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NUCLEAR SHAPE EVOLUTION
IN PALLADIUM ISOTOPES
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The phenomena of shape evolution and shape coexistence are stud-
ied in even–even 86−134Pd isotopes by employing the relativistic Hartree–
Bogoliubov (RHB) model by employing density-dependent point-coupling
parameter sets DD-PC1 and DD-PCX with separable pairing interaction.
Our findings of binding energies, quadrupole deformation parameter, charge
radii, and two-neutron separation energies as a function of neutron num-
ber N are compared with available experimental data and various theoreti-
cal models. Our theoretical results predict prolate–oblate shape coexistence
in 108Pd isotope.
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1. Intoduction

It is known that nuclei lying near shell closure Z = 50 exhibit shape
transitions and shape coexistence [1, 2] with the increase in neutron number.
Radioactive Ion Beam (RIB) facilities and sensitive detection technologies
have opened new possibilities to study the structure and properties of various
exotic nuclei. The nuclei in this mass region exhibit a rapid change of nuclear
shapes with competing spherical, axially symmetric prolate and oblate, and
triaxial shapes, resulting in shape instabilities and coexistence of nuclear
shape transitions in isotopic chains [3]. In addition to structural richness,
another interesting characteristics of this region is its involvement in the
astrophysical rapid neutron capture process (also called r-process), one of
the main nucleosynthesis mechanisms which leads to the production of heavy
neutron-rich nuclei in the universe [4, 5].
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Recent studies [6] prove that 112−116Pd isotopes show shape coexistence.
Reference [7] suggests that the shape coexistence should occur in the re-
gion of N = 60 to 70, around Z = 50. The deformation energy surfaces
of 114−128Pd isotopes have also been studied using constrained HF + BCS
calculations with the Skyrme force SLy4 [8]. The potential energy curves for
96−118Pd isotopes obtained with the Gogny D1S force are also observed [9].
A systematic study of even–even nuclei ranging from Z = 10–110 has been
performed in Ref. [10] within the framework of Hartree–Fock–Bogoliubov
(HFB) formalism using the Gogny D1S interaction, which includes predicted
the values of deformation parameters, beta and gamma, and the shape tran-
sition for 106−152Pd isotopes.

In the present work, the quantities of interest are the nuclear potential en-
ergy curves, nuclear binding energy, two-neutron separation energies (S2n),
the differential variation in two-neutron separation energy (dS2n), the root-
mean-square charge distribution (Rc) for the even–even 86−134Pd isotopes.
The calculations are performed by taking axial symmetry into account. The
covariant density functional theory with density-dependent point-coupling
interactions DD-PC1 [11] and DD-PCX [12] are employed with separable
pairing interaction [13–15].

The paper is organized as follows. In Section 2, a review of the theoreti-
cal formalism used is introduced. Section 3 contains the results obtained for
nuclear potential energy curves, nuclear binding energy, two-neutron separa-
tion energy (S2n), the differential variation in two-neutron separation energy
(dS2n), the root-mean-square charge distribution (Rc), which are compared
with the experimental data. Section 4 summarizes the main conclusions.

2. Theoretical framework

The self-consistent mean field models (SCMF) are a powerful tool
[16–19] for the investigation of nuclear structure properties, low-energy dy-
namics over the whole nuclide periodic chart and nuclear matter properties
up to dense nuclear matter densities. The SCMF models are mainly based
on the effective nuclear energy density functionals approach, and can be con-
structed as functionals of one-body nucleon density matrices that correspond
to the Slater-determinant of the single-particle or single-quasi-particle state.
Nuclear SCMF models effectively map the many-body problem onto a one-
body problem, and the exact Nuclear Energy Density Functional (NEDF)
is approximated by simple, mostly analytical, functionals of powers and
gradients of ground-state nucleon densities and currents, representing distri-
butions of matter, spins, momentum, and kinetic energy. For completeness,
we briefly describe the Relativistic Nuclear Density Functional (RMF-NDF)
employed in the present calculation as below.
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2.1. The point-coupling model

The Lagrangian for density-dependent point-coupling models includes
the isoscalar–scalar (ψ̄ψ)

