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We review a procedure of factorizing the Minkowski space Dirac equa-
tion over a suitable superspace, discuss its Euclidean space version and
apply the worked out formalism in the case of an almost-commutative
Dirac operator. The presented framework is an attempt to reconcile non-
commutative geometry and supersymmetry.
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1. Introduction

In 1928 P.A.M. Dirac reported his now famous procedure for deriving
an equation governing the quantum mechanical properties for particles with
half-integer spin [1]. The process he pioneered may be essentially described
as taking the “square root” of the Klein–Gordon equation.

The natural question whether this process is iterable was posed and
solved by the use of superspace coordinates and their (first order) deriva-
tives [2]. A series of papers followed, studying the free and interacting forms
of the resulting equations acting on (super)spaces of superfields [3–7]. Suit-
ably modified, Szwed’s idea is also the first ingredient we use in the present
note. The second one is the framework of noncommutative geometry [8].

Noncommutative geometry, pioneered by Connes in the 1980s and 1990s,
is a profoundly deep branch of mathematics with roots and branches stretch-
ing in many directions. The mathematical depth of this subject belies its
usefulness in theoretical physics, where it has found application in repro-
ducing the Standard Model of particle physics coupled with gravity. Specifi-
cally, it is within a certain subclass of noncommutative geometries known as
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almost-commutative (AC) geometries, in which such physical models may
be described. This adaptation was pioneered in [9], but for the working
physicist, we also recommend the presentation in [10]. Of central impor-
tance to this framework is the notion of a suitable Dirac operator. Given
that the natural geometric setting for supersymmetry is superspace [11, 12],
we expect that any Dirac operator which is claimed to govern the dynamics
of particles in a supersymmetric model, should, in an essential way, take into
account superspace coordinates and their derivatives.

One possibility would be to construct a superspace Dirac operator asso-
ciated with the underlying superspace spin bundle. This would be a sort of
“inside-out” approach where the fundamental space under consideration is
a superspace exhibiting supersymmetry through infinitesimal global trans-
lations of its coordinates. Considered in this way, supersymmetry is an
explicit, unavoidable property of the model. We postpone further discussion
of this interpretation for future work.

Alternatively, one may consider an “outside-in” approach. This time, the
basic ingredients are those of the usual AC-geometry approach for obtaining
physical models from NCG, i.e. the underlying space is an ordinary Rie-
mannian spin manifold and the Dirac operator is the spin connection acting
fiberwise on square integrable sections of the spin bundle. This leads to an
“on-shell” reconciliation of supersymmetry and noncommutative geometry:
given the data of the (unfluctuated!) total space Dirac operator, we are
led to a set of “equations of motion” (59) on a restricted space of superfield
spinors, which are compatible with the supersymmetry transformations and
whose form is determined by the assumed AC-geometry. We view their
construction as the main result of the present note.

2. Factorization of the Dirac operator

2.1. Minkowski space — the Szwed approach

Using two-component spinor notation (ofttimes referred to as Van der
Waerden notation) and the chiral representation for the Dirac matrices (for
the conventions see [13]), one can write the Dirac equation in 4-dimensional
Minkowski space as

−

(
iσ̄µ α̇β∂µ mδα̇

β̇

mδβα iσµ
αβ̇
∂µ

)(
ψβ
χ̄β̇

)
≡ D

(
ψ
χ̄

)
= 0 . (1)

Taking a “square root” of the Dirac operator corresponds to the construction
of an operator A, which satisfies

A†A = D . (2)
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If one requires A to be a local operator and to contain space-time derivatives,
then, since there is no second order derivative in the Dirac operator, one is
compelled to assume that the coefficients of ∂µ in A are nilpotent. Therefore,
one is lead to consider the operator A as acting on a superspace with the
coordinates (xµ, θα, θ̄α̇).

There are several first order differential operators which can be defined
on this space. In particular, the spinorial ones,

Dα = ∂/∂θα + iσµαα̇θ̄
α̇∂µ ,

D̄α̇ = −∂/∂θ̄α̇ − iθασµαα̇∂µ , (3)

satisfy an algebra with relations given by

{Dα, Dβ} =
{
D̄α̇, D̄β̇

}
= 0 ,{

Dα, D̄β̇

}
= −2iσµαβ̇∂µ . (4)

If we now define 2× 2 matrices

Aβα =

(
Dβ −D̄β̇

D̄α̇ Dα

)
, (5)

then

(Aαβ)†Aβα =

( {
Dβ, D̄α̇

}
D̄β̇D̄

α̇ +DβDα

D̄β̇D̄
α̇ +DβDα

{
Dα, D̄β̇

} )
. (6)

