded as 0.0018, 0.0014, 0.0003, respectively, which
indicates that the extent of change in the coefficients of quadratic terms is
small (in comparison to cN ) but not negligible. Let us also add that we set
~J to 1 in this subsection.

2 It is important to remark that we employ this method only for producing initial
configurations. Unlike the reduced models in matrix model settings studied in
[16–18], the matrix configuration defined by (11) does not satisfy the equations of
motion (6a)–(6d).
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Another point to emphasize is that analyzing the classical dynamics of
Eq. (12) is not the purpose of this study. Hs would be solely employed to
generate initial conditions for the simulations of Eq. (4). In order to give
a detailed description of the initial condition selection process, let us first
denote by (vb, zb) ≡

(
v(tb), z(tb)

)
a generic set of initial conditions at the

start time tb of a classical simulation of H. Then, at t = tb, Eq. (12) can be
expressed as shown below

E = cNv
4
b + cNz

4
b +

(
cNµ

2
1 +∆1

)
v2b +

(
cNµ

2
2 +∆2

)
z2b + 2cNv

2
bz

2
b

+
1

2
p20 +∆3µ

2
1 , (13)

where E is the energy of the reduced action.
With the aim of investigating the variance of thermalization time with

energy, we run another Matlab code, which determines the thermalization
time at several different values of the energy. We run the code with randomly
selected initial conditions satisfying a given energy condition and detect
the thermalization time of the system for a specified matrix size and mass
combination. In order to give certain effectiveness to the random initial
condition selection process, we developed a simple approach which we briefly
explain next. To start with, we generate two uniformly distributed random
numbers φν over the interval O ≤ φν ≤ E satisfying the constraint E =
φ1 + φ2. Subsequently, the real roots of the expression

cNz
4
b +

(
cNµ

2
2 +∆2

)
z2b +

1

2
p0

2 +∆3µ
2
1 − φ1 = 0 (14)

are found. Our code randomly selects one of these roots, which is later used
to solve for vb in the equation

cNv
4
b +

(
cNµ

2
1 + 2cNz

2
b +∆1

)
v2b − φ2 = 0 . (15)

Lastly, as the final step of the selection process, one of the real roots of
Eq. (15) is randomly picked by our code. Having now determined the (vb, zb)
pair, we move on to discuss the simulation stage. In order to measure the
thermalization time at the energy E, we perform a classical simulation of the
matrix model (4). This simulation is started with the initial configuration
given by

B1 =

(
vbJ1 0
0 0

)
, B2 =

(
vbJ2 q1
q1
† 0

)
, B3 =

(
vbJ3 q2
q2
† 0

)
,

Cl =

(
zbJl 0
0 0

)
, P1 =

(
0 0
0 p0

)
, P2 = P3 = 0 ,

Rl = 0 , Ds = 0 , Ws = 0 . (16)
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Following the completion of the classical simulation, the thermalization time
is measured by the method described at the beginning of Subsection 3.1. By
setting p0 equal 12 and repeating the procedure detailed above for a range of
energy values, the data used in the depiction of Figs. 6 and 7 are prepared.

(a) µ2 = 0.5 (b) µ2 = 1.5

(c) µ2 = 3 (d) µ2 = 4

Fig. 6. Thermalization time vs. energy at µ1 = 1 and N = 8.

Figure 6 shows the plots of thermalization time vs. energy at four differ-
ent µ2 values. The best-fitting function for the numerical data displayed in
Fig. 6 is found to be a power law in the form of

Λm(E) = αmE
βm + ξm . (17)

The fitting parameters of the best fit equations (17) are listed in Table II.
Due to the obvious increase in the variance of the data, the fits describing
the thermalization times of Fig. 6 are not so good in comparison to the fits
displayed in Fig. 5. The four fitting curves Λm (m = 1, 2, 3, 4) appear to
have the adjusted R-squared statistics of 0.8681, 0.8654, 0.897, and 0.8703,
respectively.
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TABLE II

αm, βm and ξm values for the fitting curve (17).