2, isoscalar–vector (ψ̄γµψ)(ψ̄γµψ), and isovector–
vector (ψ̄~τγµψ)·(ψ̄~τγµψ). Four-fermion contact interactions in the isospace–
space can be written as [11]

L = ψ̄(iγ · ∂ −m)ψ − 1

2
αS(ρ)

(
ψ̄ψ
) (
ψ̄ψ
)

−1

2
αV(ρ)

(
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The above Lagrangian density is consisting of the free-nucleon Lagrangian,
the point-coupling interaction terms, the coupling of the protons to the
electromagnetic field, and a derivative term accounts for leading effects of
finite-range interactions. The derivative term in Eq. (1) is crucial for a
quantitative description of nuclear density distribution, for example, nuclear
radii. Similar interactions can be included in each space–isospace channel,
but in practice, data only constrain a single derivative term, for instance,
δS(∂νψ̄ψ)(∂νψ̄ψ). The point-coupling Lagrangian, Eq. (1), does not include
isovector–scalar terms. In the meson-exchange picture, this channel is rep-
resented by the exchange of an effective δ meson, and its inclusion intro-
duces a proton–neutron effective mass splitting and enhances the isovector
spin–orbit potential. Although the spin–orbit strength has a relatively well-
defined value, the distribution between the scalar and vector channels is not
determined by ground-state data.

From the Lagrangian density in Eq. (1), one can calculate the Hamil-
tonian density H(r) and hence the energy density functional for the point-
coupling model as

ERMF
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The functional form of the point-couplings chosen is

αi(ρ) = ai + (bi + cix)e−dix , (i = S,V,TV) , (3)
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where x = ρ/ρsat and ρsat (= 0.152 fm−3) denotes the nucleon density in
symmetric nuclear matter at saturation point, and Eq. (3) is used to adjust
the model parameters. In Table I, we present the parameters of recently
developed density-dependent point-coupling interactions DD-PC1 [11] and
DD-PCX [12].

TABLE I

The parameters of density-dependent point coupling DD-PC1 [11] and DD-PCX
[12] interactions in the Lagrangian. The value of saturation density is set to
0.152 fm−3.

Parameter DD-PC1 Parameter DD-PCX Units
m 939 m 939 MeV
aS −10.0462 aS −10.979243836 fm2

bS −9.1504 bS −9.038250910 fm2

cS −6.4273 cS −5.313008820 fm2

dS 1.3724 dS 1.379087070
aV 5.9195 aV 6.430144908 fm2

bV 8.8637 bV 8.870626019 fm2

dV 0.6584 dV 0.655310525
bTV 1.8360 bTV 2.963206854 fm2

dTV 0.6403 dTV 1.309801417
δS −0.8149 δS −0.878850922 fm4

G −728 Gn −800.663126037 MeV fm3

Gp −773.776776597 MeV fm3

2.2. Relativistic Hartree–Bogoliubov approximation
with a separable pairing interaction

The relativistic Hartree–Bogoliubov model [16, 17] provides a unified
description of particle–particle (pp) and particle–hole (ph) correlations on
SCMF level by using the averages of two potentials: self-consistent mean-
field potential that encloses the long-range ph correlations and a pairing
field potential which sums up the pp correlations. In the RHB model, in the
presence of pairing, density matrix can be generalized in two densities, the
normal density ρ̂, and pairing tensor κ̂. The relativistic Hartree–Bogoliubov
energy density functional can be written as [14]

ERHB[ρ̂, κ̂] = ERMF[ρ̂] + Epair[κ̂] , (4)

where ERMF[ρ̂] is the nuclear energy density functional for point coupling
models given in Eq. (2).
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The pairing part of RHB functional is given by

Epair[κ̂] =
1

4
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1
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2
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1

〈
n1n

′
1

∣∣V PP
∣∣n2n′2〉κn2n′

2
, (5)

where 〈n1n′1|V PP |n2n′2〉 denote the matrix elements of the two-body pairing
interaction and indices n1, n′1, n2, and n′2 denote quantum numbers that
specify the Dirac indices of the spinor. The pairing field ∆ reads
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2
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2
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The two-body interaction matrix elements of the pairing field ∆ have been
computed by using a separable form of the Gogny force introduced for hybrid
RHB calculations [20] for spherical and deformed nuclei [21]. The pairing
force is separable in momentum space and can be transformed from momen-
tum to coordinate space