In particular,

(Aαα)†Aαα = −2

(
iσ̄µα̇α∂µ M
M iσµαα̇∂µ

)
(7)

with
M = −1

4

(
DD + D̄D̄

)
≡ −1

4

(
D̄α̇D̄

α̇ +DαDα

)
. (8)

In effect, even if an operator A satisfying (2) actually does not exist, the
equality (7) was the motivation in [2, 5] for postulating the following set of
equations as a “square root” of the Dirac equation:

Dαψα − D̄α̇χ̄
α̇ = 0 , D̄α̇ψα +Dαχ̄

α̇ = 0 , (9)

in which the spinors ψα and χ̄α̇ are considered to be functions of the super-
space coordinates (xµ, θα, θ̄α̇), and are subject to the additional constraint(

DD + D̄D̄
)
ψα + 4mψα =

(
DD + D̄D̄

)
χ̄α̇ + 4mχ̄α̇ = 0 . (10)

The solution set of these equations turned out to be nonempty and in-
teresting. In particular, a simple case in which ψα = χα corresponds to the
Maxwell superfield [5].
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2.2. 4d Euclidean space

It is essential to the noncommutative methods, which we intend to em-
ploy in Section 3, that the “total-space” Dirac operator is Hermitian. There-
fore, we proceed in a Riemannian signature and for simplicity choose to work
in 4-dimensional Euclidean space.

In particular, in this setting, the Lorentz transformations are the 4-di-
mensional rotations characterized by the symmetry group SO(4). Their
spin representation is given by the universal covering Lie group, Spin(4) ∼=
SU(2)× SU(2), and the corresponding Clifford algebra is isomorphic to the
Lie algebra of infinitesimal generators, su(2)⊕ su(2).

After defining

σm ≡ (iτ1, iτ2, iτ3,12) and σ̃m ≡ (−iτ1,−iτ2,−iτ3,12) , (11)

where τi are the Pauli matrices, it is immediate to check that the Hermitian
matrices

γmE ≡
(

0 σm

σ̃m 0

)
(12)

generate the Clifford algebra of 4-dimensional Euclidean space,

{γmE , γnE} = 2δmn14 . (13)

Furthermore, this algebra possesses a natural grading induced by the oper-
ator

γ5E ≡ γ1γ2γ3γ4 =

(
−12 0

0 12

)
. (14)

The Euclidean Dirac operator has the form of

D = iγmE ∂m +m14 =

(
m12 iσm∂m
iσ̃m∂m m12

)
(15)

and acts on a bispinor

Ψ =

(
ψ
χ̃

)
. (16)

As for the spinorial indices, we declare

ψ = (ψα) , χ̃ =
(
χ̃α̇
)
,

σ̃m =
(
σ̃mα̇α

)
, σm = (σmαα̇) (17)

which allows us to present the Dirac equation as

iσ̃mα̇α∂mψα +mχ̃α̇ = 0 ,

iσmαα̇∂mχ̃
α̇ +mψα = 0 . (18)
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Unlike the Minkowski case, the spinors ψ and χ̃ transform independently
under the action of Spin(4). Indeed, if we parameterize a matrix L ∈ SO(4)
as L = expω (with ωmn = −ωnm), then

ψ′α(x) = M β
α ψβ

(
L−1x

)
, χ̃′α̇ = W α̇

β̇
χ̃β̇
(
L−1x

)
, (19)

where

M(L) = exp
(
1
8ωmn(σmσ̃n − σnσ̃m)

)
,

W (L) = exp
(
1
8ωmn(σ̃mσn − σ̃nσm)

)
(20)

are distinct operators, i.e. M(L) depends on six independent parameters
ωmn only through a (three-parameter) combination

∑3
k=1

∑k−1
l=1 εjklωkl+ωj4,

while W (L) depends on ωmn through
∑3

k=1

∑k−1
l=1 εjklωkl − ωj4.

In order to construct a relevant superspace, we introduce two constant
(anticommuting) spinors ξα and ζ̃α̇. By construction, under the action of
Spin(4)

ξα →M β
α ξβ , ζ̃α̇ →W α̇

β̇
ζ̃ β̇ , (21)

and thus ξα and ζ̃α̇ are necessarily complex, i.e. we may treat ξα and ξ̄β =

(ξβ)† , as well as ζ̃α̇ and ¯̃
ζβ̇ =

(
ζ̃ β̇
)†
, as independent Grassmann variables.