αm βm ξm

Λ1(E) 859.8 −0.1491 −8.2
Λ2(E) 1007 −0.1737 6.9
Λ3(E) 1850 −0.2353 0.4
Λ4(E) 2153 −0.240 3.1

On the other hand, in order to take the effects of matrix size into con-
sideration, we illustrate in Fig. 7 the evolutions of thermalization times with
energy at N = 6, 8, 10, 12. From the profile of thermalization times with
respect to energy shown in Fig. 7, we observe that numerical data exhibit
a decreasing trend, which can be modeled again with a power law in the
form of

Γm(E) = θmE
εm + δm , (18)

(a) N = 6 (b) N = 8

(c) N = 10 (d) N = 12

Fig. 7. Thermalization time vs. energy at µ1 = 1 and µ2 = 1.5.
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with the fitting parameters displayed in Table III. The adjusted R-squared
values of the fitting curves depicted in Figs. 7 (a)–7 (d) are given by 0.8548,
0.8654, 0.8722, and 0.855, respectively, which essentially indicates that Γm
curves provide adequate fits to the numerical data.

TABLE III

θm, εm and δm values for the fitting curve (18).

θm εm δm

Γ1(E) 1237 −0.1942 −3.4
Γ2(E) 1007 −0.1737 6.9
Γ3(E) 1291 −0.1825 33.7
Γ4(E) 1128 −0.1796 1.8

4. Conclusions and outlook

In this paper, we have considered the dynamics of thermalization in a
Yang–Mills matrix model with two distinct mass deformation terms, which
may be contemplated as a double mass deformation of the bosonic part of
the BFSS model. We have performed a detailed numerical analysis of the
classical evolution of this model and determined that when the simulations
are started from a certain set of initial conditions, thermalization occurs. Al-
though small background fluctuations are required to initiate thermalization,
from the findings of numerical simulations it was clearly seen that thermal-
ization times are independent of these fluctuations. This is an extension of
the result given in [12] for the BFSS model.

From the results concerning the change in thermalization times with re-
spect to matrix size, we were able to demonstrate through an appropriate
fitting function that thermalization times vary logarithmically with matrix
size when the mass parameters µ1 and µ2 differ. It is worth mentioning
that in Ref. [8], the thermalization (or scrambling) time of a black hole is
conjectured to be proportional to log(N), where N is the number of de-
grees of freedom. Even though we have adopted a different definition of
thermalization time, it is still interesting to note that the findings obtained
for Hamiltonian (4) confirm this conjecture. In Subsection 3.1, we have
also presented plots depicting the variations of thermalization times with
respect to the energies of the reduced actions and subsequently the best-
fitting functions for the data were determined as power laws. A common
feature observed in all fitting functions is that thermalization times converge
to finite values in the large energy or matrix size limit.

Let us also mention some recent developments in related subjects. Al-
though calculating entanglement entropy in ordinary field theories is a rather
difficult task, calculations in noncommutative theories such as the scalar
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field theory on the fuzzy sphere were already carried out in [21–23]. More-
over, numerical computations of entanglement entropy in the BFSS matrix
model were recently performed in [14]. Besides, the behavior of entangle-
ment entropy during thermalization was studied in holographic systems in
Refs. [24–26]. Based on these considerations, a valuable direction of research
would be to investigate the time dependence of entanglement entropy in the
system defined by (4). Particularly, it would be interesting to explore the
possible use of entanglement entropy as a probe of thermalization. Another
challenging direction of development is to analyze the dynamics of quantum
chaos with emphasis on the measurements of Lyapunov exponents and check
whether our model saturates the Maldacena–Shenker–Stanford bound [27]
or not. We hope that these issues will produce useful results to be reported
soon.

We would like to thank the anonymous referee for corrections and valu-
able comments leading to several improvements.

Appendix A

Additional figures

In this appendix, we present Figs. 8 and 9. In Fig. 8, we illustrate the
eigenvalue distributions of P1 and R1 at p0 = 7. The histograms are gener-
ated by sampling the momenta eigenvalues on the time interval [827, 3000]
with a bin size equal to 40. In Fig. 9, the time evolutions of the standard
deviations of the eigenvalues for B1, B2, C1, and C2 matrices at six different
p0 values are displayed.

Fig. 8. Histograms of eigenvalues of P1 and R1 at N = 8, p0 = 7, µ1 = 1, and
µ2 = 1.5.
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(a) p0 = 0 (b) p0 = 5

(c) p0 = 7 (d) p0 = 10

(e) p0 = 19.5 (f) p0 = 30

Fig. 9. Standard deviations of eigenvalues vs. time at N = 8, µ1 = 1, and µ2 = 1.5.
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