V PP
(
r1, r2, r

′
1, r
′
2

)
= −Gδ

(
R−R′

)
P (r)P (r′) , (7)

where R = 1√
2
(r1 + r2) and r = 1√

2
(r1 − r2) represent the center of mass

and the relative coordinates, respectively, and P (r) is written as

P (r) =
1

(4πa2)3/2
e−r

2/2a2 . (8)

The two parameters G (pairing interaction parameter) and a (pairing width
= 0.644 fm) have been adjusted to reproduce the density dependence of
the gap at the Fermi surface. It is calculated with the D1S Gogny force
[13, 14, 19, 22]. The pairing force has a finite range and by virtue of the
presence of the factor δ(R −R′), it also conserves translational invariance.
Even though this force is not completely separable in the coordinate space,
the anti-symmetrized pp matrix elements can be expressed as a sum of a
finite number of separable terms in the harmonic oscillator basis〈

n1n2
∣∣V PP

∣∣n′1n′2〉a =
∑
N

WN∗
n1n2

WN
n′
1n

′
2
. (9)

Now, the pairing field ∆ becomes, ∆n1n2 =
∑

N PNW
N∗
n1n2

with PN =
1
2 Tr(Wnk), subsequently, the pairing energy in the nuclear ground state
is given as [21]

Epair = −G
∑
N

P ∗NPN . (10)

The pairing correlations have been treated in the BCS constant gap approx-
imation along with the empirical pairing gaps, because the pairing correla-
tions contribute much less to the total binding energies of a nucleus.
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3. Results and discussion

A reliable convergence in mean-field formalism can be achieved by tak-
ing a large number of oscillator shells. However, the computational time
increases drastically with an increase in number of oscillator shells. This
problem can be resolved by limiting the number of shells and studying the
convergence behavior. In the present work, we have done a convergence
study of N = 60 and N = 70 isotopes of Pd. Figure 1 displays the results of
binding energy, charge radius (Rc), and quadrupole deformation parameter
(β2) as a function of the number of oscillator shells. The variation in the
results ranges around 0.1% for binding energy, 0.02% for charge radius, and
around 1% for quadrupole deformation parameter in the case of 106Pd. The
variation in the results of binding energy is around 0.05%, 0.04% for charge
radius, and 1–2% for quadrupole deformation parameter in the case of 116Pd.
All the above variations are calculated on an increasing number of oscillator
shells from 12 to 20. Therefore, we have used 12 major oscillator shells to
save the computation time and obtained reasonably converging mean-field
solutions.
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Fig. 1. (Color online) The results of convergence study of the binding energy,
charge radii (Rc), and quadrupole deformation parameter (β2) for 106Pd and 116Pd
nuclei, with DD-PC1 and DD-PCX parameter sets, as a function of oscillator shells
(N = NF = NB).
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3.1. Potential energy curves

Potential energy curves obtained from the self-consistent relativistic mean-
field theory play a very eminent role in determining of the ground state of a
nuclei similar to the non-relativistic calculations [23]. The quadrupole defor-
mation is most dominant, hence other deformation coordinates are neglected
in the present study for low computation time, cost, and simplicity.