For the Levi-Civita tensor, we adapt the convention ε12 = ε1̇2̇ = ε21 =

ε2̇1̇ = 1. In effect,
εαβεβγ = δαγ , εα̇β̇ε

β̇γ̇ = δγ̇α̇

and
εα̇β̇εαβσm

ββ̇
= σ̃mα̇α . (22)

Let us now define the spinorial derivatives

Dα =
∂

∂ξα
+ i

¯̃
ζβ̇ σ̃

mβ̇α ∂m , D̃α̇ =
∂

∂ζ̃α̇
+ i ξ̄β σmβα̇ ∂m , (23)

and consequently

D̄α =
∂

∂ξ̄α
+ i σm

αβ̇
ζ̃ β̇ ∂m ,

¯̃Dα̇ =
∂

∂
¯̃
ζα̇

+ i σ̃mα̇β ξβ ∂m . (24)

They satisfy an algebra{
Dα, ¯̃Dα̇

}
= 2i σ̃mα̇α ∂m ,

{
D̄α, D̃α̇

}
= 2i σmαα̇ ∂m , (25)

with all the remaining anticommutators vanishing. Moreover, if we define
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Qα =
∂

∂ξα
− i ¯̃

ζβ̇ σ̃
mβ̇α ∂m , Q̃α̇ =

∂

∂ζ̃α̇
− i ξ̄β σmβα̇ ∂m , (26)

and

Q̄α =
∂

∂ξ̄α
− i σm

αβ̇
ζ̃ β̇ ∂m ,

¯̃Qα̇ =
∂

∂
¯̃
ζα̇
− i σ̃mα̇β ξβ ∂m , (27)

then it is immediate to check that all of the anticommutators involving one
of the operators (23) or (24), and one of the operators (26) or (27), van-
ish. In effect, all equations formulated in terms of derivatives (23) and (24)
are invariant under the (supersymmetry) transformations generated by (26)
and (27).

We next promote ψα and χ̃α̇ to spinor valued functions on the Euclidian
superspace with coordinates (x, ξα, ξ̄

α, ζ̃α̇,
¯̃
ζα̇) and, guided by (9), subject

them to the following set of equations:

Dαψα + D̃α̇χ̃
α̇ = 0 (28)

and
¯̃Dα̇ψα + D̄αχ̃

α̇ = 0 . (29)

In (28), the indices are summed over (so that the l.h.s. is a scalar), while (29)
is a vanishing condition for a certain tensor, and thus also has an invariant
meaning.

From (25), (28), and (29), we get

iσ̃mα̇α∂mψα + M̃ α̇
β̇
χ̃β̇ = 0 , (30)

iσmαα̇∂mχ̃
α̇ +M β

α ψβ = 0 , (31)

where

M β
α =

1

2

(
δβα D̃α̇

¯̃Dα̇ + D̄αD
β
)
, M̃ α̇

β̇
=

1

2

(
δα̇
β̇
DαD̄α + ¯̃Dα̇D̃β̇

)
.

(32)
We conclude that (28) and (29) imply Dirac equations for the (super) spinors
ψα and χ̃α̇ on the subspace of superfields satisfying

M β
α ψβ = mψα , M̃ α̇

β̇
χ̃β̇ = mχ̃α̇ . (33)

To see that there exist nontrivial solutions of the set of equations (30),
(31), and (33), we consider a simple case

χ̃α̇ =
∂ψα
∂ξ̄β

=
∂ψα

∂ζ̃ β̇
= 0 . (34)
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Equation
¯̃Dα̇ψα = 0 (35)

then implies that ψα depends on ¯̃
ζα̇ only through a combination of the

form of
ym = xm − i ¯̃ζα̇σ̃mα̇αξα . (36)

If we take

ψα

(
x, ξα, ζ̃

α̇
)

= λα(y) + Fmn(y) (σmσ̃n) β
α ξβ , (37)

then, since
Dαym = 2i

¯̃
ζα̇σ̃

mα̇α , (38)

we get

Dαψα = Tr(σmσ̃n)Fmn(y) + 2i
¯̃
ζα̇σ̃

mα̇α∂mλα(y)

+2i
¯̃
ζα̇ξβ(σ̃pσmσ̃n)α̇β∂pFmn(y) . (39)

Vanishing of the second term on the r.h.s. of formula (39) implies that λα
satisfies the massless Dirac equation,

iσ̃mα̇α∂mλα = 0 , (40)

meanwhile, vanishing of the first term implies that the tensor Fmn is anti-
symmetric, and consequently the identity

σ̃pσmσ̃n = εpmnr σ̃r + δmpσ̃n + δmnσ̃p − δnpσ̃m, ε1234 = 1, (41)

applied to the last term, gives

εrpmn∂pFmn = 0 , ∂mFmn = 0 . (42)

We conclude that a particular solution of the postulated set of equations is a
spinor superfield with component fields consisting of a massless spinor field
and a Maxwell gauge field.