In Figs. 2–4, the results obtained by preserving axial symmetry are pre-
sented in the form of multipanel plots of the potential energy curves as a
function of quadrupole deformation parameter β2 for even–even 86−134Pd iso-
topes and we observe the shape transitions in each system with an increase
in neutron number N . We observe that the 86Pd with N = 40 has a spherical
shape and as we move away from sub-shell closure at N = 40, the evolution
of deformed shapes is noticed. A prolate shape is observed in 88−94Pd and
as we move towards the shell closure N = 50 in 96Pd, a spherical shape
is regained. Moving away from shell closure N = 50, we observe the en-
ergy curve with the minimum energy exhibiting prolate deformation. In
108Pd, we observe two minima, the primary minimum with β2 = 0.20 cor-
responding to the prolate shape and the secondary energy minimum with
β2 = −0.24 corresponding to the oblate shape. We then observe a transi-
tion in 110−118Pd isotopes with the minimum energy corresponding to oblate
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Fig. 2. (Color online) The potential energy curves, calculated with DD-PC1 and
DD-PCX interactions, as a function of quadrupole deformation parameter β2 for
86−102Pd isotopes. The energies are normalized with respect to the binding energy
of the global minima.
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Fig. 3. (Color online) The same as Fig. 2, for 104−120Pd isotopes.
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Fig. 4. (Color online) The same as Fig. 2, for 122−134Pd isotopes.
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shapes. An oblate-to-prolate shape transition is observed in 122−124Pd and
then the spherical shape is achieved as we move towards N = 82 shell clo-
sure in 128Pd. After N = 84, again a prolate shape is regained in 132−134Pd.
Our results for shape evolution are in accordance with the FRDM calcula-
tions [24].

3.2. Nuclear binding energy

The nuclear binding energy is one of the most crucial characteristics
not only in nuclear physics but also in other fields, such as astrophysics
[25, 26]. We present the detailed values of binding energies and quadrupole
deformations in Table II. The results calculated with the DD-PC1 and

TABLE II

The binding energy E (in MeV) and the quadrupole deformation parameter β2 for
the ground states and few selective first intrinsic excited states of 86−134Pd isotopes
compared with NL3 [6] and with available experimental data [27, 28].

Nuclei DD-PC1 DD-PCX NL3 [6] [27, 28]

B.E. β2 B.E. β2 B.E. β2 B.E. β2
86Pd 665.06 0.0 662.78 0.0 — — — —
88Pd 697.35 0.0 695.97 0.0 697.8 0.002 — —
90Pd 728.89 0.14 727.81 0.12 730.0 0.094 729.12 —
92Pd 759.38 0.14 758.55 0.14 760.9 0.101 759.04 —
94Pd 788.01 0.10 787.54 0.10 789.5 0.004 788.04 —
96Pd 816.12 0.0 815.95 0.0 817.4 0.001 816.30 —
98Pd 835.13 0.14 834.72 0.10 836.9 0.003 834.93 —
100Pd 854.82 0.18 854.08 0.16 855.9 0.136 852.91 —
102Pd 873.71 0.20 872.59 0.20 874.2 0.176 870.33 0.196
104Pd 890.83 0.20 889.77 0.20 891.1 0.189 887.26 0.209
106Pd 907.12 0.20 905.92 0.20 906.9 0.187 903.75 0.229
108Pd 922.51 0.20 921.25 0.20 921.8 0.190 919.80 0.243

921.91 −0.24 920.85 −0.24 — — — —
110Pd 937.74 −0.24 936.31 −0.24 936.1 0.240 935.35 0.257
112Pd 952.78 −0.24 950.93 −0.24 951.8 −0.231 950.27 0.220
114Pd 966.81 −0.24 964.51 −0.24 965.7 −0.23 964.49 0.164
116Pd 979.18 −0.22 976.84 −0.22 977.9 −0.221 977.97 0.207
118Pd 991.025 −0.16 988.48 −0.16 989.1 −0.198 990.56 —
120Pd 1002.78 −0.14 1000.02 0.08 1000.6 −0.163 1002.33 —

1002.77 0.12 — — — — — —
122Pd 1014.45 0.10 1011.28 0.08 1011.9 0.115 1013.47 —
124Pd 1025.53 0.08 1021.95 0.06 1022.8 0.104 1024.09 —
126Pd 1036.20 0.0 1032.29 0.0 1032.4 0.073 1034.29 —
128Pd 1046.69 0.0 1042.25 0.0 1041.5 0.001 1044.12 —
130Pd 1048.90 0.0 1044.49 0.0 1044.5 0.027 1047.93 —
132Pd 1051.51 0.12 1046.40 0.0 1048.7 0.130 1051.56 —
134Pd 1054.79 0.18 1048.51 0.14 — — 1055.04 —
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DD-PCX interactions are compared with the theoretical results obtained by
NL3 interactions [6], PC-PK1 [27], and experimental results [28]. Our
findings are also comparable to the theoretical results obtained by NL3*
interactions [6], D1S-Gogny interactions [10], and the experimental data in
Ref. [29].