Since the matrices (20) are unitary with unit determinant, spinors ξα ≡
εαβξβ and ξ̄α (as well as ζ̃α̇ ≡ εα̇β̇ ζ̃

β̇ and ¯̃
ζα̇) transform in the same way

under Spin(4). We can therefore construct spinorial derivatives

Dα =
∂

∂ξα
+ i ζ̃β̇ σ̃

mβ̇α ∂m , D̃α̇ =
∂

∂ζ̃α̇
+ i ξβ σmβα̇ ∂m , (43)

and corresponding supercharges

Qα =
∂

∂ξα
− i ζ̃β̇ σ̃

mβ̇α ∂m , Q̃α̇ =
∂

∂ζ̃α̇
− i ξβ σmβα̇ ∂m , (44)
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without invoking conjugated Grassmann variables. Then the set of equations

Dαψα + D̃α̇χ̃
α̇ = 0 , (45)

and
D̃α̇ψα +Dαχ̃

α̇ = 0 , (46)

where Dα = Dβεβα and D̃α̇ = D̃β̇ε
β̇α̇, imposed on “analytic”, spinorial

superfields
ψα = ψα

(
x, ξ, ζ̃

)
, χ̃α̇ = χ̃α̇

(
x, ξ, ζ̃

)
, (47)

is invariant with respect to both Spin(4) and supersymmetric transforma-
tions (generated by (44)) and implies the Dirac equation (18) on a subspace
satisfying the “mass” constraints

1

4

(
δβαε

γ̇α̇
[
D̃α̇, D̃γ̇

]
+ εγα

[
Dγ , Dβ

])
ψβ = mψα ,

1

4

(
δα̇
β̇
εγα [Dα, Dγ ] + εγ̇α̇

[
D̃γ̇ , D̃β̇

])
χ̃β̇ = mχ̃α̇ . (48)

Nontrivial solutions of (45), (46), and (48) with m = 0 can be found
(even if by “brute force”, i.e. expanding ψα and χ̃α̇ in a series of nonvanishing
powers of ξ and ζ̃ and then working out and solving the resulting differential
equations for the coefficient functions). Notice that necessarily both ψα and
χ̃α̇ are nonzero. Indeed, for χ̃α̇ = 0 equations (45), (46) imply

Dαψα = 0 , D̃β̇ψα = 0 , (49)

which is inconsistent since the anticommutator {Dα, D̃β̇} does not vanish.

3. Almost-commutative geometry

From a physicists point of view, the critical aspects of noncommutative
geometry which make it so elegantly suited for the business of model building
are the following:

1. All physically relevant information pertaining to a manifold may be
distilled within a short list of algebraic quantities, known as a spectral
triple, (A,H,D). Speaking informally, A is a (commutative) algebra of
functions continuously defined on the manifold and which is faithfully
represented as operators on a Hilbert space, H, and D : H → H is a
Dirac operator.
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2. Conversely, and under certain conditions, geometric information may
be reconstructed from the data of an a priori given spectral triple.
In particular, by allowing the algebra A to be noncommutative, one
recovers “noncommutative” geometric information which is said to de-
scribe a “noncommutative” manifold.

3. An action functional (and hence, Lagrangian) is then obtained by ap-
plying techniques of spectral theory (utilizing a heat kernel expansion)
to the Dirac operator. This stresses the importance of the role which
the Dirac operator plays in this story, it essentially encodes the metric
data of the model.

A particularly interesting class of noncommutative geometries for physicists,
due to their being a natural setting for the construction of gauge theories, are
the so-called almost-commutative or (AC) manifolds, a detailed description
of which can be found in [10]. Here, we find it sufficient to comment that
such a manifold is actually described by the product of two spectral triples,
the product being again a spectral triple. The first, loosely described above,
and the second being a “finite” spectral triple, (AF,HF, DF) consisting of a
finite-dimensional algebra, AF, represented on a finite-dimensional Hilbert
space, HF, and a symmetric matrix operator DF, are combined into the
“total-space” spectral triple

(A⊗AF,H⊗HF, DAC) . (50)

With such an AC-geometry approach applied to our 4-dimensional Eu-
clidean space, we have a total space Dirac operator of the form of