In Fig. 5, the variation of quadrupole deformation parameter β2 with an
increase in neutron number N is presented and compared with the finite-
range droplet model (FRDM) calculations [24] and with the available exper-
imental data [28]. The experimental values of β2 are extracted from the ex-
perimental B(E2)↑ values using the Bohr model of nuclear deformation [30].
We observe an interesting shape transition as moving forward from N = 50
shell closure. A prolate deformation develops in N = 52 to N = 60 with β2
ranging from 0.1–0.2. We observed the shape transition from prolate to
oblate and then oblate to prolate in Fig. 5, and these deformed configurations
again become spherical as approaching towards the shell closure at N = 82.
A reasonable agreement is seen between the experimental data and theo-
retically calculated values of the quadrupole deformation parameter (β2).
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Neutron Number N

-0.2
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β
2
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DD-PCX
FRDM
Expt.

Fig. 5. (Color online) The variation of quadrupole deformation parameter β2 with
respect to neutron number N . The results are compared with the FRDM calcula-
tions [24] and experimental data [28].

3.3. Two-neutron separation energy

The two-neutron separation energy S2n can be calculated using the
ground-state nuclear binding energies using relation

S2n(Z,N) = B.E.(Z,N)− B.E.(Z,N − 2) . (11)
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It gives information about the stability of a nucleus against the emission
of two neutrons and hence defines the neutron drip lines. The systematics
of two-neutron separation energy S2n for 86−134Pd isotopes are presented in
Fig. 6. It is observed that two-neutron separation energy decreases smoothly
with the increase in number of neutrons, and sharp discontinuities appear
at neutron magic numbers at N = 50 and 82 due to the presence of neutron
shell closures. The theoretical results calculated with DD-PC1 and DD-
PCX parameter sets are compared with the theoretical models [6, 10, 27]
and available experimental data [29]. In terms of energy, we can say that
the energy necessary to remove two neutrons from a magic nucleus is much
higher than that to remove two neutrons from the nucleus (Z, N magic+2),
which breaks the regular trend.
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Fig. 6. (Color online) The two-neutron separation energy S2n (in MeV) as a function
of neutron number from the DD-PC1 and DD-PCX force parameters are compared
with [6, 10, 27] and experimental data [29].

The differential variation of the two-neutron separation energy dS2n(Z,N)
with respect to neutron number N is defined as

dS2n(Z,N) =

∣∣∣∣S2n(Z,N + 2)− S2n(Z,N)

2

∣∣∣∣ . (12)

The dS2n(Z,N) investigates the rate of change of separation energy with
respect to the neutron number in an isotopic chain. In Fig. 7, we have
plotted the results for dS2n(Z,N) calculated using DD-PC1 and DD-PCX
interactions and compared them with NL3, NL3* [6], D1S Gogny [10], PC-
PK1 [27] interactions, and available experimental data [29]. A sharp rise
in the values of dS2n(Z,N) shows the signature of neutron shell closure at
N = 50 and 82.
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Fig. 7. (Color online) The differential variation in two-neutron separation energy
dS2n (in MeV) as a function of neutron number from the DD-PC1 and DD-PCX
force parameters are compared with [6, 10, 27] and experimental data [29].

3.4. Root-mean-square charge radius

The nuclear charge radius is one of the most sensitive characteristics to
explore the structural evolution in nuclei. In Fig. 8, we present the trend of
root-mean-square charge radii Rc [fm] as a function of neutron number N ,
calculated using CDFT with the DD-PC1 and DD-PCX interactions. The
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Fig. 8. (Color online) Nuclear charge radii (Rc) as a function of neutron number.
The comparison is shown with data in [6, 31].
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theoretical results are compared with the available experimental data [31]
and theoretical models [6]. We observe a smooth increase in charge radii with
an increase in neutron number which shows that the deformation of prolate
minima is nearly the same as one moves from N = 54 to N = 62. The sharp
discontinuities in Rc [fm] at N = 50 and 82 account for the traditional
shell closures. A small change in slope at N = 64 and 74 can be related
to the sudden shape transition from prolate to oblate and oblate to prolate,
respectively. The detailed values of Rc [fm] are presented in Table III. The
calculated results with DD-PC1 and DD-PCX interactions are compared
with the theoretical results obtained by NL3 and NL3* interactions [6] and
PC-PK1 [27].