DAC = D ⊗ 1N + γ5E ⊗DF , (51)

where D is the Euclidean Dirac operator defined in (15), γ5E is of the form
given in (14), and DF is a finite Dirac operator on CN , i.e. a Hermitian
N × N matrix. Therefore, DAC can be explicitly written as a 4N × 4N
matrix, acting on bispinors of the form of

Ψ =

(
ψ
χ̃

)
, (52)

where
ψ = (ψiα) , χ̃ =

(
χ̃α̇i
)
, i = 1, . . . , N , (53)

and the Dirac equation can be written in the form of

i σ̃mα̇α∂mψiα +mχ̃α̇i + (DF)ij χ̃
α̇
j = 0 ,

i σmαα̇∂χ̃
α̇
i +mψiα − (DF)ij ψjα = 0 . (54)
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Consider now the algebra{
Dα
i , D

β
j

}
= 2εαβZij , Zij = −Zji ,{

D̃iα̇, D̃jβ̇

}
= 2εα̇β̇Z̃ij , Z̃ij = −Z̃ji , (55)

together with{
Dα
i , D̃

α̇
j

}
= 2i δij σ̃

mα̇α ∂m ,
{
Diα, D̃jα̇

}
= 2i δijσ

m
αα̇ ∂m , (56)

where Diα = Dβ
i εβα and D̃α̇

j = D̃jβ̇ε
β̇α̇. It can be realized as an algebra of

differential operators on a superspace with coordinates (xm, ξiα, ζ̃
α̇
i )

Dα
i =

∂

∂ξiα
+ iζ̃iα̇σ̃mα̇α∂m + Zijξ

α
j ,

D̃iα̇ =
∂

∂ζ̃α̇j
+ iξαi σ

m
αα̇∂m + Z̃ij ζ̃jα̇ . (57)

The corresponding supercharges, anticommuting with derivatives (57), have
the form of

Qαi =
∂

∂ξiα
− iζ̃iα̇σ̃mα̇α∂m − Zijξαj ,

Q̃iα̇ =
∂

∂ζ̃α̇j
− iξαi σmαα̇∂m − Z̃ij ζ̃jα̇ . (58)

If we postulate equations of the form of

Dα
i ψjα + D̃jα̇χ̃

α̇
i = 0 ,

D̃β̇
i ψiα +Diαχ̃

β̇
i = 0 , (59)

then, using (56), we can conclude that solutions of (59) satisfy the Dirac
equation (54) provided that the “mass” conditions

(mδij + (DF)ij) χ̃
α̇
j =

1

2

(
δα̇
β̇
Dα
i Djα + δijD̃

α̇
k D̃kβ̇

)
χ̃β̇j ,

(mδij − (DF)ij)ψjα =
1

2

(
δβαD̃iα̇D̃

α̇
j + δijDkαD

β
k

)
ψjβ (60)

are satisfied. With the help of (55), equation (60) can be alternatively
presented as

(mδij + (DF)ij − Zij) χ̃α̇j =
1

4

(
δα̇
β̇
εβα

[
Dα
i , D

β
j

]
+ δijε

γ̇α̇
[
D̃kγ̇ , D̃kβ̇

])
χ̃β̇j
(61)
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and(
mδij − (DF)ij − Z̃ij

)
ψjα =

1

4

(
δβαε

β̇α̇
[
D̃iα̇, D̃jβ̇

]
+ δijεγα

[
Dγ
k , D

β
k

])
ψjβ .

(62)
The simplest solutions of these equations (and, most likely, the only con-
sistent with (59), although the general proof of this claim is still missing)
correspond to a situation in which both the l.h.s. and the r.h.s. of (61) and
(62) vanish. This implies that the constructed framework, which reconciles
noncommutative geometry with supersymmetry in a simple setting, requires
the finite part of the Dirac operator (51) to be antisymmetric and expressible
through central charges of the algebra (55), (56) as

(DF)ij = Zij = −Z̃ij . (63)

It is worth mentioning that in the usual development via the AC-geom-
etry approach to noncommutative geometry, the finite spectral triple only
contains data pertaining to the fermionic particle content of the model.
The bosonic content of the theory, or gauge fields, are then given by the
inner fluctuations which arise through consideration of Morita equivalences
of the algebra. The Morita (self-)equivalent total-space spectral triple is
then comprised of the algebra, Hilbert space, and the “fluctuated” Dirac
operator taking into account the gauge fields. While we have seen that
gauge fields arise naturally through the “factorization” procedure which we
have herein described, one could also consider the implications of factorizing
the fluctuated Dirac operator. This possibility is almost certainly worthy of
further investigation.
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