TABLE III

The root-mean-square charge radius Rc [fm] for the ground states of 86−134Pd nuclei
compared with the theoretical models [6, 10] and experimental data [31] wherever
available.

Nuclei DD-PC1 DD-PCX NL3 NL3* D1S Gogny Experiment
[6] [6] [10] [31]

86Pd 4.381 4.386 — — — —
88Pd 4.383 4.389 4.42 4.42 4.37 —
90Pd 4.401 4.401 4.44 4.44 4.37 —
92Pd 4.404 4.407 4.43 4.43 4.38 —
94Pd 4.403 4.404 4.42 4.42 4.38 —
96Pd 4.401 4.401 4.42 4.41 4.38 —
98Pd 4.435 4.427 4.43 4.42 4.40 —
100Pd 4.462 4.458 4.46 4.46 4.45 —
102Pd 4.484 4.488 4.48 4.48 4.46 4.4839
104Pd 4.503 4.507 4.51 4.50 4.48 4.5086
106Pd 4.523 4.526 4.52 4.52 4.50 4.5322
108Pd 4.540 4.544 4.53 4.53 4.52 4.5563
110Pd 4.583 4.586 4.57 4.54 4.53 4.5776
112Pd 4.601 4.605 4.59 4.58 4.56 —
114Pd 4.618 4.622 4.62 4.60 4.57 —
116Pd 4.627 4.631 4.63 4.61 4.59 —
118Pd 4.621 4.625 4.63 4.62 4.59 —
120Pd 4.630 4.616 4.63 4.62 4.59 —
122Pd 4.630 4.630 4.63 4.62 4.60 —
124Pd 4.627 4.642 4.64 4.63 4.62 —
126Pd 4.639 4.652 4.65 4.64 4.63 —
128Pd 4.649 4.665 4.65 4.65 4.64 —
130Pd 4.678 4.679 4.66 4.67 4.65 —
132Pd 4.708 4.693 4.69 4.69 4.66 —
134Pd 4.742 4.729 — — 4.67 —
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4. Conclusion

The present study is done using the relativistic Hartree–Bogoliubov
(RHB) model with the density-dependent point-coupling force parameter
sets DD-PC1 and DD-PCX, and the pairing correlations are taken into ac-
count by employing an interaction that is separable in momentum space. It
includes the systematics of binding energy, two-neutron separation energy,
the differential variation in two-neutron separation energy, r.m.s. charge radii
for the even–even isotopes of 86−134Pd. The phenomena of shape evolution
and shape coexistence have been observed by taking axial symmetry into
account. The value of quadrupole deformation parameter β2 varies from
−0.4 to 0.4 and the number of oscillator shells (number of fermions and
number of bosons) are taken to be 12 in our study. In 108Pd isotope, we
observe the prolate–oblate shape coexistence with almost degenerate ener-
gies. Another oblate–prolate shape coexistence is observed in 120Pd isotope
with only the DD-PC1 interaction. Nearly the same deformation of prolate
minima from N = 54 to N = 62 leads to a smooth increase in charge radii
with an increase in neutron number. A sudden shape transition from prolate
to oblate and oblate to prolate at N = 64 and 74, respectively, results in
the small change in slope of Rc. Our theoretical results for the ground-state
properties in Pd isotopic mass chain calculated using the density-dependent
point-coupling parameter set of DD-PC1 and DD-PCX are in good agree-
ment with the available experimental data and with results obtained from
different theoretical models.

The authors would like to thank the Himachal Pradesh University for
providing computational facilities and the anonymous referee for a thorough
inspection of the manuscript and helpful comments.

REFERENCES

[1] W. Nazarewicz et al., «Coexistence in even-mass nuclei», Phys. Rep. 215,
101 (1992).

[2] K. Heyde, J.L. Wood, «Shape coexistence in atomic nuclei», Rev. Mod. Phys.
83, 1467 (2011).

[3] S. Nishimura, «Beta–gamma spectroscopy at RIBF», Prog. Theor. Exp.
Phys. 2012, 03C006 (2012).

[4] E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, «Synthesis of the
Elements in Stars», Rev. Mod. Phys. 29, 547 (1957).

[5] J.J. Cowan, F.-K. Thielemann, J.W. Truran, «The r-process and
nucleochronology», Phys. Rep. 208, 267 (1991).

http://dx.doi.org/10.1016/0370-1573(92)90095-H
http://dx.doi.org/10.1016/0370-1573(92)90095-H
http://dx.doi.org/10.1103/RevModPhys.83.1467
http://dx.doi.org/10.1103/RevModPhys.83.1467
http://dx.doi.org/10.1093/ptep/pts078
http://dx.doi.org/10.1093/ptep/pts078
http://dx.doi.org/10.1103/RevModPhys.29.547
http://dx.doi.org/10.1016/0370-1573(91)90070-3


Nuclear Shape Evolution in Palladium Isotopes 1447

[6] M. Bhuyan, «Structural evolution in transitional nuclei of mass
82 ≤ a ≤ 132», Phys. Rev. C 92, 034323 (2015).

[7] A. Martinou et al., «Nucleon numbers for nuclei with shape coexistence»,
HNPS Adv. Nucl. Phys. 26, 96 (2019).

[8] P. Sarriguren, «β-decay properties of neutron-rich Ge, Se, Kr, Sr, Ru, and
Pd isotopes from deformed quasiparticle random-phase approximation»,
Phys. Rev. C 91, 044304 (2015).

[9] L.M. Robledo, R.R. Rodríguez-Guzmán, P. Sarriguren, «Evolution of nuclear
shapes in medium mass isotopes from a microscopic perspective», Phys.
Rev. C 78, 034314 (2008).

[10] J.P. Delaroche et al., «Structure of even–even nuclei using a mapped
collective Hamiltonian and the D1S Gogny interaction», Phys. Rev. C 81,
014303 (2010).

[11] T. Nikšić, D. Vretenar, P. Ring, «Relativistic nuclear energy density
functionals: Adjusting parameters to binding energies», Phys. Rev. C 78,
034318 (2008).

[12] T. Marketin, E. Yüksel, N. Paar, «Optimizing the relativistic energy density
functional with nuclear ground state and collective excitation properties»,
Phys. Rev. C 99, 034318 (2019).

[13] Y. Tian, Z.-y. Ma, P. Ring, «Axially deformed relativistic Hartree Bogoliubov
theory with a separable pairing force», Phys. Rev. C 80, 024313 (2009).

[14] Y. Tian, Z.-y. Ma, P. Ring, «A finite range pairing force for density
functional theory in superfluid nuclei», Phys. Lett. B 676, 44 (2009).

[15] T. Nikšić et al., «3D relativistic Hartree–Bogoliubov model with a separable
pairing interaction: Triaxial ground-state shapes», Phys. Rev. C 81, 054318
(2010).

[16] D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, «Relativistic
Hartree–Bogoliubov theory: static and dynamic aspects of exotic nuclear
structure», Phys. Rep. 409, 101 (2005).

[17] J. Meng et al., «Relativistic continuum Hartree Bogoliubov theory for
ground-state properties of exotic nuclei», Prog. Part. Nucl. Phys. 57, 470
(2006).

[18] J.R. Stone, P.G. Reinhard, «The Skyrme interaction in finite nuclei and
nuclear matter», Prog. Part. Nucl. Phys. 58, 587 (2007).

[19] T Nikšić, D. Vretenar, P. Ring, «Relativistic nuclear energy density
functionals: Mean-field and beyond», Prog. Part. Nucl. Phys. 66, 519 (2011).

[20] T. Gonzalez-Llarena, J.L. Egido, G.A. Lalazissis, P. Ring, «Relativistic
Hartree–Bogoliubov calculations with finite range pairing forces», Phys.
Lett. B 379, 13 (1996).

[21] T. Nikšić, N. Paar, D. Vretenar, P. Ring, «DIRHB — A relativistic
self-consistent mean-field framework for atomic nuclei», Comput. Phys.
Commun. 185, 1808 (2014).

http://dx.doi.org/10.1103/PhysRevC.92.034323
http://dx.doi.org/10.12681/hnps.1804
http://dx.doi.org/10.1103/PhysRevC.91.044304
http://dx.doi.org/10.1103/PhysRevC.78.034314
http://dx.doi.org/10.1103/PhysRevC.78.034314
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.81.014303
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevC.78.034318
http://dx.doi.org/10.1103/PhysRevC.99.034318
http://dx.doi.org/10.1103/PhysRevC.80.024313
http://dx.doi.org/10.1016/j.physletb.2009.04.067
http://dx.doi.org/10.1103/PhysRevC.81.054318
http://dx.doi.org/10.1103/PhysRevC.81.054318
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/j.ppnp.2011.01.055
http://dx.doi.org/10.1016/0370-2693(96)00461-3
http://dx.doi.org/10.1016/0370-2693(96)00461-3
http://dx.doi.org/10.1016/j.cpc.2014.02.027
http://dx.doi.org/10.1016/j.cpc.2014.02.027


1448 S. Thakur et al.

[22] Y. Tian, Z.-y. Ma, P. Ring, «Separable pairing force for relativistic
quasiparticle random-phase approximation», Phys. Rev. C 79, 064301
(2009).

[23] N. Dubray, H. Goutte, J.-P. Delaroche, «Structure properties of 226Th and
256,258,260Fm fission fragments: Mean-field analysis with the Gogny force»,
Phys. Rev. C 77, 014310 (2008).

[24] P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, «Nuclear ground-state masses
and deformations: Frdm(2012)», At. Data Nucl. Data Tables 109–110, 1
(2016).

[25] K. Blaum, «High-accuracy mass spectrometry with stored ions», Phys. Rep.
425, 1 (2006).

[26] D. Lunney, J.M. Pearson, C. Thibault, «Recent trends in the determination
of nuclear masses», Rev. Mod. Phys. 75, 1021 (2003).

[27] X.W. Xia et al., «The limits of the nuclear landscape explored by the
relativistic continuum Hartree–Bogoliubov theory», At. Data Nucl. Data
Tables 121–122, 1 (2018).

[28] S. Raman, C.W. Nestor, P. Tikkanen, «Transition probability from the
ground to the first-excited 2+ state of even–even nuclides», At. Data Nucl.
Data Tables 78, 1 (2001).

[29] M. Wang et al., «The AME2016 atomic mass evaluation (II). Tables, graphs
and references», Chinese Phys. C 41, 030003 (2017).

[30] A. Bohr, B.R. Mottelson, «Nuclear Deformations. Vol. II Nuclear Structure»,
Addison-Wesley/W.A. Benjamin, Inc., Reading, MA 1975.

[31] I. Angeli, K.P. Marinova, «Table of experimental nuclear ground state charge
radii: An update», At. Data Nucl. Data Tables 99, 69 (2013).

http://dx.doi.org/10.1103/PhysRevC.79.064301
http://dx.doi.org/10.1103/PhysRevC.79.064301
http://dx.doi.org/10.1103/PhysRevC.77.014310
http://dx.doi.org/10.1016/j.adt.2015.10.002
http://dx.doi.org/10.1016/j.adt.2015.10.002
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://dx.doi.org/10.1103/RevModPhys.75.1021
http://dx.doi.org/10.1016/j.adt.2017.09.001
http://dx.doi.org/10.1016/j.adt.2017.09.001
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1006/adnd.2001.0858
http://dx.doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/10.1016/j.adt.2011.12.006

	1 Intoduction
	2 Theoretical framework
	2.1 The point-coupling model
	2.2 Relativistic Hartree–Bogoliubov approximationwith a separable pairing interaction

	3 Results and discussion
	3.1 Potential energy curves
	3.2 Nuclear binding energy
	3.3 Two-neutron separation energy
	3.4 Root-mean-square charge radius

	4 Conclusion

